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Abstract

Multi-view clustering aims at integrating complementary in-
formation from multiple heterogeneous views to improve
clustering results. Existing multi-view clustering solutions
can only output a single clustering of the data. Due to their
multiplicity, multi-view data, can have different groupings
that are reasonable and interesting from different perspec-
tives. However, how to find multiple, meaningful, and diverse
clustering results from multi-view data is still a rarely stud-
ied and challenging topic in multi-view clustering and mul-
tiple clusterings. In this paper, we introduce a deep matrix
factorization based solution (DMClusts) to discover multiple
clusterings. DMClusts gradually factorizes multi-view data
matrices into representational subspaces layer-by-layer and
generates one clustering in each layer. To enforce the diver-
sity between generated clusterings, it minimizes a new re-
dundancy quantification term derived from the proximity be-
tween samples in these subspaces. We further introduce an
iterative optimization procedure to simultaneously seek mul-
tiple clusterings with quality and diversity. Experimental re-
sults on benchmark datasets confirm that DMClusts outper-
forms state-of-the-art multiple clustering solutions.

Introduction

Many real-world data include diverse types of feature views.
For example, web images have both visual and textual fea-
tures; a protein has structure and interactome features. The
various feature views embody consistent and complemen-
tary information of the same objects, and have produced in-
tensive research in multi-view learning (Bickel and Schef-
fer 2004; Zhao et al. 2017). The fusion of feature views
enables not only the achievement of a comprehensive com-
posite view of the objects, but also facilitates the associated
learning task (Nie, Cai, and Li 2017; Tan et al. 2018).

Various efforts have been focused on the development
of effective multi-view clustering (MVC) algorithms. Some
methods achieve clustering by co-regularization (Kumar
and Daumé 2011; Cheng et al. 2013), correlation analysis
(Chaudhuri et al. 2009), or multiple kernel learning (Gönen
and Alpaydın 2011; Liu et al. 2019); other approaches
learn the shared subspace to extract complementary and
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Figure 1: An example of grouping the same objects with
three views via deep matrix factorization and diversity con-
trol layer-by-layer. The Shape clustering is generated from
all three views, while the Color and Texture clusterings are
generated from the first two views and the last two views,
respectively.

shared information of multi-view data, and perform clus-
tering therein (Li, Jiang, and Zhou 2014; Gao et al. 2015;
Zhao, Ding, and Fu 2017; Zong et al. 2017; Kang et al.
2019).

Existing MVC solutions focus on generating a single clus-
tering; they fail to present different but meaningful clus-
terings of the same multi-view data (Fanaee-T and Thore-
sen 2018). For example, the three-view objects in Figure
1 have different shapes, colors, and textures. The afore-
mentioned MVC solutions group these objects mainly by
shape. But they can also be clustered according to the shared
color and texture. These groupings are meaningful but dif-
ferent. In other words, multiple clustering is concerned with
both the quality and diversity of alternative clusterings. Al-
though multiple clusterings can present alternative and over-
looked meaningful clusterings of the same objects, it is a
known dilemma to balance diversity and quality (Bailey
2013). Given this challenge, a number of solutions have
been introduced to generate alternative clusterings in differ-
ent subspaces (Cui, Fern, and Dy 2007; Mautz et al. 2018;
Wang et al. 2019), by meta clustering of base clusterings
(Caruana et al. 2006), by referring to already explored clus-
terings (Bae and Bailey 2006; Yang and Zhang 2017), or
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by simultaneously reducing the redundancy between cluster-
ings (Wang et al. 2018; Yao et al. 2019a). However, they still
focus on single-view data. One naive extension is to concate-
nate diverse feature vectors of the same objects into a longer
one, and then directly apply off-the-shelf multiple clustering
solutions on concatenated vectors. However, this concate-
nation overrides the intrinsic nature of multi-view data, and
thus reduces the quality and increases the redundancy of ex-
plored clusterings, as our experiments will show.

To find multiple clusterings on multi-view data, (Yao et al.
2019b) recently proposed a solution called multi-view multi-
ple clustering (MVMC). MVMC extracts the individual and
shared similarity matrices of multi-view data based on the
adapted self-representation learning (Luo et al. 2018), and
then applies semi-nonnegative matrix factorization (Ding,
Li, and Jordan 2010) on each combination of the individual
and common similarity data matrices to generate alternative
clusterings, where the quality is pursued by the commonal-
ity matrix and the diversity is obtained by the individuality
matrix. However, MVMC: (a) does not differentiate the rel-
evance of different views and suffers from low-quality (ir-
relevant) data views; (b) does not maintain well the quality
and diversity of multiple clusterings; (c) cannot be applied
for datasets with a large number of samples, since it has to
factorize the combined similarity matrix with size equal to
the number of samples.

In this paper, we introduce a deep matrix factorization
based solution (DMClusts, as illustrated in Figure 1) to gen-
erate multiple diverse clusterings of good quality in a layer-
wise fashion. DMClusts collaboratively factorizes the multi-
view data matrices into multiple representational subspaces
layer-by-layer, and seeks an alternative clustering of qual-
ity per layer. To achieve diversity among the clusterings, it
reduces their redundancy by means of a new balanced redun-
dancy quantification term, which jointly considers the case
when two objects are often grouped together and the case
when they are in different clusters of the subspaces. We fur-
ther introduce an iterative optimization procedure to simul-
taneously seek multiple clusterings in a layer-wise fashion.
The main contributions of our work are:

(i) We introduce a deep matrix factorization based solu-
tion (DMClusts) to seek multiple clusterings by fus-
ing the consensus and complementary information of
multi-view data, and by enforcing the diversity be-
tween the clusterings layer-by-layer. DMClusts can
credit different degrees of relevance to different views;
as such, it’s less sensitive to noisy (or low-quality)
ones.

(ii) DMClusts introduces a balanced redundancy quantifi-
cation term, which jointly considers the case that two
samples are often nearby in the representational sub-
space per layer, and the reverse case that they are often
faraway per layer, to comprehensively quantify the re-
dundancy of multiple clusterings, whilst existing simi-
lar quantification overlooks the latter case. Extensive
experiments on benchmark datasets show that DM-
Clusts significantly outperforms other related compet-
itive multiple clusterings solutions (Yao et al. 2019b;

Wang et al. 2019; Yang and Zhang 2017; Ye et al.
2016; Jain, Meka, and Dhillon 2008; Cui, Fern, and Dy
2007) and the deep matrix factorization (Trigeorgis et
al. 2017) in finding multiple clusterings with quality
and diversity.

Our Method

Overview of deep matrix factorization

Matrix factorization techniques have been extensively
adopted for data analysis and representation learning in var-
ious domains (Tang et al. 2017; Fu et al. 2018; Li, Tang, and
Mei 2019). For example, NMF (nonnegative matrix factor-
ization) (Lee and Seung 2001) can decompose a nonnega-
tive data matrix X into two factor matrices X ≈ ZH, the
nonnegative constraints imposed on factors allow for bet-
ter interpretability and lead to significantly growing appli-
cation of NMF and its variants (Ding, Li, and Jordan 2010;
Cai et al. 2011; Žitnik and Zupan 2014). By taking Z ∈
R

d×K as K cluster centroids in the d-dimensional feature
space, and H ∈ RK×n as the soft membership indicators
of n samples to these centroids, semi-NMF (Ding, Li, and
Jordan 2010) is equivalent to a soft version of k-mean clus-
tering. To absorb mix-sign X, semi-NMF only imposes the
nonnegative constraints on H.

To explore the complex hierarchical structure and to elim-
inate noise in the data matrix X with different modali-
ties, and motivated by the idea and robustness of deep
representation learning (Hinton and Salakhutdinov 2006;
Bengio 2009), (Trigeorgis et al. 2017) extends semi-NMF
to deep semi-NMF (DMF) as follows:

X ≈ Z1H1

X ≈ Z1Z2H2

· · ·
X ≈ Z1Z2...ZmHm

(1)

where Zl ∈ RKl−1×Kl is the l-th (l ≤ m) layer basis ma-
trix, and Hl ∈ R

Kl×n(≥ 0) is the l-th layer representation
matrix. By taking Z1, · · · , (Z1Z2 ·Zl) ∈ Rd×Kl as the clus-
ter centroids and Hl ∈ RKl×n as the cluster indicators, or
separately clustering on Hl, we can obtain m clusterings by
a deep factorization network with m layers. However, these
clusterings may have high redundancy, since the overlap be-
tween them is ignored.

Multi-view data often embody different distributions,
which enable different groupings of the same dataset from
diverse perspectives. Therefore, it is promising to apply
DMF on multi-view data to discover multiple clusterings.
One simple solution is to concatenate multiple feature views
into a single view, and then directly apply DMF on the con-
catenated view. However, this concatenation does not differ-
entiate the relevance of these views, and results in informa-
tion override and redundant clusterings. Given that, we pro-
pose the multi-view multiple clusterings using deep matrix
factorization solution.

The proposed method

Suppose X = {X(1),X(2), · · · ,X(V )} is a dataset with V
different feature views of n objects, X(v) ∈ R

dv×n. To make
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use of the complementary information and to explore hierar-
chical representations of multi-view data, we formulate our
model by extending DMF as follows:

min
Z

(v)
m ,Hm

=

M∑
m=1,m′ �=m

V∑
v=1

||X(v) − Z
(v)
1 Z

(v)
2 ...Z(v)

m Hm||2F

+ λR(Hm,Hm′)
(2)

where M is the user-specified target number of cluster-
ings, Z(v)

l is the l-th (l ≤ m) layer mapping for view v,
R(Hm,Hm′) quantifies the redundancy between two clus-
terings and will be discussed later. λ is introduced to bal-
ance the quality and redundancy of M clusterings. Since
Hm is shared across all the data views, we can expect that
Hm fuses the complementary information of multiple data
views to generate a high-quality representational subspace
in the m-th layer with respect to Z

(v)
1 Z

(v)
2 ...Z

(v)
m . In addi-

tion, because of the hierarchical representation and redun-
dancy control term, alternative clusterings with diversity can
be pursued also.

Our formulation has a close connection with multi-view
clustering via deep matrix factorization (Zhao, Ding, and Fu
2017), which also factorizes multiple data views layer-by-
layer to extract the complementary information, but it can
only generate a single clustering in the final layer. Our task is
different from subspace clustering (Domeniconi et al. 2007;
Luo et al. 2018), which seeks only one clustering with dif-
ferent clusters in different subspaces. Our formulation is also
different from non-redundant multiple clustering by nonneg-
ative matrix factorization (MNMF) (Yang and Zhang 2017),
which performs only one layer factorization to find a new
clustering by reducing the redundancy between the cluster-
ing and already explored ones. As such, MNMF may gen-
erate low quality alternative clusterings due to its one-layer
representation of data and the heavy dependence on the ref-
erence clustering.

Different data views may have a different relevance to-
ward different clusterings. Eq. (2) and MVMC (Yao et al.
2019b) assume all the data views have the same relevance
toward these clusterings. As such, the noisy or irrelevant
data views may compromise the quality of alternative clus-
terings. To account for the different levels of relevance of
the data views toward the alternative clusterings, and reduce
the impact of noisy views, we further assign weights to these
views for each clustering as follows:

min
Z

(v)
l

,Hm,α
(v)
m

=

M∑

m=1,m′>m

V∑

v=1

(α
(v)
m )r||X(v) − Z

(v)
m ...Z

(v)
m Hm||2F

+ λR(Hm,Hm′ )

s.t., Hm ≥ 0,
∑V

v=1
α
(v)
m = 1, α

(v)
m ≥ 0

(3)

where α
(v)
m ≥ 0 is the weight coefficient for the v-th data

view for generating the m-th clustering, and r is the param-
eter to control the weights distribution. In this way, multiple

data views are selectively fused to generate diverse cluster-
ing with quality. For example, in Figure 1, three alternative
clusterings (shape, color, texture) can be obtained by differ-
ent weight assignments of three views.

As we stated, it is important to control the redundancy (or
overlap) with alternative clusterings. Most subspace based
multiple clusterings solutions reduce the redundancy be-
tween clusterings by seeking orthogonal (non-redundant or
independent) subspaces (Cui, Fern, and Dy 2007; Ye et al.
2016; Mautz et al. 2018; Wang et al. 2019). DMClusts also
has such flavor and seeks a clustering based on each layer’s
representation Hm. However, a set of objects maybe nearby
in the orthogonally projected subspaces and thus outputs
similar clusters in these subspaces. For this reason, we ad-
ditionally quantify the redundancy between clusterings us-
ing ({Hm}Mm=1). A co-association matrix C(m) ∈ R

n×n

can reflect whether two objects are grouped into the same
cluster or not for the m-th clustering (Fred and Jain 2005).
Particularly, if xi and xj are grouped into the same clus-
ter, then C

(m)
ij = 1, otherwise C

(m)
ij = 0. So if two clus-

terings (m and m′) have a large
∑n

ijC
m
ijC

m′
ij , there is a

high redundancy (or overlap) between them. Since the nor-
malized representation Hm often can not be an exact bi-
nary cluster-indicator matrix, here we approximate C(m) by
HT

mHm, which softly quantifies the degree of two objects
being grouped into the same cluster for the m-th layer (or
clustering). Based on this approximation, we quantify the
overlap between two clusterings in different layers as:

R(Hm,Hm′) =
∑n

i,j=1
(HT

mHm)ij(H
T
m′Hm′)ij

= tr(HT
mHmHT

m′Hm′)
(4)

where tr(·) is the matrix trace operator. A large
R(Hm,Hm′) means xi and xj are nearby in different rep-
resentation subspaces, which will be grouped into the same
clusters of two different clusterings and increase the overlap.

However, Eq. (4) only accounts for the case that two ob-
jects are often projected nearby (grouped into the same clus-
ters) in different representation subspaces, but overlooks the
case that two objects are frequently placed faraway (grouped
into different clusters) in these subspaces. We want to re-
mark that other multiple clustering solutions (Yang and
Zhang 2017; Wang et al. 2018; Yao et al. 2019a) also adopt
the idea in Eq. (4) to quantify the redundancy between clus-
terings, and thus they also overlook the latter case, which
emerges when the number of clusters ≥ 3. To remedy this
overlook, we introduce a balanced redundancy quantifica-
tion term as follows:

R̃(Hm,Hm′ ) = βtr(HT
mHmHT

m′Hm′ )

+ (1− β)tr((1−HT
mHm)(1−HT

m′Hm′ )
(5)

where β ∈ [0, 1] is the balance coefficient. Eq. (5) consid-
ers two extreme cases: (i) many pairwise objects are always
nearby in two subspaces, (ii) are always faraway in these
subspaces. Both cases increase the overlap of two cluster-
ings. In other words, if many pairwise objects placed into
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the same clusters for one clustering, but not so for the other
clustering, then the redundancy between them is low.

To this end, we can reformulate the objective function of
DMClusts as follows:

min
Z
(v)
m ,Hm,α

(v)
m

J =
M∑

m=1,m�=m′

V∑

v=1

(α(v)
m )r||X(v) − Z

(v)
1 ...Z(v)

m Hm||2F

+ λ(βtr(HT
mHmHT

m′Hm′ )

+ (1− β)tr((1−HT
mHm)T (1−HT

m′Hm′ )))

s.t., Hm ≥ 0,
∑V

v=1
α(v)

m = 1, α(v)
m ≥ 0

(6)

By minimizing the above objective, we can gradually find M
clusterings, while the quality of these clusterings is pursued
by the constraint Hm of the respective layer shared across all
the views, and the diversity is pursued by reducing the cases
that too many objects always nearby (or faraway) in these
representation subspaces. Our experiments will confirm the
advantage of these factors.

Optimization

The minimization objective in Eq. (6) is defined with respect
to Z

(v)
m , Hm, and α

(v)
m . Since a close-form solution cannot be

given, we alternatively optimize one variable while keeping
the other two constant. The alternative process is detailed
below.

Update rule for Z
(v)
m : The optimization of Eq. (6) with

respect to Z
(v)
m is:

JZ(Z
(v)
m ) =

M∑
i=m

(α
(v)
i )r||X(v) − ΦmZ(v)

m Hmi||2F (7)

where Φm = Z
(v)
1 Z

(v)
2 ...Z

(v)
m−1 and Hmi =

Z
(v)
m+1...Z

(v)
i Hi. Letting the partial derivative ∂JZ/Z

(v)
m =0,

we can obtain

Z(v)
m = (ΦT

mΦm)−1(
M∑

i=m

(α
(v)
i )rΦTX(v)HT

mi)

(
M∑

i=m

(α
(v)
i )rHmiH

T
mi)

−1

(8)

Update rule for Hm: Optimizing Eq. (6) with respect to
Hm is equivalent to minimizing the following:

JH(Hm) =

V∑

v=1

α
(v)
m ||X(v) − Z

(v)
1 ...Z

(v)
m Hm||2F

+ λ(βtr(HT
mHmHT

m′Hm′ )

+ (1− β)tr((1−HT
mHm)T (1−HT

m′Hm′ )))

s.t., Hm ≥ 0

(9)

For the constraint Hm ≥ 0, we introduce the Lagrangian
multiplier η as follows:

L(Hm) =

V∑

v=1

α
(v)
m ||X(v) − Z

(v)
1 ...Z

(v)
m Hm||2F

+ λ

M∑

m′=1,m′ �=m

βtr(HT
mHmHT

m′Hm′ )

+ (1− β)tr((1−HT
mHm)(1−HT

m′Hm′ ))− tr(ηHm)
(10)

Letting the partial derivative ∂L/Hm = 0 and
ηij(Hm)ij = 0, we can get

Hm = Hm �
√

Q+ +P−Hm + λΓ−
m

Q− +P+Hm + λΓ+
m

(11)

where Q =
∑V

v=1(α
(v)
m )r(Z

(v)
all )

TX(v), P =∑V
v=1(α

(v)
m )r(Z

(v)
all )

TZ
(v)
all . Q+

ij = (|Q|ij +Qij)/2, Q−
ij =

(|Q|ij −Qij)/2, Γm =
∑M

m=1,m′ �=mHmHT
m′Hm′ − (1−

β)Hm1T , Z(v)
all = Z

(v)
1 Z

(v)
2 ...Z

(v)
m .

Update rule for α
(v)
m : We denote Θ

(v)
m = ||X(v) −

Z
(v)
1 ...Z

(v)
m Hm||2F . Eq. (6) with respect to α

(v)
m is written as:

min
α

(v)
m

V∑
v=1

(α(v)
m )rΘ(v)

m s.t.
V∑

v=1

α(v)
m = 1, α(v)

m ≥ 0. (12)

The Lagrangian function of Eq. (12) is:

min
α

(v)
m

V∑
v=1

(α(v)
m )rΘ(v)

m − λ(

V∑
v=1

α(v)
m − 1). (13)

where λ is the Lagrangian multiplier. By taking the deriva-
tive of Eq. (13) with respect to α

(v)
m , and setting it to zero,

we have α
(v)
m = (λ/rΘ

(v)
m )

1
r−1 . Since

∑V
v=1(α

(v)
m )r = 1,

we can obtain:

α(v)
m = (rΘ(v)

m )
1

1−r /
∑V

v=1
(rΘ(v)

m )
1

1−r (14)

To this end, we have all the iterative update rules for optimiz-
ing three variables of DMClusts. We repeat these updates it-
eratively until convergence. After that, we run k-means clus-
tering on each {Hm}Mm=1 and obtain M clusterings.

Time complexity

The time complexity of DMClusts is composed of three
parts. For simplicity, we assume all the layers have the same
size K. DMClusts takes order O(M(ndK + dK2 + nK2))

to update Z
(v)
m , O(V ndK) to update α

(v)
m , and O(V ndK +

MnK2) to update Hm in each iteration. So the time com-
plexity of DMClusts for generating M clusterings on V
views is O(tM(MndK + MnK2 + MdK2 + V ndK)),
where t is the number of iterations to convergence. Gener-
ally K < d, K < n, and M � n, thus the complexity
of DMClusts is O(t(M2 + V )ndK). In our used datasets,
DMClusts converges within t < 50 iterations. On the other
hand, the time complexity of MVMC (Yao et al. 2019b) is
O(tV M(n2d+n2k)) (k is the number of clusters). Clearly,
the complexity of DMClusts is linear in n, but MVMC is
quadratic to n. As a result, our DMClusts can scale to larger
datasets than MVMC.
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Experimental Results and Analysis

Experimental Setup

In this section, we evaluate the effectiveness and efficiency
of our proposed DMClusts on seven widely-used multi-view
datasets, as described in Table 1. The adopted datasets are
from different domains, with different numbers of views and
objects. More details on the data are given in the Supplemen-
tary file.

Multiple clustering approaches aim to achieve diverse
clusterings of high quality. To measure quality, we use Sil-
houette Coefficient (SC) and the Dunn Index (DI) as inter-
nal indexes to quantify the compactness and separation of
clusters. To measure redundancy, we use Normalized Mu-
tual Information (NMI) and Jaccard Coefficient (JC) as ex-
ternal indexes to quantify the similarity of clusters between
two clusterings. We want to emphasize that a higher value
of SC and DI means a clustering with higher quality, but a
smaller value of NMI and JC implies that two clusterings
have a smaller redundancy. These metrics have been widely
adopted for evaluating multiple clusterings (Bailey 2013;
Yang and Zhang 2017). Their formal definitions are given
in the Supplementary file.

Table 1: Statistics of multi-view datasets. n, c, V are the
numbers of objects, clusters and views; dv are the dimen-
sions of V views.

Datasets n, c, V dv
Caltech7 1474, 7, 6 [40, 48, 254, 1984, 512, 928]
Handwritten 2000, 10, 6 [216, 76, 64, 6, 240, 47]
Reuters 1200, 6, 5 [21531, 24892, 34251, 15506, 11547]
BBCSport 145, 2, 4 [4659, 4633, 4665, 4684]
MSRCv1 210, 7, 6 [1302, 48, 512, 100, 256, 210]
Yale 165, 15, 3 [4096, 3304, 6750]
Mirflickr 16738, 24, 2 [150, 500]

Discovering multiple clusterings

To comparatively study the performance of DMClusts,
we consider Dec-kmeans (Jain, Meka, and Dhillon 2008),
MVMC (Yao et al. 2019b), OSC (Cui, Fern, and Dy 2007),
ISAAC (Ye et al. 2016), MNMF (Yang and Zhang 2017),
and MISC (Wang et al. 2019) as comparing methods. The
last four methods use different techniques to seek cluster-
ings in subspaces. The input parameters of the compar-
ing methods are fixed (or optimized) as the authors sug-
gested in their papers or shared code. The input parame-
ters of DMClusts are selected from the following ranges:
r ∈ {5×10−4, 5×10−3, ..., 5}, λ ∈ {10−4, 10−3, ..., 104},
β ∈ [0, 1] and K1 ∈ [k,min(dv)], K2 ∈ [k,K1] with
M = 2. We fix the number of clusters for each clustering to
the number of classes c of each dataset, as reported in Table
1. Existing multiple clustering algorithms (except MVMC
and DMClusts) cannot work on multiple view data. Follow-
ing the solution in (Yao et al. 2019b), we concatenate the
feature vectors of multi-view data and then run them on the
concatenated vectors to seek alternative clusterings. For ref-
erence, we also apply DMF (Trigeorgis et al. 2017) on the
concatenated vectors to gradually explore multiple cluster-
ings layer by layer.

MNMF requires input a reference clustering to find an al-
ternative clustering. Here we use k-means to generate the
reference clustering. For the other comparing methods, we
directly use their respective solutions to generate two alter-
native clusterings (C1, C2). Following the evaluation proto-
col used by the comparing methods, we measure cluster-
ing quality with the average (SC or DI) of C1 and C2, and
we measure the diversity (NMI or JC) between C1 and C2.
Table2 gives the average results of ten independent runs and
standard deviations of each method on generating two al-
ternative clusterings. The results of ISAAC and MISC on
Reuters and Mirflickr are not reported for their high com-
plexity on large scale datasets.

From Table2, we make the following observations:
(i) Multi-view vs. Concatenated view: Both DMClusts and
MVMC directly operate on multi-view data, and their gen-
erated two clusterings have a significant lower redundancy
than those generated by other comparing methods. In addi-
tion, DMClusts frequently obtains a better quality than other
comparing methods that can only work on the concatenated
view. This shows that the concatenated feature vectors over-
ride the intrinsic nature of multi-view data, which help to
generate multiple clusterings with diversity. This also ex-
presses the capability of our tailored deep matrix factoriza-
tion in exploring multiple clusterings with quality.
(ii) DMClusts vs. MVMC: DMClusts generally obtains a
significantly better quality (SC and DI) than MVMC, and
holds a comparable diversity (NMI and JC). In other words,
our DMClusts maintains a better balance of quality and di-
versity than MVMC. A possible factor is that DMClusts dif-
ferentiates the relevance of multiple views, whereas MVMC
does not. As a result, DMClusts is less sensitive to the noisy
views than MVMC. Another factor is that our balanced re-
dundancy term is more comprehensive by considering two
types of redundancy, but MVMC considers only one type.
(iii) DMClusts vs. DMF: DMClusts always gives a bet-
ter performance (both quality and diversity) than DMF, al-
though they both can explore alternative clusterings in a
layer-wise fashion. The advantage of DMClusts is two-fold:
it accounts for the different relevance of data views, and can
selectively fuse them to generate alternative clusterings with
quality, while DMF can only operate on the concatenated
features without differentiating these views; it also explicitly
controls the diversity between alternative clusterings, while
DMF does not.

To investigate the robustness of DMClusts to noisy views,
we constructed a synthetic dataset on Reuters by injecting
a noisy view X(6) ∈ R

500×1200 following standard Gaus-
sian distribution. We then apply DMF and DMClusts on this
synthetic dataset with the input parameters fixed as r = 0.1,
λ = 0.1, β = 0.4. Next, we visualize the weights as-
signed to six views for the first and second clusterings in Fig-
ure 2. DMClusts indeed assigns different sets of weights to
these views for generating two clusterings with a low over-
lap (NMI: 0.019, JC: 0.161), and it manifests a robustness to
the noisy view by assigning it with a zero weight. As a result,
DMClusts holds the similar quality and diversity as on the
original Reuters. In contrast, DMF has a nearly 50% reduced
quality (SC: 0.158, DI: 0.015) and an about 25% increased
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Table 2: Quality and Diversity of the various comparing methods on generating multiple clusterings. ↑(↓) indicates the preferred
direction for the corresponding measure. •/◦ indicates whether our DMClusts is statistically (according to pairwise t-test at
95% significance level) superior/inferior to the other method.

Dec-kmeans MNMF OSC ISAAC MISC MVMC DMF DMClusts

Caltech7

SC↑ 0.049±0.002• 0.234±0.000• 0.266±0.000• 0.153±0.010• 0.201±0.003• 0.140±0.002• 0.065±0.011• 0.301±0.006
DI↑ 0.042±0.006• 0.037±0.000• 0.054±0.000• 0.027±0.001• 0.048±0.002• 0.062±0.000• 0.065±0.004• 0.090±0.003

NMI↓ 0.021±0.003• 0.022±0.000• 0.693±0.015• 0.645±0.035• 0.516±0.015• 0.006±0.000◦ 0.310±0.035• 0.009±0.000
JC↓ 0.127±0.009• 0.092±0.000• 0.383±0.000• 0.358±0.022• 0.349±0.018• 0.076±0.000◦ 0.235±0.004• 0.087±0.002

BBCSport

SC↑ 0.088±0.007• 0.014±0.000• 0.144±0.000• -0.039±0.002• 0.089±0.002• 0.269±0.000• 0.204±0.003• 0.284±0.006
DI↑ 0.487±0.001◦ 0.434±0.000• 0.520±0.000◦ 0.411±0.016• 0.335±0.009• 0.014±0.000• 0.255±0.001• 0.468±0.010

NMI↓ 0.002±0.000• 0.086±0.000• 0.001±0.000• 0.010±0.001• 0.009±0.001• 0.000±0.000 0.101±0.009 • 0.000±0.000
JC↓ 0.431±0.030• 0.392±0.000◦ 0.605±0.000• 0.495±0.015• 0.520±0.018• 0.347±0.000◦ 0.418±0.001• 0.401±0.003

Handwritten

SC↑ 0.050±0.006• 0.014±0.000• 0.352±0.000• 0.235±0.007• 0.251±0.009• 0.062 ±0.000• 0.034±0.001• 0.377±0.012
DI↑ 0.051±0.011• 0.009±0.000• 0.107±0.000• 0.056±0.002• 0.052±0.003• 0.083±0.000• 0.240±0.009◦ 0.159±0.004

NMI↓ 0.070±0.012• 0.089±0.000• 0.778±0.000• 0.712±0.018• 0.645±0.014• 0.009±0.000◦ 0.212±0.006• 0.019±0.001
JC↓ 0.073±0.003• 0.078±0.003• 0.570±0.000• 0.484±0.016• 0.414±0.019• 0.073±0.000• 0.114±0.003• 0.066±0.000

MSRCv1

SC↑ -0.062±0.003• -0.193±0.002• 0.382±0.011• 0.166±0.003• 0.331±0.008• 0.113±0.007• 0.022±0.001• 0.556±0.012
DI↑ 0.043±0.007• 0.027±0.001• 0.071±0.007• 0.012±0.002• 0.013±0.001• 0.098±0.003• 0.277±0.010• 0.336±0.008

NMI↓ 0.054±0.006• 0.063±0.005• 0.736±0.054• 0.549±0.030• 0.665±0.017• 0.053±0.006• 0.150±0.002• 0.038±0.001
JC↓ 0.109±0.005• 0.124±0.003• 0.519±0.025• 0.357±0.009• 0.471±0.020• 0.078±0.002◦ 0.127±0.005• 0.087±0.003

Yale

SC↑ 0.033±0.002• -0.011±0.001• 0.221±0.005• -0.020±0.002• -0.066±0.008• -0.045±0.007• 0.021±0.001• 0.303±0.019
DI↑ 0.205±0.014• 0.114±0.004• 0.331±0.020◦ 0.076±0.004• 0.073±0.003• 0.232±0.012• 0.285±0.004• 0.292±0.015

NMI↓ 0.241±0.021• 0.240±0.007• 0.812±0.063• 0.369±0.007• 0.314±0.009• 0.251±0.006• 0.319±0.006• 0.205±0.004
JC↓ 0.043±0.002• 0.066±0.004• 0.357±0.034• 0.098±0.003• 0.091±0.002• 0.055±0.001• 0.098±0.005• 0.038±0.002

Reuters

SC↑ -0.002±0.000• -0.107±0.009• 0.065±0.000• — — 0.180±0.000• 0.314±0.004• 0.344±0.006
DI↑ 0.157±0.008◦ 0.070±0.003• 0.210±0.000◦ — — 0.038±0.000• 0.028±0.001• 0.136±0.005

NMI↓ 0.041±0.004• 0.033±0.010• 0.491±0.000• — — 0.004±0.000◦ 0.508±0.005• 0.018±0.000
JC↓ 0.199±0.005• 0.148±0.002• 0.454±0.000• — — 0.091±0.000◦ 0.590±0.011• 0.132±0.003

Mirflicker

SC↑ -0.004±0.000• -0.058±0.000• 0.017±0.000• — — -0.038±0.000• 0.005±0.000• 0.336±0.008
DI↑ 0.061±0.002• 0.053±0.001• 0.059±0.002• — — 0.173±0.005◦ 0.027±0.001• 0.076±0.001

NMI↓ 0.427±0.012• 0.014±0.000• 0.575±0.011• — — 0.005±0.000◦ 0.108±0.003• 0.043±0.001
JC↓ 0.878±0.022• 0.023±0.000◦ 0.368±0.011• — — 0.022±0.000◦ 0.049±0.001• 0.033±0.001

views
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Figure 2: DMClusts assigns two sets of weights to six views
for generating two clusterings. The 6-th view is a noisy view.

diversity (NMI: 0.471, JC: 0.375). The increase in diversity
is obtained at the expense of a reduced quality. Neverthe-
less, DMClusts still gives a better diversity than DMF. This
investigation corroborates the benefit of weighting views.

To further study whether DMClusts can generate M ≥ 3
clusterings, we fix the number of target clusterings to M = 4
and the number clusters for each clustering to k = 3. Next,
we apply DMClusts, DMF, and MVMC on the Handwritten
dataset with images in 10 digits and visualize their cluster-
ings in Figure 3. Each row of the subfigure represents a clus-
tering and each image corresponds to the mean of the clus-
ter. The numbers under each image are the dominant digits
(not all) in the cluster. It is well known that the handwritten
10 digits are ambiguous and resemble different numbers (7
alike 4 and 3; 9 alike 5 and 7). As such, there is a tendency
to group them together in different alternative clusterings.
Due to the use of diversity control, DMClusts presents four
clusterings without any completely overlapping clusters. In
contrast, DMF does not account for diversity and generates

some largely overlapping clusters (i.e., {0, 1, 3}, {2, 4, 7}
in C3 and C4). Although MVMC also quantifies the redun-
dancy of two objects often grouped into the same cluster of
different clusterings, it still generates a heavily overlapping
cluster {1, 2, 3} in C1 and C3. This visual example not only
confirms the effectiveness of DMClusts in generating mul-
tiple diverse clusterings, but also proves the effectiveness of
our balanced redundancy quantification.

Parameter analysis

Several input parameters (λ, r and β) may affect the per-
formance of DMClusts. λ balances the importance of deep
matrix factorization and the diversity control term, r controls
the weight distribution assigned to input views, β balances
the redundancy of two objects placed into the same clusters
and redundancy of two objects placed into different clusters
of two clusterings.

We study the impact of λ by varying it from 10−4 to 104,
and plot the change of Quality (DI) and Diversity (1-NMI,
the larger the better) of DMClusts on the Yale dataset in Fig-
ure 4a with r = 0.5, β = 0.4. We find that: (i) diversity (1-
NMI) steadily increases at first but not so when λ ≥ 1; (ii)
the quality (DI) gradually decreases as λ increases, and be-
comes relatively stable after λ ≥ 1. This pattern is explain-
able, since a larger λ forces DMClusts to focus more on the
diversity between clusterings, and thus may drag down the
quality of the respective clusterings. Overall, this observa-
tion confirms the dilemma between diversity and quality of
multiple clusterings, and shows the necessity of introducing
λ to control the redundancy.

We investigate the impact of r by varying it in the grid
of {5 × 10−4, 5 × 10−3, · · · , 5}, and report the quality and
diversity of DMClusts on the Yale dataset in Figure 4b with
λ = 0.01, β = 0.4. The quality slightly rises as r increases,
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Figure 3: Four alternative clusterings (C1 to C4) generated by DMClusts (a), DMF (b) and MVMC (c).
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Figure 4: Quality (DI) and Diversity (1-NMI) of DMClusts vs. λ, r and β.

and the diversity remains stable. When r > 0.05, the diver-
sity steadily increases and the quality gradually decreases,
due to the increased diversity and the known trade-off be-
tween diversity and quality. This is because a too small r
gives nearly equal weights to all the views, while a mod-
erate r can assign different sets of weights to these views,
which helps to generate diverse clusterings, as exampled in
Figure 1.

To study the benefit of our balanced redundancy quantifi-
cation term, we vary β from 0 to 1 and report the results in
Figure 4c with r = 0.5, λ = 0.01. We observe that the di-
versity (1-NMI) increases as β increase but turns to reduce
as β > 0.7. Due to the dilemma between quality and diver-
sity, the quality shows a reverse trend. Neither β = 1 nor
β = 0 gives the highest diversity, and β ∈ [0.3, 0.7] gives an
NMI≈0. This observation proves the contribution of consid-
ering the previously overlooked redundancy due to two sam-
ples placed in different clusters of two clusterings, and also
justifies the effectiveness of our balanced redundancy quan-
tification term. In addition, it clarifies why our DMClusts
obtains a better diversity between clusterings. We observe
that β = 1 (NMI: 0.064) gives a larger diversity (by ≈16%)
than β = 0 (NMI: 0.075). This suggests the redundancy two
samples in the same clusters of two clusterings is more im-
portant than the redundancy they in different clusters. Over-
all, these two types of redundancy complement each other
and help to generate multiple clusterings with improved di-
versity.

We further study the impact of the number of clusters,
layer size Kl and of different M . We also make a runtime
experiment and show that DMClusts not only outperforms
the state-of-the-art methods in exploring multiple cluster-
ings with quality and diversity, but also holds a moderate
efficiency. The results and analysis as well as convergence

analysis can be found in the Supplementary file. Finally, we
want to remark that, all the four metrics do not depend on
the ground-truth labels of the tested dataset, so the suitable
values for parameters can be chosen based on the user’s pref-
erence toward quality or diversity.

Conclusion

In this paper, we introduce DMClusts to explore multiple
clusterings from multi-view data, which is an interesting,
practical but overlooked clustering topic that conjoins multi-
view clusterings and multiple clusterings. DMClusts adapts
the deep matrix factorization to a deep learning approach,
and introduces a novel balanced diversity quantification term
to seek multiple diverse clusterings of quality. DMClusts
shows a superior effectiveness and efficiency than state-of-
the-art competitive solutions. We will investigate a principle
to determine a suitable number of layers (clusterings).
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