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Abstract

Low bit-width model quantization is highly desirable when
deploying a deep neural network on mobile and edge devices.
Quantization is an effective way to reduce the model size with
low bit-width weight representation. However, the unaccept-
able accuracy drop hinders the development of this approach.
One possible reason for this is that the weights in quantiza-
tion intervals are directly assigned to the center. At the same
time, some quantization applications are limited by the vari-
ous of different network models. Accordingly, in this paper,
we propose Multiple Phase Adaptations (MPA), a framework
designed to address these two problems. Firstly, weights in
the target interval are assigned to center by gradually spread-
ing the quantization range. During the MPA process, the ac-
curacy drop can be compensated for the unquantized parts.
Moreover, as MPA does not introduce hyperparameters that
depend on different models or bit-width, the framework can
be conveniently applied to various models. Extensive experi-
ments demonstrate that MPA achieves higher accuracy than
most existing methods on classification tasks for AlexNet,
VGG-16 and ResNet.

Introduction

Over the last decade, we have witnessed the dramatic de-
velopment of deep neural networks (DNNs) in many areas,
the image classification (Krizhevsky, Sutskever, and Hinton
2012; He et al. 2016; Simonyan and Zisserman 2014), object
detection (Girshick et al. 2014), and semantic segmentation
(Long, Shelhamer, and Darrell 2015). With the aim of im-
proving the network performance, the network models have
become deeper and more complex. Unfortunately, the rela-
tionship between the number of parameters and the perfor-
mance is not linear, meaning that there tends to be a lot of
redundancy in these models. More critically, a well-trained
DNN model is difficult to deploy on most resource-limited
devices due to the network model’s huge size. Deep neural
network quantization is one of the common methods used
for network model compression. Obviously, the fewer the
bit-width we use, the worse accuracy we will get. For exam-
ple, a bit-width of 4 means that there are only 16 values that
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can be used to represent more than 10 million weights. Even
small errors from quantization may thus lead to a significant
drop in performance.

(Miyashita, Lee, and Murmann 2016) use base-2 log-
arithmic representation to compress AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) parameters to 3-bit, result-
ing in a 1.4% drop in top-5 accuracy. Moreover, in (Ull-
rich, Meeds, and Welling 2017), a version of “soft weight-
sharing” is used, with a resultant 2.02% accuracy drop of the
ResNet (light) model on CIFAR-100. The problem here is
how to compress the network model with acceptable perfor-
mance loss. Researchers have developed some methods in-
volving complex processes designed to reduce the loss; how-
ever, these processes bring with them additional parameters
(hyperparameters). In INQ (Zhou et al. 2017), a group of
global hyperparameters are handcrafted and pre-determined.
In CLIPQ (Tung and Mori 2018), each layer has two distinct
hyperparameters that differ from the other layers. SLQ (Xu
et al. 2018) is similar, which owns global parameters for dif-
ferent bit-width representation. Although these methods ob-
tain good results with well-selected hyperparameters, their
practical application is limited by the variation of hyperpa-
rameters between various network models.

In general, there are two main challenges associated with
model compression; the first is the trade-off between ex-
pected bit-width and model accuracy, while the second is
the non-uniform hyperparameter selection. Therefore, an ef-
fective and easy-configure quantization framework, Multi-
ple Phase Adaptations (MPA), is proposed in this paper to
address the above problems. Unlike the rough quantization
process, we offer a smoother method of conducting weight
quantization. There are three main steps in our proposed
framework: division, MPA, and fine-tuning. We can apply
MPA on different models such as AlexNet, VGG16 and
ResNet. For example, the quantized ResNet-18 model with
bit-width of 4 even achieves better performance than the
full-precision baseline. Other experiments also show better
or similar results with the state-of-the-art methods. We fur-
ther report the linear and exponential quantization results for
potential inference acceleration.

In summary, our contributions to network quantization are
as follows:



e Our approach divides quantization into multiple phases.
In each phase, the range of quantized weights gradually
increases; this has the advantage of making fine-tuning
more effective and reducing the model’s accuracy loss.

e For different models, we do not introduce hyperparame-
ters that depend on different models or bit-width. So we
can apply our approach on various models.

e Beyond the cluster method, we also try different division
methods to explore their effectiveness. This is useful for
further model acceleration.

Related Work

In this section, we will present a brief review of the previous
work on deep network compression methods.

Low-rank factorization. By using matrix or tensor de-
composition like Singular Value Decomposition (SVD) (De-
nil et al. 2013) to estimate the parameters, we can achieve
3x compression rate. In (Lebedev et al. 2014), Canonical
Polyadic (CP) uses nonlinear least squares to compute the
decomposition. The work in (Yu et al. 2017) presents a bet-
ter result that can compress a model by 10x. However, the
decomposition is less useful for small kernel size, which hin-
ders the development.

Parameter pruning. Designed to remove redundant pa-
rameters that are not sensitive to the accuracy, pruning is a
direct means of reducing complexity and accelerating com-
putation. In (Hassibi and Stork 1993; LeCun, Denker, and
Solla 1990), the Optimal Brain Damage and Optimal Brain
Surgeon methods are applied to reduce connections by the
Hessian of the loss function. (Han, Mao, and Dally 2015) in-
troduces the idea of setting parameters to zero under thresh-
olds, which is simple and effective. (Li et al. 2016) further
propose pruning to prune entire network structures such as
filters and channels. Traditional pruning is based on remov-
ing the small-weight connections.

Quantization and binarization. (Gong et al. 2014) use
k-means clustering to apply vector quantization. (Han, Mao,
and Dally 2015) present deep compression that updates
weights together in the same cluster. Huffman coding is also
adopted for further compression. However, the fine-tuning
phase is time-consuming and makes it difficult to get con-
vergence. Recently, (Xu et al. 2018) propose single and mul-
tiple level quantization to exploit the depth information in
order to generate a low-bit compressed network. As for in-
cremental quantization methods such as INQ (Zhou et al.
2017) and ELQ (Zhou et al. 2018), they achieve lossless
accuracy results. CLIPQ (Tung and Mori 2018) combines
quantization and pruning, but each layer has two distinct hy-
perparameters that differ from the other layers. (Zhang et
al. 2018) propose learnable quantizers to solve the accuracy
problem. Binarization is an extreme form of quantification.
BinaryNet (Courbariaux et al. 2016) and XNORNet (Raste-
gari et al. 2016) are successful attempts; however the fatal
drawback is the significant accuracy drop.

Other methods. Knowledge distillation (Hinton, Vinyals,
and Dean 2015) makes use of knowledge transfer to shift
knowledge from a large teacher model into a small one by
learning the class distributions output via softened softmax.
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(Luo et al. 2016) represent the knowledge by using the neu-
rons at the higher hidden layer, which preserves as much
information as the label probabilities, but is more compact.
One of the disadvantages of these methods is that they can
only be applied to classification tasks with a softmax loss
function. Some structures can also help with compression.
(Howard et al. 2017) propose MobileNets, which uses depth-
wise separable convolutions to build lightweight deep neural
networks. (Zhang et al. 2017) utilize point-wise group con-
volution and channel shuffle to reduce computation, thereby
achieving a 13x-speed up on AlexNet.

Notation and Preliminaries

Throughout the paper, we use w’ to denote the weight value
of the corresponding i-th layer of the model. The INQ di-
vides the whole parameters into two parts; one is for quan-
tized weights F' = {¢r}, while the other set R = {¢r}
contains the intervals of fine-tune. The authors proposed ac-
cumulated portions of quantized weights at iterative steps to
change the elements of the two parts. The iterative step is
a real number in the range from 0 to 1 that expresses the
proportion of quantized weights to total weights. Moreover,
there are about four or five steps in the complete quanti-
zation process, meaning that this is a human designed dis-
crete process. For AlexNet, VGG16 and GoogleNet, they
use three different setting parameters. By contrast, in our
method, weights can be divided into three sets. We add a new
interval, A = {¢ 4}, to hold the weights to be quantized. In
A, the range to conduct quantization is gradually expanded
as the fine-tuning progresses. Thus, we do not need to com-
pute the step value by ourselves; all that is required is to set
the interval centers. We will discuss the different methods
used to get centers in the following sections.

Once we have the interval center set C of the i-th layer,
we can divide the weights into k intervals with k£ + 1 end-
points, which can be calculated from the two adjacent cen-
ters described in Eq. (1) below. c is the element in the in-
terval center set C'. For the condition j = 0 or j = k, we
choose the extremum of this interval as the endpoint.

min(w'), e}, = maz(w")

el =
L= +d0)/2,i =12, k-1

| (1)
e; =
Based on the endpoints, the intervals can be defined as fol-

lows:
6 = {u € [ehyel) )0 = {wi € [el,el)} o

¢; ={w' € [ ¢j)} oo i = {w' € [ehri€i] )
2)
PrUG U U =w', ¢1NgyN---Ngp =0 ()
Note that there is an one-to-one correspondence between
each interval and center. This means that the weights in in-
terval ¢’ will equal the center value ¢; following Multiple
Phase Adaptations.
Moreover, in order to control the gradient of frozen
weights, we use M}D as the mask tensor, which has the same
shape as the weights w".
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Figure 1: An overview of the Multiple Phase Adaptations
Deep Quantization framework. The original model contains
full-precision weights and is shown as the blue continuous
curve. Depending on these weights, we divide them into
three intervals (divided by dotted line), as part (1.) shows.
We then begin to quantize the weights in the left part while
fine-tuning others. As the training iteration progresses, the
quantization range s becomes larger and weights are gath-
ered to the interval center (orange point). When s = 1, the
whole left part is quantized and becomes discrete. If unquan-
tized intervals remain, we repeat this operation on the next
interval. After all intervals are well quantized, we get a com-
pressed output model with little accuracy loss.

Multiple Phase Adaptations for Compression
Overview

Deep neural network quantization is one of the commonly
used methods of network model compression. By using lin-
ear quantization, most models can be compressed from 32-
bit to 8-bit with only a small accuracy drop. However, when
we reduce the bit-width to 6-bit, the accuracy drop becomes
unacceptable; each dismissed bit in the compressing pro-
cess could potentially affect the model accuracy. It should
be noted that the traditional quantization method is a rough
process, as it simply uses the center value for the presenta-
tion of all parameters in the same interval, making it difficult
to solve this problem. By contrast, we here present a smooth
way to gather weights, which we refer to as Multiple Phase
Adaptations.
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Figure 2: Four figures showing the original, clustered, linear
and exponential weight distribution. Bar width represents
the interval range, while bar height indicates the number of
weights in this interval. In (a), the points below also illus-
trate the difference between division methods.

The entire algorithm comprises division, Multiple Phase
Adaptations, and fine-tuning phases. First, divide all weights
in each layer to get the quantization centers; thus, we can
compute the adaptation and fine-tuning interval boundary
for each step. Second, we apply different strategies in differ-
ent intervals. Adaptation is the key point for quantization, as
it will help the weights to approach the quantization center
gradually with L1 weight loss. Once the weights are quan-
tized to the interval center, they will be totally frozen, which
means the weights cease backward propagation and update.
Only one interval is conducting adaptation at any given step;
at the same time, the other intervals are fine-tuning under the
condition that the values are constrained to be outside of the
frozen intervals. The overview is shonw as Figure 1. More
details will be presented in the following sections.

Multiple Phase Adaptations

In our paper, we use Multiple Phase Adaptations to over-
come the shortcoming of rough quantization. Generally
speaking, weights in the adaptation interval will equal the
center value while fine-tuning other unfrozen intervals. Mul-
tiple Phase Adaptations are conducted interval by inter-

val in descending orderA(¢7117 . é1"). The three sets are
At = {1V, R = {¢3',--- , ¢}, F* = (), meaning that
&1 " is the adaptation interval while the others are fine-tuning
intervals. Because no interval has been quantized, there is

no frozen interval. For the set A%, we apply L1 or L2 norm
regularization to adapt the weights towards the center:

=) fwt=d, wt e A 4)

Moreover, we accumulate all the norm values of each layer
to get the weight loss with L or L. In our work, we mainly
adopt Lj; this is because the L1 norm will result in sparser



Algorithm 1 Training a L-layer network with k cluster cen-
ter weights Multiple Phase Adaptations Quantization

Require: Dataset inputs X and target Y, the original
weights w
{1. Division}

1: fori=1to L do
2:  C"= kmeans(w') or other methods
3: Get ¢, according to Eq. (1), (2)
4: ¢;* = sort(|C?)), its interval range changes to ;"
5: b=0,Ry=w" Ft =10
6: end for
7: for j = 1to k do
8: Al = {o; ), Ry =w'— A, |, F} = Ff'q 4—.14;-71
9: while s <=1 or not reach the required iteration do
10: Get minibatch of inputs x and target y from
X, Y
11: fori =1to L do
{2.1 Multiple Phase Adaptations}
12: Get range A’ by Eq. (5), (6)
13: Get quantized weights w’, by Eq. (7)
14: Get freeze mask M % by Eq. (8)
15: Get L¢ regularization by Eq. (4)
16: end for
{2.2 Fine-tuning}
17: Compute loss function E (w) by Eq. (12)
18: Update w by Eq. (14)
19: Apply constraint to weights by Eq. (15)
20: end while
21: end for

weights, with the result that the parameters have an optimal
value towards the center. Another benefit is that the L1 norm
requires less in the way of computing resources.

Using regularization will make most weights locate
around the center of the interval, but will not necessarily
quantize them to the exact center. Thus, the weight assign-
ment is necessary, which is traditionally conducted after reg-
ularization or fine-tuning, which leads to large losses follow-
ing weight quantization; by contrast, Multiple Phase Adap-
tations offers a smoother way to quantize weights during the
phase. We set a parameter s to express the weight quanti-
zation process. s = 0 means that no weights are quantized
to the center, while s = 1 indicates that all weights are as-
signed to the center; in other words, the quantization for this
interval has been completed. In this paper, we use relative
distance to define s, which we call the adaptation coefficient.
We first find the distance between the center and end-points
of the interval, then compute the left and right end-point dis-
tance e; and e, of the adaptation range by Eq. (5). An alter-
native definition of s is the percentage of weights that have
been quantized to the center. However, this definition is rel-
atively complicated, as we need to sort the weights in each
adaptations interval to find the endpoints. Accordingly, we
can compute the range of A% by Eq. (6). As for the quanti-
zation operation, the weights in A% are assigned to the cor-
responding center value. This process is shown in Eq. (7).
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Figure 3: A toy example illustrating how adaptation operates
on a layer with 16 weights. We first cluster the weights into
four parts labeled with four colors. We then begin to quantize
the blue part and re-train the other parts. (Note that weights
may change the part that they used to belong to after the
weight update.) Weight (4,4) is an example that changes its
interval from gray to orange. Finally, we repeat the above
operation until all weights are quantized.

e = |ci—e§’,er:s‘ci—e§-+l| (5)
Al =[c" —e,c +e (6)

i ifwte Al
W, { wi’ Zf wi ¢ A;} (7)

In Eq. (5), ej- and ej- .1 are two endpoints of the adaptation

interval that meets the condition e} < e’ ;. As the adapta-
tion progresses, s grows slowly. In practice, s needs about
two epochs to increase to 1.

Once the weights are quantized to the appropriate inter-
val’s center, they will never change again, a state we refer
to as “frozen”. This happens in both set A’ and F*. The
difference between them is that A’ is dynamic while F* is
static in one interval. To handle this problem, we use a mask
matrix M to represent the ' layer’s frozen status, which
indicates whether the weights are frozen. M. is defined as:

> X3 1 3
My = {O,z'f o p gFi’Af% (®)
Lifw' ¢ {F", A
As the Multiple Phase Adaptations process continues, the
At will finally equal A’. When the set A® is totally frozen, it
will be merged into F*.
Division
Division involves splitting weights into different intervals.
For different tasks, there might be various ways to conduct
this procedure. In our work, k-means is the first of these
methods selected, because it is suitable for large samples;
moreover, its criterion, minimizing within-cluster sum-of-
squares, is similar to ours. The k-means aims to divide n
original weights in set W = {wy,ws, ..., w,} into k dis-
joint clusters C' = {c¢1, ¢, ..., ck}. The criterion is shown
in Eq. (9). To decrease the clustering time, we here opt to
use random sampling. This will also help to get the distri-
bution of weights quickly and avoid the impact of outliers.
After one interval is quantized, we can also update the other
centers by k-means again.

k
arg?inz Z |lw — ¢ )

=1 weEc



In addition to k-means, quantization with linear and expo-
nential weight centers are also two possible solutions. First,
take the average of the absolute of the minimum and maxi-
mum value, as the maximum of the centers. For linear quan-
tization, we evenly sample centers between 0 and the max
center value with & /2. For exponential quantization, we start
from the max center value, then sample the centers by tak-
ing a half of the previous center value until it approaches to
zero. Finally, the opposites of the sampled centers are also
used as quantization centers. A comparison of the different
ways used divide weights is presented in Figure 2.

Because the weights are stored in binary, it is common to
make £ an integer power of two. Another key point is that
the distribution of weights may vary greatly from layer to
layer; thus, we need to conduct division for each layer. For

the 7" layer, the division set is shown as Eq. (10), where cé

represents the 5" center of C* and the centers are arranged
in descending order.

C'={c, e}, ¢}, i=1,2- L (10)

It is next necessary to determine the order for intervals to
conduct Multiple Phase Adaptations. In (Han et al. 2015),
the authors simply set a threshold to prune the small-weight
connections. Inspired by this approach, we take the absolute
values of center C* and sort them again as C' in Eq. (11). We
begin to conduct adaptation in the ¢;? interval, which repre-

sents the most important weights in the layer. After sorting,
the corresponding range of ¢;* also changes to gi;jz, which
meets the condition of ¢;' € ¢;".

Ci :sort(‘Ci’) = sort ({!c’l , 012’ R c}gl})
:{6_1170_217 ‘ . 70_167;}

st. a'>a'> > > >

Y

1
1 Cjy

i

Fine-tuning

In this paper, the fine-tuning and Multiple Phase Adaptations
are performed simultaneously. Thus, the loss function is the
sum of two parts, as Eq. (12) shows: one is for accuracy,
while the other is for compression. Although the weights
are clustered to different intervals, fine-tuning may change
which interval they belong to; however, they cannot slip into
the adaptation or frozen intervals because of the constraint.
In Figure 3, some weights change color due to this.

min E (w) = L (w;z,y) + Z NLE (w)

i=1

(12)

In Eq. (12), L (w;z,y) is the basic classification loss of
the network, while x,y denote the image input and target.
L% (w) is the L1 norm loss for weights of the i*" layer, and
A is a factor of the i*" layer that controls the importance of
the layer’s weight loss. Recently, models are going deeper
and deeper, making the loss harder to propagate back to the
shallower layers; thus, we can set a larger M’ for them. In this
work, in addition to the basic weight loss Ao, a weight loss
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decay factor d in Eq. (13), is also adopted. For the optimiza-
tion, we simply use the RMSprop algorithm, although others
can also be applied. In order to freeze the quantized weights,
M is the gate used to control whether or not the weights
conduct gradient propagation. The whole update process is
shown in Eq. (14), where ~y is the learning rate.

X=X (do)",0 < dg <1 (13)
oE _ .

—w—y—DM? 14

w w ’yaw r (14)

While fine-tuning, the value of weights may slip into the
range of adaptations or frozen intervals, which will pollute
the quantized weights. It is therefore necessary to implement
a constraint for w € R.

wc_{

where W,in, Wmaee are the min and max value of set R. Af-
ter fine-tuning, the distribution of weights will also change,
meaning that the original center value cannot represent the
new model. We may re-cluster the weights to get a better
performance. This time, we only need to cluster the unquan-
tized parts to update ¢;’. Accordingly, in Figure 3, the cen-
ters also change after the update. The complete operations
of MPA are summarized in Algorithm 1.

Zf W < Winin
Zf Wmin S w S Wmax
if w > Wnag

Wimnin,
w7

5)

wmaa; )

Experiments

In this section, we evaluate our proposed Multiple Phase
Adaptations Quantization method on the CIFAR-10 and Im-
ageNet (ILSVRC-2012) classification benchmarks. CIFAR-
10 consists of 10 classes with 6,000 images per class. Each
image is a 32 x 32 color picture. There are 50,000 training
images and 10,000 test images. As for ImageNet, which is
widely adopted in the computer vision field, contains more
than 120K images divided into 1,000 classes. Before using
these images as input, some image preprocessing needs to be
conducted. As in most experiments, we first normalize the
images using the given mean and standard deviation value,
then randomly crop images to 224 x 224 for VGG-16 and
ResNet and 227 x 227 for AlexNet. Random image hori-
zontal flip is adopted at the same time. Experiments are con-
ducted on common CNN models, including AlexNet, VGG-
16 and ResNet. The deep learning framework that we use is
PyTorch.

Implementation Details

First, we use the ResNet-18 in order to conduct quantiza-
tion on CIFAR-10 to prove the effectiveness of our method.
The CIFAR-10 original model is trained for 200 epochs and
achieves 93.11% accuracy. After 16 epochs re-training with
MPA, we convert the trained full-precision model to a 4-bit
or 3-bit low-precision model. We then use ImageNet as the
dataset. As for training epochs, we adopt two training strate-
gies: a shorter one (in which 32 epochs are used to quantize
weights) and a longer one (in which 64 epochs are used).
AlexNet is one of the basic CNN structures. We use GPU



Table 1: Quantization accuracy results with short epoch training on ImageNet (strategy A)

Network | Bit-width | Top-1 Acc (%) | Top-5 Acc (%) | Change in top-1/top-5 error
32 56.5 79.0 -/-
AlexNet 3 54.2 77.6 -2.3/-1.4
4 55.8 78.4 -0.7/-0.6
32 71.6 90.4 -/-
VGG-16 3 70.8 89.9 -0.8/-0.5
4 71.4 90.3 -0.2/-0.1
32 69.8 89.0 -/-
Ternary 67.2 87.4 -2.6/-1.6
ResNetl8 3 68.9 88.0 -0.9/-1.0
4 69.2 88.3 -0.6 /-0.7
32 76.1 92.8 -/-
ResNet50 3 74.8 92.2 -1.3/-0.6
4 75.9 92.7 -0.2/-0.1

Table 2: Quantization accuracy results with long epoch training on ImageNet (strategy B)

Network | Bit-width | Top-1 Acc (%) | Top-5 Acc (%) | Change in top-1/top-5 error
32 56.5 79.0 -/-
AlexNet 3 55.6 78.5 -0.9/-0.5
4 56.2 78.8 -0.3/-0.2
32 71.6 90.4 -/-
VGG-16 3 71.4 90.0 -0.2/-0.4
4 71.7 90.7 +0.1/+0.3
32 69.8 89.0 -/-
Ternary 69.2 88.5 -0.6/-0.5
ResNetl8 | 75 69.7 88.8 0.1/-02
4 70.2 89.3 +0.4/+0.3
32 76.1 92.8 -/-
ResNet50 3 75.1 92.4 -1.0/-0.4
4 76.0 92.8 -0.1/0.0

cards for the experiments with a batch size of 256. The RM-
Sprop optimizer is adopted with an initial learning rate of
0.005 and a momentum of 0.5. Taking a bit-width of 4 as
an example, the number epochs required to quantize one in-
terval for the shorter and longer training strategies are 2 and
4 respectively. We set A\g = 0.01 and dy = 0.95. VGG-16
is similar to AlexNet, except that the number of convolu-
tional layers increases to 13. Quantization is conducted with
a learning rate of 0.001 and other parameters unchanged.
ResNet is widely used for feature extraction in many com-
puter vision tasks. The main settings are the same overall;
however, it is worth noting that we consider one block struc-
ture a whole part and those layers in one block share the
same \’.

Results Analysis

Results of all the ImageNet experiments are presented in
Tables 1 and 2. AlexNet is a baseline test. In Table 2, top-
1/top-5 accuracy decreases 0.3%/0.2%, 0.9%/0.5% with bit-
widths of 4 and 3 respectively. Intuitively, the more we re-
train, the better results we will get. Our experiments also
prove this point.

For VGG-16, results for bit-widths of 4 and 3 exhibit a
change of +0.1%/+0.3%, -0.2%/-0.4% in terms of top-1/top-
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5 accuracy respectively, while 3 bit-width quantization also
maintains similar levels of accuracy. We find that the quan-
tization model of VGG-16 results in accuracy improvement.
This finding demonstrates that this kind of quantization does
little harm to the original models so that fine-tuning can
increase the accuracy. Another possible reason is that the
weights become sparse, which improves the generalization
performance for the validation image set.

The results show that our method is valid for residual
structure. Moreover, ResNet has fewer weight parameters
than VGG-16, but it achieves a better result. Thus, the num-
ber of weight parameters is not the determining factor of
performance.

Comparison with State-of-the-art Methods

Table 3 presents a comparison of this work with other state-
of-the-art network quantization algorithms. In the interests
of fairness, we compare the change of accuracy between
Top-1 and Top-5. For some of the models and bit-widths
experimental data is not available in the original paper. Ac-
cordingly, to facilitate comparison with our method, we use
LQ-Net code to implement quantization. “A” indicates the
short training epochs, while “B” denotes the long training
epochs. Moreover, we only compare the results in the same



Table 3: Model comparison in Top-1/5 on ImageNet

Network | Method 3-bit (%) | 4-bit (%)
LogQuant -/- -/-1.4
LinearQuant -/- -/-0.7
LQ-Net-A -6.8/-4.5 | -4.0/-3.7

AlexNet | 16 Net-B | -1.6/-1.0 | -0.6/-03
Ours-A -2.3/-14 | -0.7/-0.6
Ours-B -0.9/-0.5 | -0.3/-0.2
LogQuant -/-0.6 -/0.0
LinearQuant -/-6.8 -/-0.4
SLQ -0.2/-1.1 | +2.6/+0.6

VGG-16 | LQ-Net-A -7.2/-5.1 -4.2/-2.5
LQ-Net-B -0.3/-0.5 | -0.1/4+0.2
Ours-A -0.8/-0.5 | -0.2/-0.1
Ours-B -0.2/-0.4 | +0.1/+0.3
ABC-Net -3.1/-2.5 -/-
INQ -0.2/-0.3 | +0.6/+0.3
QIL -0.3/-0.3 | +0.1/-0.1
LQ-Net-A -6.2/-3.7 | -3.5/-2.4

ResNet-18 | | O Net-B | -0.4/-09 | -0.5/-0.3
LQ-Net -0.3/-0.7 | -0.3/-0.4
Ours-A -0.9/-1.0 | -0.6/-0.7
Ours-B -0.1/-0.2 | +0.4/+0.3
WEQ -5.0/-2.2 | -2.0/-0.3
LQ-Net-A -1.71-4.5 | -2.3/-1.6
LQ-Net-B -1.2/-0.7 | -0.3/-0.2
ResNet-30 | 1/ Net - 0.0/-0.1
Ours-A -1.3/-0.6 | -0.2/-0.1
Ours-B -1.0/-0.4 | -0.1/0.0
bit-width.

For AlexNet, we obtain the best results. In particular,
when utilizing strategy A and a bit-width of 4, we achieve
much better accuracy than LQ-Net. This indicates that our
method does not require much time to get an acceptable
low bit-width model, which is also observed in the follow-
ing experiments. For VGG-16, although we have the best
result at 3 bit-width, our approach is outperformed by SLQ
at a bit-width of 4; this is because we only use single layer
information. As for ResNet-18, we use ternary weights to
compare with INQ and ELQ. In Table 4, the symbol A
means the decrease in Top-1 or 5. Our performance is bet-
ter than ELQ, which is the state-of-art method, and we also
use fewer hyperparameters (only universal parameters \g
and dp). ResNet-50 is the most complex model, so a few
methods have been tested on this with particularly low bit-
width weights. Our models experience only -1.0%/-0,4%, -
0.1%/0.0% accuracy loss using 3/4 widths on this model.

The reason why our approach achieves an advantage in
accuracy is that only a portion of the weights are needed to
be quantized in each interval. Thus, the model suffers only
minimally from quantization, and will soon fine-tuned to the
original accuracy or even better. In general, we meet the goal
of low precision and high accuracy; moreover, in some as-
pects, we achieve the best overall results.
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Table 4: Comparison of ternary ResNet-18 on ImageNet

Method | Top-1(%) | Top-5(%) | A Top-1/5(%)
INQ 66.0 87.1 -2.3/-1.6
ELQ 67.5 88.1 -0.8/-0.6
Ours 69.2 88.5 -0.6/-0.5

Table 5: Ablation experiments on ResNet-18

Network | Method Top-1 (%) | A (%)
Original 93.1 -
3-bit 91.6 -1.5

CIFAR-10 | 3-bit with MPA 93.1 0.0
4-bit 92.3 -0.8
4-bit with MPA 93.4 +0.3
Original 69.8 -
3-bit 66.9 -2.9

ImageNet | 3-bit with MPA 69.7 -0.1
4-bit 68.6 -1.2
4-bit with MPA 70.2 +0.3

Table 6: Comparison of division methods on ImageNet

Bit-width | Method | Top-1 (%) | Top-5 (%)
32 ref 69.8 89.0
C 69.7 88.8
3 L 67.6 87.3
E 69.5 88.8
C 70.2 89.3
4 L 68.9 88.0
E 69.7 88.9

Ablation Experiments

We use ResNet-18 to conduct quantization on CIFAR-10
and ImageNet in order to prove the effectiveness of our
method. Methods without MPA mean that s = 1 when quan-
tization is being conducted. The results of ablation experi-
ments results on two datasets are presented in Table 5. We
can see from the results that an accuracy increase is achieved
for both bit-widths compared with the naive method.

Division Method Comparison

During the inference, linear and exponential centers can be
beneficial for acceleration. For example, if we use exponen-
tial weight centers, we can use a shift operation instead of
multiplication. Thus, it is advisable to quantize models with
these division methods. Results for linear and exponential
quantization are also shown in Table 6. “C” is the origi-
nal cluster method, while “L” means linear and “E”’ denotes
an exponential method of conducting division. We find that
there is little accuracy drop for the exponential quantization.
Different ways of determining the intervals may have dif-
ferent weight histograms. Both clustering and exponential
methods have more centers near zero; as a result, the expo-
nential centers can balance compression and acceleration.



Conclusions

In this paper, a novel model quantization framework (MPA)
is proposed for model compression, which includes division,
Multiple Phase Adaptations, and fine-tuning. Through using
these steps, our method can minimize damage to the model
and compensate for more accuracy loss during fine-tuning.
Moreover, MPA does not introduce any model-or bit-width-
specific hyperparameter, meaning that we can apply MPA on
various network models. Due to these well-designed phases
and operations, we obtain state-of-the-art-level ternary, 3-
and 4-bit-width results on different models without substan-
tial accuracy loss. In addition, linear and exponential cen-
ter experiments are also conducted, which indicates the po-
tential of network acceleration. In our future work, we will
apply Multiple Phase Adaptations from CNN to RNN or
LSTM models. Furthermore, our quantized CNN models
will be migrated to resource-limited devices to investigate
computation and power efficiency.
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