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Abstract

With the advent of deep learning, the performance of text
classification models have been improved significantly. Nev-
ertheless, the successful training of a good classification
model requires a sufficient amount of labeled data, while it is
always expensive and time consuming to annotate data. With
the rapid growth of digital data, similar classification tasks
can typically occur in multiple domains, while the availabil-
ity of labeled data can largely vary across domains. Some do-
mains may have abundant labeled data, while in some other
domains there may only exist a limited amount (or none) of
labeled data. Meanwhile text classification tasks are highly
domain-dependent — a text classifier trained in one domain
may not perform well in another domain. In order to address
these issues, in this paper we propose a novel dual adver-
sarial co-learning approach for multi-domain text classifica-
tion (MDTC). The approach learns shared-private networks
for feature extraction and deploys dual adversarial regulariza-
tions to align features across different domains and between
labeled and unlabeled data simultaneously under a discrep-
ancy based co-learning framework, aiming to improve the
classifiers’ generalization capacity with the learned features.
We conduct experiments on multi-domain sentiment classi-
fication datasets. The results show the proposed approach
achieves the state-of-the-art MDTC performance.

Introduction

Text classification is a widely existing problem in various
real-world applications, such as spam, fraud, and sentiment
analysis (Jindal and Liu 2007; Ngai et al. 2011; Medhat,
Hassan, and Korashy 2014). Many similar text classifica-
tion tasks can typically occur in multiple domains, while the
availability of labeled data can largely vary across domains.
However, many text classification tasks are highly domain-
dependent, as the same word in different domains may con-
vey different meanings (Glorot, Bordes, and Bengio 2011;
Pang, Lee, and others 2008). For example, in the domain of
sports news, the word “fast” is usually positive: “This athlete
runs really fast”. However, “fast” is frequently used as a neg-
ative word in the domain of electronics product review; e.g.,
in the following review sentence: “the battery of this digital
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camera runs fast”. Thus, a model trained on a specific do-
main may fail to perform well on another domain. A simple
solution to this problem is to train domain-specific text clas-
sifiers for each domain (Blitzer, Dredze, and Pereira 2007).
Unfortunately, annotating sufficient amount of data in each
domain is always expensive and time consuming, sometimes
even impossible.

Multi-domain text classification (MDTC) (Li and Zong
2008) aims to address the problems above by simultane-
ously utilizing all available data across multiple domains to
improve the classification accuracy and improving the clas-
sifiers trained on each specific domain with the help of other
related domains. Recently, deep neural network based mod-
els have been used for multi-domain learning problem in
both computer vision (Mansour, Mohri, and Rostamizadeh
2009; Duan, Xu, and Tsang 2012) and natural language pro-
cessing fields (Wu and Huang 2015; Chen and Cardie 2018).
Some previous work tackles MDTC by training a shared fea-
ture extractor across different domains for useful informa-
tion sharing (Liu, Qiu, and Huang 2016). However, focus-
ing only on a shared feature subspace across different do-
mains may ignore the domain-dependent characteristics of
each domain. One way to address this problem is to learn
both shared feature extractor and domain-specific feature
extractor through a shared-private scheme (Bousmalis et al.
2016). However, the traditional shared-private models suffer
from problems such like domain-dependant features creep
into the shared latent subspace (Liu, Qiu, and Huang 2017),
which consequently can result in performance degradation.
Moreover with the reality of lacking sufficient labeled data,
the features extracted in such models may overfit the labeled
training data and fail to generalize well.

To address these problems, in this paper we propose
a novel dual adversarial co-learning approach for MDTC.
The approach extracts both domain-invariant and domain-
specific features through shared-private networks and learns
two classifiers on the extracted features. The classifiers and
feature extractors are co-learned in an adversarial man-
ner based on the prediction discrepancy on unlabeled data.
Meanwhile, a multinomial multi-domain adversarial dis-
criminator is deployed to enhance the effective extraction of
domain-invariant features, while separating them from the
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domain-specific features. Different from previous existing
multi-domain learning methods, the proposed approach not
only attempts to align data across domains in the extracted
feature space but also simultaneously align labeled and unla-
beled data in each domain, avoiding overfitting to the limited
labeled data. The overall learning is conducted through three
adversarial steps, aiming to produce feature representations
that not only generalize well across domains but also gener-
alize into the unlabeled data. We evaluate the proposed ap-
proach’s efficacy by conducting experiments on two popular
MDTC data sets, and also extend the approach for unsuper-
vised domain adaptation. The experimental results show the
proposed approach achieves the state-of-the-art performance
in both scenarios.

Related Work

Multi-Domain Text Classification

Text classification such as review classification is one im-
portant problem with wide real application needs in many
different domains (Pang, Lee, and Vaithyanathan 2002) and
it is also well known as a highly domain dependent prob-
lem. With the varying availability of labeled data in differ-
ent but similar domains, multi-domain text classification has
been studied to improve text classification performance by
exploiting data in multiple domains together (Li and Zong
2008). With multi-domain classification, classifiers can be
trained for domains with scarce labels by utilizing other re-
lated domains with abundant labeled data. Some early works
have adopted transfer learning techniques for MDTC. The
structural correspondence learning (SCL) algorithm (Blitzer,
Dredze, and Pereira 2007) computes the association be-
tween pivot features among different domains in order to
capture correspondences among features. (Pan et al. 2010)
proposed a spectral feature alignment (SFA) algorithm for
MDTC by reducing the gap between different domains. The
most recent prior works on MDTC include Collaborative
Multi-Domain Sentiment Classification (CMSC) (Wu and
Huang 2015), Recurrent Neural Network for Text Classifi-
cation with Multi-Task Learning (RNN-MT) (Liu, Qiu, and
Huang 2016), Multinomial Adversarial Networks for Multi-
Domain Text Classification (MAN) (Chen and Cardie 2018)
and Adversarial Multi-task Learning for Text Classification
(ASP-MTL) (Liu, Qiu, and Huang 2017). CMSC uses two
types of classifiers, a classifier shared by all the domains and
a set of classifiers developed for each domain, and it requires
external resources to help improve classification accuracy.
RNN-MT used recurrent neural networks to map data from
different domains into a common latent space, then used the
shared features to train the model. Both MAN and ASP-
MTL leverage standard adversarial training, as well as the
shared-private model (Bousmalis et al. 2016), to guide the
feature extraction to guarantee that the shared feature extrac-
tor only generates common and domain-invariant features.
Our proposed work further advances the line of study by
deploying dual adversarial co-training. We assume that the
amount of labeled data in each domain is varying and insuf-
ficient, aiming to train accurate classifiers by leveraging all
the available resources across domains.

Adversarial Training

The idea of adversarial training was initialized by the gen-
erative adversarial network (GAN) on image generation
(Goodfellow et al. 2014). The GAN model formulates the
generator training problem as a minimax adversarial game
and deploys a discriminator, which discriminates the gen-
erated fake samples from the real samples, as an adversar-
ial player, aiming to learn a robust generator that can fool
the discriminator. The adversarial learning mechanism later
is also exploited for domain adaptation (Ganin et al. 2016;
Bousmalis et al. 2016), where the discriminator tries to dif-
fer data in the source domain from that in the target domain,
aiming to help learn domain-invariant features. The work in
(Saito et al. 2018) deploys adversarial learning to align the
distributions of source and target domains by adjusting the
task-specific decision boundaries. It plays a min-max game
between two classifiers and one feature extractor, and uses
the prediction disagreement of the two classifiers in the tar-
get domain as a discrimination. Nevertheless, most prior
works applied adversarial training in a single-source and
single-target scenario. The recent work (Zhao et al. 2018)
extends adversarial training to multiple-source scenarios for
domain adaptation, which uses a domain classifier as the ad-
versarial discriminator. Our proposed method uses a novel
dual adversarial training for MDTC tasks, which learns fea-
ture extractors that not only align multiple domains, but also
align labeled and unlabeled data.

Approach

In this work, we consider MDTC tasks in the following set-
ting. Assume we have M domains, each m-th domain has
a limited number of labeled instances Lm = {(xi, yi)}lmi=1
and a set of unlabeled instances Um = {xi}um

i=1. The prob-
lem of MDTC is to utilize all the available resources across
the M domains to improve the overall multi-domain clas-
sification performance. In this section, we present a novel
dual adversarial co-learning model and a stepwise adversar-
ial training algorithm for MDTC.

Dual Adversarial Co-Learning Model

As each domain contains limited labeled data, the main idea
of MDTC is to exploit the joint labeled resources in multi-
ple domains to capture common generalizable information.
Towards this goal, we propose a novel dual adversarial co-
learning model for MDTC, which is illustrated in Figure 1.
The model has five component networks: a shared feature
extraction network Fs, a set of domain-specific feature ex-
traction networks {Fm

d }Mm=1, two classification networks C1
and C2 that use features from both types of feature extrac-
tors, and a domain discriminator D. The shared feature ex-
tractor Fs learns to capture the shared features that can con-
tribute to the classification tasks across all domains, while
each domain-specific feature extractors Fm

d learns to cap-
ture domain-dependent features that contribute specifically
only to their own domain. These feature extractors perform
data representation learning and can adopt the form of Con-
volutional Neural Network (CNN), Recurrent Neural Net-
work (RNN), or Multiple Layer Perceptron (MLP), depend-
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Figure 1: Architecture of the dual adversarial co-learning model. A shared feature extractor Fs learns to capture domain-
invariant features. Each domain-specific feature extractor Fm

d learns to capture domain-dependent features. A regularizer LΔ

is used to separate the shared and domain-dependent features. A domain discriminator D is used to adversarially help identify
domain-invariant features through an adversarial loss Ld

adv . Two classifiers C1 and C2 are co-learned to adversarially enforce
the alignment of labeled and unlabeled data in each domain in the extracted feature space.

ing on the particular task. Each instance in the training data
will go through both the shared feature extraction network
and its domain-specific feature extraction network to pro-
duce two feature vectors for the consequent classification
task. The proposed model deploys two adversarial learning
mechanisms to induce useful and generalizable features that
not only align data across the multiple domains but also align
the labeled data and unlabeled data in each domain through
co-learning of a pair of classifiers. We introduce each of the
adversarial learning mechanisms below.

Domain Discrimination based Adversarial Learning In
the proposed model, the shared feature extractor Fs and the
domain-specific feature extractors {Fm

d }Mm=1 are expected
to complement each other and maximumly capture useful
data representations for multiple domains. The shared fea-
tures extracted are the domain generalizable features that
enable knowledge sharing across domains. It is important to
capture the right domain-invariant features and prevent the
shared and domain-specific features from interfering with
each other. We propose to deploy a multinomial domain dis-
criminator D to discriminate data from different domains
in the learned domain-invariant feature space. For M do-
mains, D will be a M -class classifier and output a proba-
bility vector on each input instance; e.g., Dm(Fs(x)) de-
notes the predicted probability of instance x coming from
the m-th domain. Intuitively, the multinomial discrimina-
tor D should be optimized to maximumly discriminate in-
stances from different domains, while the shared feature ex-
tractor Fs should be optimized to maximumly fool the dis-
criminator. If a strong discriminator can not identify the do-
mains of input instances with the learned features, these fea-
tures are essentially domain-invariant. We encode this intu-
ition through the following adversarial learning formulation:

min
Fs

max
D

Ld
Adv =

M∑

m=1

Ex∼Lm∪Um
log[Dm(Fs(x))] (1)

This multinomial discriminator-based formulation extends
the standard binary adversarial discriminator into the multi-

domain learning scenarios under the same adversarial learn-
ing principle.

Separation regularizer Motivated by some recent works
(Bousmalis et al. 2016; Liu, Qiu, and Huang 2017) on net-
work separation analysis, we also introduce a separation reg-
ularizer to ensure the difference of the domain-specific ex-
tractors from the domain-invariant feature extractor. Specif-
ically, the separation regularizer minimizes the similarity
between the extracted domain-invariant features and the
domain-specific features on the same data in all the domains:

min
Fs,{Fm

d }
LΔ =

M∑

m=1

∥∥∥
∑

x∼Lm

Fs(x)Fm
d (x)�

∥∥∥
2

F
(2)

where Fs(x) and Fm
d (x) denote the column feature vectors

extracted, and ‖ · ‖F denotes the Frobenius norm. By mini-
mizing such a separation regularizer, the difference between
the shared feature extractor and each domain-specific feature
extractor can be enforced.

Prediction Discrepancy based Adversarial Learning
After feature extraction, two classification networks C1 and
C2 are deployed to take the concatenation of shared and
domain-specific features as input and predict the class labels
of the given instance. The networks C1 and C2 can be MLPs
with a softmax output layer that produces prediction proba-
bilities in each class. Both classifiers can be trained together
with the feature extractors by minimizing the prediction loss
on the labeled instances:

min
C1,C2,Fs,{Fm

d }
L1
c + L2

c ,

where Li
c = −

M∑

m=1

E(x,y)∼Lm
log[Ciy(Fs(x),Fm

d (x))],

i ∈ {1, 2} denotes the index of two classifiers, and
Ciy(Fs(x),Fm

d (x)) denotes the prediction probability of in-
stance x belonging to the y-th class by the classifier Ci. Neg-
ative loglikelihood is used as the loss function. Then L1

c and
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L2
c denote the prediction loss of the two classifiers on the

labeled data in M domains respectively.
As we have limited labeled data in each domain, to avoid

overfitting of the features to the labeled data and ensure their
generalizability to unlabeled instances, we adopt another ad-
versarial learning mechanism based on the prediction dis-
crepancy of the two classifiers on the unlabeled data to as-
sist feature representation learning, especially the domain-
specific feature learning:

min
Fs,{Fm

d }
max

C1,C2:d(Ci,C∗
i )≤ε

Lu
Adv (3)

where Lu
Adv =

M∑

m=1

Ex∼Um

∥∥∥∥
C1(Fs(x),Fm

d (x))−
C2(Fs(x),Fm

d (x))

∥∥∥∥
1

(4)
where ‖ · ‖1 denotes the �1 norm function and we use �1
norm to measure the prediction difference between the two
classifiers on the unlabeled data, d(·, ·) denotes a distance
function, and C∗

i (i = 1, 2) denotes the classifiers trained
on the labeled data. The constraint d(Ci, C∗

i ) ≤ ε enforces
C1 and C2 to be in the close neighborhood of the original
classifiers C∗

1 and C∗
2 . This adversarial mechanism can in-

duce features that are robust to small changes in the classi-
fiers. By maximizing the prediction discrepancy of the two
classifiers, C1 and C2, on unlabeled data in the close neigh-
borhood of the original classifiers (within distance ε), unla-
beled instances that are out of the scope of or not aligned
with the labeled instances in the joint feature representation
space can be identified. These instances are most likely lo-
cated near the classification boundary of the original classi-
fiers (C∗

1 , C∗
2 ) – thus some near neighbor classifiers (C1, C2)

can easily disagree on them. With such an adversarial oppo-
nent, by minimizing the prediction agreement on unlabeled
data, the feature generators can be tuned to produce feature
representations in which the unlabeled instances can be well
aligned with the labeled instances and hence the classifiers
can have better generalization capacities.

Stepwise Adversarial Training

To integrate the two adversarial mechanisms introduced
above into the learning process of our feature extractors and
classifiers, we develop a stepwise adversarial training proce-
dure. The procedure has three sequential steps, model learn-
ing step, adversarial opponent step, and model refinement
step, which work together to enforce robust domain adapta-
tion. We elaborate the three steps below.

Model Learning Step The proposed MDTC model
mainly comprises of the feature extraction networks, Fs

and {Fm
d }, and the classification networks, C1 and C2. We

first conduct initial classifier training over them by minimiz-
ing the separation regularized prediction loss on the labeled
training data in multiple domains:

min
Fs,{Fm

d },C1,C2

L1
c + L2

c + αLΔ (5)

where α is a trade-off parameter. The separation regularizer
is used here to avoid negative interference between the do-
main invariant and domain specific features. This step per-
forms standard training on the labeled instances. The model

produced needs to be further refined through adversarial
learning to improve the feature extractors.

Adversarial Opponent Step We then take the two adver-
sarial mechanisms in Eq.(1) and Eq.(4) into consideration.
Instead of performing an alternating minimax optimization,
we simply conduct two discrete steps: maximization over the
opponents (discriminator and the classifiers) in this step and
minimization over the model (feature extractors) in the next
step. To avoid using constraints to limit the search for adver-
sarial classifiers within a close neighborhood of the initial
classifiers, we reformulate the adversarial objective by tak-
ing the prediction loss on the labeled data into account:

max
C1,C2

− (L1
c + L2

c

)
+ Lu

Adv (6)

max
D

Ld
Adv (7)

These adversarial maximizations identify the difficulties in
aligning domains in the shared feature space and aligning
labeled and unlabeled data in the joint feature space respec-
tively, which provide directions for further refining the fea-
ture extractors in the next step.

Model Refinement Step In this last step, we refine the
feature extractors (Fs and {Fm

d }) to fool the discriminator
and minimize the prediction discrepancy on unlabeled data:

min
Fs,{Fm

d }
Lu
Adv + γLd

Adv (8)

The refined features are expected to be more robust and gen-
eralizable for better classifier training.

We adopt a mini-batch based stochastic gradient descent
algorithm for this stepwise adversarial training, which is
illustrated in Algorithm 1. In each iteration of the algo-
rithm, the three steps, L-step (model Learning step), A-
step (Adversarial opponent step), and R-step (model Re-
finement step), can be conducted sequentially over the sam-
pled batches, while each step performs a stochastic gradient
based update regarding the related objective.

Experiments

We conduct experiments on two multi-domain text classifi-
cation datasets, and also extend the empirical study into the
scenario of multi-source unsupervised domain adaptation. In
this section we report the experimental setting and results.

Experimental Settings

Dataset We conducted experiments on two multi-domain
text classification (MDTC) datasets: the multi-domain Ama-
zon review dataset (Blitzer, Dredze, and Pereira 2007) and
the FDU-MTL dataset (Liu, Qiu, and Huang 2017). Both
datasets are widely used in multi-domain and cross domain
text classification tasks. The Amazon review dataset has four
domains, i.e., book, DVD, electronics and kitchen. Each do-
main contains 2,000 samples: 1,000 positive reviews and
1,000 negative reviews. Note that all reviews in the dataset
were already encoded into 5,000 dimensional vectors of
bag-of-word unigram and bigram features with binary la-
bels, which have lost all word order information and can not
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Algorithm 1 Stochastic gradient descent training algorithm

1: Input: labeled data Lm and unlabeled data Um in M
domains; hyper-parameters α, γ.

2: for number of training iterations do
3: Sample labeled mini-batches from the multiple do-

mains B� = {B�
1, · · · , B�

M}.
4: Sample unlabeled mini-batches from the multiple do-

mains Bu = {Bu
1 , · · · , Bu

M}.
5: L-Step: Calculate LL = L1

c + L2
c + αLΔ on B�;

Update Fs, {Fm
d }, C1, C2 by descending along

gradients ΔLL.
6: A-Step: Calculate LA = −(L1

c + L2
c) + Lu

Adv on B�

and Bu, calculate Ld
Adv on B� and Bu;

Update C1 and C2 by ascending along ΔLA;
Update D by ascending along ΔLd

Adv .
7: R-Step: Calculate LR = Lu

Adv + γLd
Adv;

Update Fs, {Fm
d } by descending along ΔLR.

8: end for

be processed by CNNs or RNNs anymore. We hence used
MLPs as our feature extractors, which have an input size of
5,000. More specifically, for the MDTC experiment on the
Amazon review dataset, we followed the experiment setting
in (Wu and Huang 2015) and conducted a 5-fold cross val-
idation test. We randomly divide data in each domain into
five partitions with equal size, where three partitions are
used for training, one serves as the validation set, and the
remaining one is used for testing. The 5-fold average test
classification accuracy is recorded.

As the Amazon dataset has fewer domains, the FDU-MTL
dataset consists of 16 domains, each domain contains re-
views with binary sentiment labels. The first 14 domains
are Amazon product reviews on different products such as
books, electronics, DVD, kitchen, apparel, camera, health,
music, toys, video, baby, magazine, software and sports. The
remaining two domains are movie reviews from the IMDb
and MR datasets. All the data are collected as raw text data
only being tokenized by the Stanford tokenizer. Hence this
dataset allows one to use more advanced feature extractors.
The data in each domain is randomly divided into three
parts: training set (70%), validation set (10%) and testing
set (20%). There exists 200 samples in the validation set and
400 samples in the testing set for each domain. While the
numbers of labeled and unlabeled instances vary across do-
mains they are roughly 1400 and 2000, respectively.

Implementation Details The proposed model has two hy-
perparameters, α and γ. In the experiments, we set α = 0.1
and γ = 0.1. We set the extracted shared feature dimension
as 128 and the extracted domain-specific feature dimension
as 64. C1, C2 and D are MLPs with one hidden layer con-
taining 128+ 64, 128+64, and 128 hidden units respectively.
ReLU is used as the activation function. For the experiments
on Amazon review dataset, we use MLPs with two hidden
layers (with 1000 and 500 units respectively) as feature ex-
tractors. The input size of the MLPs is set to 5000. For the

experiments on FDU-MTL, we use CNN with one convo-
lutional layer as our feature extractor. It uses different ker-
nel sizes (3, 4, 5), and the number of kernels are 200. The
input of the convolutional layer is the 100-dim word em-
beddings, obtained using word2vec (Mikolov et al. 2013),
of each word in the input sequence. We use Adam optimizer
(Kingma and Ba 2014) to train our models, with the learning
rate 0.0001. We use a batch size of 8, and 50 training itera-
tions. On the test data, we use the average prediction proba-
bility scores of the two classifiers to determine the prediction
labels of each instance.

Multi-Domain Text Classification

Comparison Methods We compared our proposed dual
adversarial co-learning (DACL) model with a number of
state-of-the-art MDTC methods, which are listed as follows:

• MTLGraph: The Multi-task learning with graph regular-
ization (Zhou, Chen, and Ye 2011). This method uses the
sentiment word distribution similarity graph as its domain
similarity graph.

• CMSC-LS, CMSC-SVM, CMSC-Log: The collabora-
tive multi-domain sentiment classification methods with
squared loss, hinge loss and log loss respectively (Wu and
Huang 2015).

• MAN: The multinomial adversarial network for multi-
domain text classification (Chen and Cardie 2018). This
method uses two forms of loss to train the domain dis-
criminator: The negative log-likelihood loss (MAN-NLL)
and the least square loss (MAN-L2).

• MT-CNN: The deep neural network model which can
learn features across different tasks given very limited
prior knowledge by using a single convolutional layer
(Collobert and Weston 2008).

• MT-DNN: The mult-task deep neural network model with
bag-of-words input and MLPs (Liu et al. 2015), in which
a hidden layer is shared.

• ASP-MTL: The adversarial multi-task learning model for
text classification (Li and Zong 2008), in which shared-
private scheme and adversarial training are used to guide
feature extration.

All the comparison methods use the standard partitions of
the datasets. We hence take convenience to cite the results
from (Wu and Huang 2015; Li and Zong 2008; Chen and
Cardie 2018) for fair comparisons.

Experimental Result Analysis The experimental results
on Amazon review dataset and FDU-MTL dataset are re-
ported in Table 1 and Table 2 respectively. The recent studies
that used the Amazon dataset have showed it is very difficult
to achieve multi-domain performance gains on this dataset.
From Table 1 we can see that by adopting the dual ad-
versarial co-learning, the proposed DACL method achieves
the best performance in all domains on the Amazon re-
view dataset comparing with the other state-of-the-art meth-
ods, including the ones that also adopted domain adversarial
training. Moreover, the improvement gains yielded by our

6442



Table 1: MDTC classification accuracies on the Amazon review dataset. Bold font denotes the best classification results.

Domain MTLGraph CMSC-LS CMSC-SVM CMSC-Log MAN-L2 MAN-NLL DACL(Proposed)
Books 79.69 82.10 82.26 81.81 82.46 82.98 83.45
DVD 81.84 82.40 83.48 83.73 83.98 84.03 85.50
Electr. 83.69 86.12 86.76 86.67 87.22 87.06 87.40
Kit. 87.06 87.56 88.20 88.23 88.53 88.57 90.00
AVG 83.06 84.55 85.18 85.11 85.55 85.66 86.59

Table 2: MDTC classification accuracies on the FDU-MTL dataset. Bold font denotes the best classification accuracy results.

Domain MT-CNN MT-DNN ASP-MTL MAN-L2 MAN-NLL DACL(Proposed)
books 84.5 82.2 84.0 87.6 86.8 87.5
electronics 83.2 81.7 86.8 87.4 88.8 90.3
dvd 84.0 84.2 85.5 88.1 88.6 89.8
kitchen 83.2 80.7 86.2 89.8 89.9 91.5
apparel 83.7 85.0 87.0 87.6 87.6 89.5
camera 86.0 86.2 89.2 91.4 90.7 91.5
health 87.2 85.7 88.2 89.8 89.4 90.5
music 83.7 84.7 82.5 85.9 85.5 86.3
toys 89.2 87.7 88.0 90.0 90.4 91.3
video 81.5 85.0 84.5 89.5 89.6 88.5
baby 87.7 88.0 88.2 90.0 90.2 92.0
magazine 87.7 89.5 92.2 92.5 92.9 93.8
software 86.5 85.7 87.2 90.4 90.9 90.5
sports 84.0 83.2 85.7 89.0 89.0 89.3
IMDb 86.2 83.2 85.5 86.6 87.0 87.3
MR 74.5 75.5 76.7 76.1 76.7 76.0
AVG 84.5 84.3 86.1 88.2 88.4 89.1

Table 3: Ablation study analysis.

Method Books DVD Electr. Kit. AVG
DACL (full) 83.45 85.50 87.40 90.00 86.59
DACL w/o D 82.90 85.10 86.30 89.15 85.86
DACL w/o C2 81.85 83.10 85.75 89.10 84.95

proposed approach are more notable than the performance
difference between any two best comparison methods. This
suggests that the dual adversarial mechanism in our pro-
posed approach is more effective.

For the experimental results on FDU-MTL, reported in
Table 2, the proposed DACL method outperforms MT-CNN
and MT-DNN consistently across all domains with notable
large performance gains. When compared with the state-
of-the-art MAN-L2, MAN-NLL and ASP-MTL, DACL
achieves the best performance on 12 out of 16 domains, and
obtains superior result in terms of average classification ac-
curacy. The experimental results again validate the efficacy
of our proposed method.

Ablation Study Since the proposed DACL model has five
component networks, which are involved in two adversar-
ial mechanisms. We investigated how different components,
importantly the adversarial mechanisms, in our model can
impact the performance on the Amazon review dataset. In
particular we investigated two ablation variants: (1) DACL

w/o D, the variant of the proposed DACL model without the
discriminator D, which hence drops the domain-based ad-
versarial learning; (2) DACL w/o classifier C2, the variant
of the proposed DACL model without the second classifier,
which hence drops the discrepancy-based adversarial learn-
ing. The comparison results between these two variants and
the full model are reported in Table 3. We can see both vari-
ants induced inferior results, and the full model with dual ad-
versarial mechanisms produced the best results, comparing
to the two ablation variants. This validates the contribution
of both adversarial mechanisms.

Parameter Sensitivity Analysis The proposed model has
two hyperparameters, α and γ. α is used to weight the
feature extractor separation regularizer; γ are used to bal-
ance the two adversarial losses. We conducted experi-
ments on the Amazon review dataset to perform sensitiv-
ity analysis on these parameters. We first fixed γ = 0.1
and conducted experiments with different α values from
{0.001, 0.01, 0.1, 1, 10}. Then we fixed α = 0.1 and con-
ducted experiments with different γ values from the same
range {0.001, 0.01, 0.1, 1, 10}. The experimental results are
reported in Figure 2. The results are the average classifica-
tion accuracy across multi-domains on the Amazon review
dataset. From Figure 2, we can see that the average classi-
fication accuracy increases quickly with α value increasing
from 0.001 to 0.1. This suggests the feature extractor separa-
tion regularizer is useful. With α changing from 0.1 to 1, the
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Table 4: Unsupervised domain adaptation results on the Amazon review dataset. Bold numbers indicate the best classification
accuracy in each domain.

Domain MLP mSDA DANN MDAN(H) MDAN(S) MAN-L2 MAN-NLL DACL(Proposed)
Books 76.55 76.98 77.89 78.45 78.63 78.45 77.78 80.22
DVD 75.88 78.61 78.86 77.97 80.65 81.57 82.74 82.96
Elec. 84.60 81.98 84.91 84.83 85.34 83.37 83.75 84.90
Kit. 85.45 84.26 86.39 85.80 86.26 85.57 86.41 86.75
AVG 80.46 80.46 82.01 81.76 82.72 82.24 82.67 83.71

(a) α

(b) γ

Figure 2: Parameter sensitivity analysis

performance change is very small, while the further increase
of α degrades the performance. This suggests this regular-
izer can not be over emphasized, and a value in [0.01, 1]
should be reasonable for α. For γ, the performance is robust
for γ value with (0.001, 1], but degrades when γ becomes
large. This suggests both adversarial terms work.

Unsupervised Domain Adaptation

In many real-world applications, some domains may not
have any annotated data at all. Thus it is important to extend
the MDTC systems to tackle this extreme case, multi-source
unsupervised domain adaptation. In this experimental set-
ting, we have multiple labeled source domains and one un-
labeled target domain which only has unlabeled instances.
Since our proposed dual adversarial training method can
leverage unlabeled data across different domains for feature
representation learning with dual adversarial mechanisms, it
is expected to be useful for multi-source unsupervised do-
main adaptation. Since there is no labeled data in the tar-
get domain, we only used the shared feature as the inputs to
two classifiers C1 and C2 in this domain, while the domain-
specific features are set to be 0s.

We conducted unsupervised domain adaptation experi-
ments on the Amazon review dataset. We adopt the same

setting as (Chen and Cardie 2018). For each experiment,
three out of the four domains are used as the labeled source
domains, and the remaining one domain is used as the un-
labeled target domain. The test results are evaluated in the
target domain. We compared our proposed DACL method
with several domain adaptation methods, including: (1) A
MLP trained on the source domains, which serves as a
baseline. (2) Two single-source domain adaptation meth-
ods, marginalized denoising autoencoder (mSDA) (Chen et
al. 2012) and domain adversarial neural network (DANN)
(Ganin et al. 2016). When training mSDA and DANN, we
combined the data in the multiple source domains into a
single source domain. (3) The state-of-the-art multi-source
domain adaptation methods, multi-source domain adapta-
tion neural networks (MDAN(H) and MADN(S)) (Zhao et
al. 2017) and MAN (MAN-L2 and MAN-NLL) (Chen and
Cardie 2018). The comparison results are reported in Ta-
ble 4. We can see the average results of most multi-source
domain adaptation methods are better than that of the sin-
gle domain adaptation methods. The proposed model out-
performs all the comparison methods in three out of the to-
tal four domains. In terms of average accuracy, the proposed
method outperforms all the other methods. This suggests our
method has good capacity in performing multi-source unsu-
pervised domain adaptation.

Conclusion

In this paper, we proposed a novel dual adversarial co-
learning model to leverage all available resources across
different domains for multi-domain text classification. The
model uses a shared feature extractor across different do-
mains to induce domain-invariant features and uses domain-
specific feature extractors to capture domain-dependent in-
formation. Two adversarial learning mechanisms are incor-
porated to boost feature representation learning, which en-
force multi-domain alignment through domain discriminator
and improve labeled-unlabeled data alignment through max-
imal prediction discrepancy minimization. Experimental re-
sults on two MDTC benchmark datasets show the proposed
approach can improve the performance of MDTC effec-
tively. We also extended the work into multi-source unsuper-
vised domain adaptation experiments, which again demon-
strates impressive performance.
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