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Abstract

Multi-label learning (MLL) solves the problem that one sin-
gle sample corresponds to multiple labels. It is a challenging
task due to the long-tail label distribution and the sophisti-
cated label relations. Semi-supervised MLL methods utilize
a small-scale labeled samples and large-scale unlabeled sam-
ples to enhance the performance. However, these approaches
mainly focus on exploring the data distribution in feature
space while ignoring mining the label relation inside of each
instance. To this end, we proposed a Dual Relation Semi-
supervised Multi-label Learning (DRML) approach which
jointly explores the feature distribution and the label relation
simultaneously. A dual-classifier domain adaptation strategy
is proposed to align features while generating pseudo labels
to improve learning performance. A relation network is pro-
posed to explore the relation knowledge. As a result, DRML
effectively explores the feature-label and label-label relations
in both labeled and unlabeled samples. It is an end-to-end
model without any extra knowledge. Extensive experiments
illustrate the effectiveness and efficiency of our method1.

Introduction

Real-world objects could have multiple labels (e.g., col-
ors, shapes, textures, and categories). Multi-label learning
(MLL) was proposed to predict tens or hundreds of different
labels for a single instance. MLL has become an attractive
and emerging field (Boutell et al. 2004) as it can be applied
in a lot of practical applications (e.g., data mining (Cong et
al. 2018), image retrieval (Verma and Jawahar 2017) and im-
age annotation (Verma and Jawahar 2017)).

There are two major challenges. First, the multi-label usu-
ally follows the long-tail distribution, which means that dif-
ferent labels appear in different frequencies. Some labels
rarely show up (e.g., Fight and Fall down) while some la-
bels are common (e.g., Daytime and Natural light). Techno-
logically, deploying more samples in the training stage could
solve this problem. However, it is not practical as the long-
tail label distribution characteristic, which means it is hard
to collect a dataset with enough and balanced information.

Copyright c© 2020, Association for the Advancement of Artificial
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1The code is available in: https://github.com/wanglichenxj/
Dual-Relation-Semi-supervised-Multi-label-Learning
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Figure 1: Two major challenges of semi-supervised MLL.
1) The labeled and unlabeled data have a distribution gap in
feature space due to long-tail label distribution. 2) The label
relations are complicated. (e.g., Sunny and Rainy have neg-
ative relation, Rainy and Wet have positive relation, while
Wet and Sunny have weak relation).

The scale of the available well-labeled datasets (Duygulu et
al. 2002; Wah et al. 2011; Patterson and Hays 2012) is rel-
atively small compared with single-label datasets. Second,
the label relations are crucial to improve the MLL perfor-
mance (Wu et al. 2018b). As illustrated in Figure 1. Some
labels have negative relations (e.g., Sunny and Rainy) which
are rare to show up together. While some labels have posi-
tive relations (e.g., Rainy and Wet) which usually appear to-
gether, and some labels have weak or no distinctive relations
(e.g., Wet and Sunny). Unfortunately, few datasets have the
relation information as prior knowledge. Besides, the rela-
tion map is manually defined and task-specific. It is difficult
to extend to other MLL tasks, which limits the potential ap-
plications of these approaches.

Although there are not enough labeled samples, the re-
lated unlabeled samples are easy to get. Consequently,
semi-supervised learning (Zhu, Ghahramani, and Lafferty
2003) came up and has achieved great progress in MLL
tasks (Dong, Li, and Zhou 2018; Zhaomin et al. 2019). Con-
ventional semi-supervised approaches mainly analyze the
data in feature space. However, the distribution of the label
and unlabeled features could be different which would affect
the final performance. Moreover, most methods are inspired
by the single-label classification approaches while ignoring
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Figure 2: In our model, P (·) and the two classifiers (i.e., C1(·) and C2(·)) are designed to project samples from the original
feature space to a latent subspace for reducing the distribution gap of labeled and unlabeled samples. The two initial predicted
labels from C1(·) and C2(·) are forwarded to the intra-instance label relation network CR(·) to further explore the label rela-
tions and get final high accurate results. The reliable pseudo labels will be aligned to unlabeled data to increase the learning
performance. All modules are optimized simultaneously which is suitable for a wide range of practical applications.

the relations between multiple labels (Nie, Xu, and Li 2012).
In this work, we propose a novel Dual Relation Multi-

label Learning (DRML) in semi-supervised manner. DRML
includes a novel domain adaptation co-training strategy and
a label relation mining module in semi-supervised fashion.
It explores both the instance similarity in feature space and
the label-label relation in label space simultaneously. Specif-
ically, deploy a two-classifier domain adaptation strategy to
align the feature distribution in a latent space. Moreover, it
further provides the pseudo label of unlabeled samples to
enhance the training performance. Furthermore, a relation
network is proposed to utilize the predictions from the two
classifiers to learn the label relations. All modules are simul-
taneously optimized in an end-to-end manner to achieve the
highest performance. The major contributions of our work
are briefly listed as follows:

• A two-classifier domain adaptation co-training strategy is
proposed. It aligns the labeled and unlabeled samples in
feature space to improve model accuracy and robustness.

• A label assignment strategy is proposed to generate
pseudo labels to the unlabeled data. The assigned samples
are further utilized in the training process.

• A graph-based relation network is proposed to learn the
label relations for both labeled and unlabeled samples.

Our model fully utilizes the potential of a few networks
which are simultaneously optimized in an end-to-end sce-
nario. It is effective, efficient, and easy to extend to a wide
of range of real-world semi-supervised applications.

Related Work

Multi-label Learning

MLL recovers multiple labels from a single sample. A lot
of real-world applications are related to such problem, in-
cluding text classification (Ghamrawi and McCallum 2005),
image annotation (Kang, Jin, and Sukthankar 2006), and
video concept recognition (Qi et al. 2007). Due to the mas-
sive amount of label combinations, MLL is more challeng-
ing compared with the single-label learning. FastTag (Chen,

Zheng, and Weinberger 2013) was proposed to eliminate
the negative effect of label noise. (Ge, Yang, and Yu 2018)
introduces a fusion approach for MLL. To couple relevant
tasks, a modulation module is proposed in (Zhao et al. 2018).
However, the scales of MLL (Von Ahn and Dabbish 2004;
Duygulu et al. 2002) are relatively small which limits its
potential performance. Semi-supervised learning could ad-
dress this issue by utilizing a small-scale of labeled data and
a large-scale of unlabeled data. However, these approaches
assume the distribution between labeled and unlabeled data
are similar, while large distribution difference could cause a
dramatic performance decrease. Label relation information
is another crucial aspect for MLL. (Zhaomin et al. 2019)
uses a semantic label hierarchy as prior knowledge to im-
prove MLL performance. (Wu et al. 2018a) implements a
label semantic structure, which covers different labels and
avoids label noise. However, building such kind of label
relation knowledge required sophisticated semantic knowl-
edge which is difficult and expensive to get. Moreover, the
obtained knowledge is difficult to extend to other datasets.
This issue dramatically limits the potential of this strategy
for real-world applications. Label embedding (Tai and Lin
2012) explores the label relations by projecting them to a
latent space. (Chen et al. 2018) studies the object relations
using attention and RNN.

Therefore, we proposed a semi-supervised MLL ap-
proach. It learns the label relations from both labeled and
unlabeled instances. This makes the learned label relation
knowledge more accurate and comprehensive.

Semi-supervised Learning

Semi-supervised learning (SSL) utilizes labeled as well as
unlabeled sets in the training process (Zhu 2005). SSL aims
to explore extra information from the unlabeled data to en-
hance the learning performance. (Zhu, Ghahramani, and
Lafferty 2003) proposed a continuous relaxation based on
the discrete Markov random fields. (Sindhwani, Niyogi, and
Belkin 2005) presents a semi-supervised kernel that is suit-
able for all input space. (Nie, Xu, and Li 2012) introduces an
initialization independent method by actively selecting the
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training set. (Can et al. 2019) deploys a co-training model to
address the domain shift problem between source and target
data. (Wang, Ding, and Fu 2018b; 2019) generates an dis-
tinctive subspace to measure the similarities across source
and target frames. (Wang et al. 2018) presents a new gener-
ative approach in clustering setting. (Levatić et al. 2017) de-
ploys decision trees and random forests to improve the per-
formance. (Levatić et al. 2018) proposes semi-supervised
trees to handle high computational cost and performance
degradation issues. However, most of the methods focus on
exploring the feature distribution of the unlabeled data.

In MLL scenario, the label relation is crucial. How to ex-
plore the label relation from the unlabeled data is still not
well explored. In our model, the pseudo label is assigned
to unlabeled data and further utilized in the training process
which hopefully explores the label relations from the unla-
beled samples to enhance the performance.

The Proposed Approach

Preliminaries & Motivation

Given the multi-label training data {Xl, Yl}, where Xl ∈
R

d×nl is the feature matrix and xi ∈ R
d represents one in-

stance. nl is the instance number and d is the feature dimen-
sion. Yl ∈ R

dl×nl is the label matrix, where dl is the label
dimension. Meanwhile, Xu ∈ R

d×nu and Yu ∈ R
dl×nu

are the unlabeled feature and label matrix. Specifically, our
approach aims to explore Xl, Xu and Yl to recover Yu.
Since there is feature distribution gap between Xl and Xu,
thus, it is natural to learn the feature presentation in a la-
tent subspace where the labeled and unlabeled data can be
well aligned. Meanwhile, there are sophisticated relations
residing across different labels. To this end, a simple but ef-
fective label relation network is proposed to automatically
explore the label relation knowledge. These two strategies
allow the model to fully utilize the feature-label mapping
and label-label relation knowledge from the labeled and un-
labeled samples.

Our Approach

Our model (Figure 2) contains a projector P (·), two multi-
label classifiers C1(·) and C2(·) and a label relation network
CR(·). P (·) projects all the samples into a latent space Z,

Zl = P (Xl),
Zu = P (Xu),

(1)

where Zl ∈ R
dz×nl and Zu ∈ R

dz×nu are the represen-
tations of Xl and Xu in subspace Z, dz is the dimension
of Z. As mentioned above, the feature distributions of Xl

and Xu could be different. Directly utilize the original fea-
tures could cause a negative effect. Inspired by MDA (Saito
et al. 2018), we designed a two-classifier domain adapta-
tion framework which achieves domain adaptation and ini-
tial multi-label prediction simultaneously. For classification
purpose, the loss functions of C1(·) and C2(·) are below,

LC(Xl, Yl) =
1

2

[‖C1(Zl)− Yl‖2F + ‖C2(Zl)− Yl‖2F
]
, (2)

where LC represents the classification errors of C1(·) and
C2(·). Meanwhile, the representation Zl and Zu are also op-
timized in the training process. Thus, C1(·), C2(·) and P (·)
are simultaneously trained:

min
P,C1,C2

LC(Xl, Yl). (3)

By this way, the initial classification results could be ob-
tained. Moreover, the two-classifier structure is able to train
the projection P (·) for domain adaptation goal. It aims to
align the distribution shift between Xl and Xu in the latent
space Z. To achieve this goal, the projection and the clas-
sifiers are further trained in an adversarial way. First, when
P (·) is fixed, the classifier C1(·) and C2(·) are optimized to
maximize the classification difference of the unlabeled data
Xu. The prediction difference can be obtained by l1-norm
which is shown below,

d(f1, f2) =
1

dl

dl∑

k=1

|f1k − f2k|, (4)

where f1 ∈ R
dl×1 and f2 ∈ R

dl×1 are the predicted label
vector from C1(·) and C2(·). f1k and f2k are the k-th entries
of the label vector f1 and f2. Both l1- and l2-norm could be
deployed in Eq. (4) while we empirically found out l1-norm
could achieve the best performance. It is a simple yet effec-
tive metric for measuring the prediction differences. Then,
the objective of updating C1(·), C2(·) for maximizing clas-
sification difference can be written as follows:

min
C1,C2

−LDA(Xu) + λLC(Xl, Yl), (5)

LDA(Xu) = d(C1(Zu), C2(Zu)), (6)

where LDA represents the classification difference. C1(·)
and C2(·) are trained to maximize the classification differ-
ences of the unlabeled data, while it still needs to secure
the classification performance on labeled samples. Thus, we
add the LC term in the objective, and λ > 0 is the trade-
off parameter which balances the weight between classifica-
tion difference and accuracy. On the other hand, P (·) tries to
update the projection space which minimizes the unlabeled
data classification difference. To this end, P (·) can be up-
dated by the following function:

min
P

LDA(Xu). (7)

Projection P (·), classifier C1(·) and C2(·) are alternately
updated in an adversarial fashion based on Eq. (5) and
Eq. (7). By this way, the labeled and unlabeled samples
would be gradually aligned in the latent space Z, which
could effectively reduce the negative influence of the dis-
tribution shift of labeled and unlabeled samples.

The outputs from both classifier C1(·) and C2(·) can be
the final classification results. Averaging these two predic-
tion results is an efficient strategy. However, as introduced
before, label relation and trivial prediction differences are
crucial to further improve the learning performance. To this
end, we propose a simple but effective label-level relation
network, CR(·), to automatically explore the label relation

6229



knowledge. As shown in Figure 2, after the predicted la-
bel f1 and f2 are obtained, we designed a label relation
graph Ri by multiplying f1 and the transposition of f2 as
Ri = f1 × f�

2 , where Ri ∈ R
dl×dl is the relation matrix

and dl is the label dimension. The obtained Ri is reshaped
to a R

d2
l ×1 vector and forwarded to a fully connected rela-

tion network CR(·). CR(·) further predicts the multi-label
result based on Ri. To this end, the objective of the relation-
ship network is shown below:

LR =

n∑

i=1

‖yi − CR

(
C1(P (xi)) · C2(P (xi))

�)‖22, (8)

where xi and yi ∈ R
dl×1 are a training sample and its

ground truth multi-label vector of xi. In this framework, the
elements in Ri are the multiplication of each pair of the pre-
dicted labels, which could be considered as a dot-product
similarity metric of the pairwise labels (including the sim-
ilarity with itself). By this way, CR(·) explores the latent
relation knowledge residing inside the training data based
on the obtained similarities, and further refine the predicted
label from C1(·) and C2(·) to improve performance. In the
training procedure, CR(·) is trained simultaneously with the
other networks which is shown as follow:

min
P,C1,C2,CR

α

2
LC + (1− α)LR, (9)

where α is the trade-off parameter which balances the
weight between initial prediction error and the relation net-
work prediction error. Jointly optimizing C1,2(.) and CR(.)
by combining their losses together could 1) control the train-
ing of C1,2(.) to predict initial labels and 2) intentionally
force CR(.) to capture the label relations based on the initial
labels from C1,2(.). This strategy balances the update pro-
cessing between C1,2(.) and CR to further help each other
in the training stage and achieve a promising performance at
last. α is set to 0.5 as default. We have observed that slightly
tuning α near 0.5 does increase the performance a little, and
cross validation could be employed for automatic parameter
tuning. Since the improvement is not significant, thus, we set
α = 0.5 which avoids the parameter tuning procedure.
CR(.) can be easily deployed for labeled samples. Mean-

while, in semi-supervised learning scenario, we assume that
the unlabeled samples also include informative and com-
prehensive label relation knowledge. To this end, we utilize
predicted labels from partial unlabeled samples as pseudo
labels in the training process. By this way, CR(.) could fur-
ther explore the correlation from the unlabeled samples and
increase the learning performance. Since the prediction re-
sults of C1(·) and C2(·) are not reliable at the beginning of
the training procedure. To this end, we first trained C1(·) and
C2(·) for 50 to 100 iterations before we involve the pseudo
label strategy in the complete training procedure.

Compared with single-label learning, we cannot simply
determine the confidence of the predicted labels. To handle
this problem, we fully utilize the two-classifier structure and
measure the prediction differences between C1(·) and C2(·).
Specifically, all target data are sent to C1(·), C2(·) and CR(·)
and achieve the predictions. The prediction differences are

Table 1: MLL performance
Data Method Pre Rec F1 N-R mAP

Corel

LR 0.2859 0.3211 0.3025 128 0.3630
SSMLDR 0.2741 0.3366 0.3022 143 0.3410
FastTag 0.3123 0.3657 0.3369 143 0.3871

ML-PGD 0.2575 0.2911 0.2732 122 0.3727
SAE 0.2962 0.3442 0.3184 141 0.3823

AG2E 0.3011 0.3520 0.3245 157 0.3568
Ours 0.3154 0.3775 0.3437 148 0.4127

ESP

LR 0.3793 0.2038 0.2653 215 0.3440
SSMLDR 0.3298 0.1885 0.2399 226 0.3156
FastTag 0.4011 0.1927 0.2617 208 0.3904

ML-PGD 0.3239 0.2012 0.2482 210 0.4077
SAE 0.3861 0.1743 0.2402 194 0.3842

AG2E 0.3548 0.1525 0.2133 213 0.3730
Ours 0.4373 0.2189 0.2918 227 0.4105

IAP

LR 0.4287 0.2041 0.2765 199 0.4211
SSMLDR 0.3491 0.2520 0.2927 229 0.3981
FastTag 0.4346 0.2267 0.2980 227 0.4596

ML-PGD 0.4132 0.2441 0.3011 230 0.4674
SAE 0.3537 0.2282 0.2774 213 0.4309

AG2E 0.3829 0.2330 0.2897 229 0.4353
Ours 0.4570 0.2531 0.3258 230 0.5148

SUN

LR 0.6209 0.1473 0.2457 102 0.6807
SSMLDR 0.6879 0.1700 0.2726 102 0.6723
FastTag 0.6816 0.1473 0.2457 102 0.6914

ML-PGD 0.7110 0.1614 0.2631 101 0.7087
SAE 0.7183 0.1638 0.2668 98 0.7012

AG2E 0.7685 0.1765 0.2871 99 0.6778
Ours 0.7906 0.1793 0.2923 102 0.6800

CUB

LR 0.2010 0.0239 0.0428 157 0.0638
SSMLDR 0.3410 0.0473 0.0832 178 0.2329
FastTag 0.2147 0.0359 0.0615 167 0.3144

ML-PGD 0.3334 0.0451 0.0794 155 0.3288
SAE 0.3383 0.0514 0.0908 196 0.3255

AG2E 0.3409 0.0531 0.0911 190 0.3106
Ours 0.3714 0.0548 0.0955 202 0.3542

AWA

LR 0.8798 0.0821 0.1500 75 0.8626
SSMLDR 0.7812 0.0858 0.1546 67 0.8346
FastTag 0.7861 0.0949 0.1694 72 0.8791

ML-PGD 0.5395 0.0635 0.1136 57 0.9121
SAE 0.9683 0.0957 0.1742 73 0.9397

AG2E 0.8483 0.0827 0.1507 73 0.9033
Ours 0.8689 0.0835 0.1523 75 0.9441

calculated by Eq. (10). Unlike the previous prediction dif-
ference in (6), we use l2-norm which is shown as follows:

D(zi) = ‖C1(zi)− C2(zi)‖22, (10)

where zi is the i-th sample representation in space Z. Due
to the difference among the datasets (e.g., feature scale, la-
bel numbers and labels formats), the pseudo label strategy is
deployed a little differently for different datasets. Take CUB
dataset (Wah et al. 2011) for example, we set a threshold
value d = 1. If D(Zi) ≤ d, we will select the testing in-
stance xi with a pseudo label. For the other dataset, we se-
lect K samples with the lowest differences from the whole
predictions. K is normally set to 10 to 20. After that, we
give them the pseudo labels and add them to the training set
for the next training loop. We deploy fully connected net-
works in our implementation. Other deep networks can be
used to attain higher performance. In our implementation,
P (·) is an one-layer fully-connected linear network. C1(·)
and C2(·) are both one-layer fully-connected network with
a Sigmoid activation after the last layer. CR(·) is an one-
layer fully-connected network with Sigmoid activation after
the last layer.

Our model contains four networks which are jointly opti-
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Table 2: MLL performance on augmented label sets
Data Methods Pre Rec F1 N-R mAP

Corel-A

LR 0.2842 0.2304 0.2545 103 0.3762
SSMLDR 0.3036 0.2791 0.2908 134 0.3660
FastTag 0.3329 0.3145 0.3234 136 0.4127

ML-PGD 0.3245 0.3011 0.3124 140 0.4275
SAE 0.3168 0.3037 0.3101 128 0.4192

AG2E 0.3273 0.3172 0.3221 143 0.3985
Ours 0.3345 0.3671 0.3500 147 0.4315

ESP-A

LR 0.3848 0.1256 0.1894 178 0.3913
SSMLDR 0.3253 0.1697 0.2231 202 0.3357
FastTag 0.3886 0.1531 0.2197 196 0.4254

ML-PGD 0.3713 0.1184 0.1795 162 0.4211
SAE 0.3153 0.1425 0.1966 156 0.4050

AG2E 0.3518 0.1492 0.2095 196 0.4030
Ours 0.4202 0.1744 0.2465 209 0.4121

mized in a minimax strategy, which brings in several advan-
tages. First, it is an end-to-end model without the require-
ment of any other prior knowledge, which is easy to train and
compatible for a lot of real-world applications. Second, the
performance is stable and robust since the domain adapta-
tion strategy is able to well align the distribution shift across
the labeled and unlabeled data. Third, the label-level cor-
relation is explored by the relation network in both labeled
and unlabeled samples. Forth, our approach can be directly
deployed for more testing data samples without any other
optimization operations which are more simple and efficient
compared with graph-based semi-supervised approaches.

Experiment

Multi-label Datasets

We evaluate our model on six fine-grained multi-label
datasets. ESP Game (Von Ahn and Dabbish 2004)
has 18, 689 training images and 2, 081 testing images
which is labeled by an ESP interactive gaming system.
Corel5K (Duygulu et al. 2002) is an image dataset of the
CDs. There are 4, 500 training samples and 499 testing
samples. It is represented by a 260-dimensional semantic
description vector in binary format. IAPRTC-12 (Grub-
inger et al. 2006) includes images of actions, animals, land-
scapes and other objects. It has 19, 627 training images and
1, 962 testing images. The label is represented by a 291-
dimensional vector in binary format. Each sample has 5.72
labels in average. CUB (Wah et al. 2011) has 8, 800 train-
ing images and 1, 440 testing images. This dataset con-
tains 200 birds. The label information can be described by
a 312-dimensional vector in binary format. Each instance
has 31.39 labels in average. SUN (Patterson and Hays 2012)
contains 12, 900 training images and 1, 440 testing images
such as bakery, ballroom and balcony. There are 717 scene
classes in total. These labels are assigned by multiple trained
labors. Each instance has 6.31 labels in average. AWA (Lam-
pert, Nickisch, and Harmeling 2014) contains 24, 295 train-
ing images and 6, 180 testing images. This dataset consists
of 50 animal species. Each instance has 15 labels in average.

We directly deploy the visual descriptors provided
by (Guillaumin et al. 2009) for Corel5K, IAPRTC and ESP
Game datasets. A pre-trained VGG Networks (Simonyan
and Zisserman 2014) based on ImageNet is set as feature
extractor for SUN, CUB and AWA datasets.

Table 3: Zero-shot MLL performance
Data Method Pre Rec F1 N-R mAP

SUN

LR 0.7047 0.1548 0.2539 97 0.6616
SSMLDR 0.6637 0.1481 0.2422 95 0.6581
FastTag 0.6906 0.1522 0.2494 90 0.6706

ML-PGD 0.7037 0.1471 0.2433 95 0.6829
SAE 0.6978 0.1710 0.2747 100 0.6513

AG2E 0.7125 0.1618 0.2637 88 0.6693
Ours 0.7512 0.1794 0.2896 97 0.6924

CUB

LR 0.2600 0.0307 0.0549 160 0.2693
SSMLDR 0.2926 0.0383 0.0677 166 0.2329
FastTag 0.2231 0.0434 0.0726 143 0.2967

ML-PGD 0.2392 0.0365 0.0635 117 0.3178
SAE 0.2552 0.0469 0.0798 167 0.3102

AG2E 0.2808 0.0481 0.0821 163 0.2693
Ours 0.2981 0.0486 0.0835 153 0.3338

AWA

LR 0.7555 0.0766 0.1392 66 0.8809
SSMLDR 0.7017 0.0764 0.1378 66 0.7858
FastTag 0.8610 0.0912 0.1649 81 0.8918

ML-PGD 0.4338 0.0623 0.1091 49 0.8677
SAE 0.9015 0.0926 0.1679 78 0.8918

AG2E 0.8247 0.0811 0.1476 71 0.8874
Ours 0.9023 0.0832 0.1524 81 0.8985

Experimental Setup

We evaluate our approach associated with several state-of-
the-art representative MLL methods. Least Square Regres-
sion (LR) directly learns a linear regression model from the
feature space to the label spaces. Semi-Supervised Multi-
Label Dimension Reduction (SSMLDR) (Guo et al. 2016)
explores the information in both labeled and unlabeled data.
To enhance the model robustness, it designs a specific label
propagation strategy. Fast Image Tagging (FastTag) (Chen,
Zheng, and Weinberger 2013) introduces two linear map-
pings to obtain the whole tags based on the incomplete
tags. These two mappings are regularized in one loss func-
tion. Multi-Label learning using a Mixed Graph (ML-
PGD) (Wu, Lyu, and Ghanem 2015) introduces a label de-
pendencies model. It constructs a mixed graph and takes
the similarity of instance level with class co-occurrence into
consideration. Semantic AutoEncoder (SAE) (Kodirov,
Xiang, and Gong 2017) introduces an effective auto-encoder
model to recover labels. It also proposes an additional recon-
struction constraint. Adaptive Graph Guided Embedding
(AG2E) (Wang, Ding, and Fu 2018a) proposes an adaptive
graph strategy. It jointly obtains the similarity graph and pre-
dicts multiple labels in a semi-supervised fashion.

Since CR(·) depends on the performance of C1(·) and
C2(·), we train C1(·) and C2(·) for 50 epochs prior the train-
ing of other networks. When C1(·) and C2(·) become grad-
ually stable, we begin to train C1(·), C2(·) and CR(·) si-
multaneously. We repeat the training procedure until CR(·)
achieves a stable performance. After that, we add the pseudo
label assignment section in the training procedure. Due to
the difference label formats of the datasets, the pseudo la-
bel assignment approach is slightly different between differ-
ent dataset. For CUB and AWA datasets, the pseudo label is
the original output of CR(·). For SUN (Patterson and Hays
2012) dataset, the pseudo label is represented by the combi-
nations of {0, 0.33, 0.66, 1} due to its unique label format.
For other datasets, the pseudo label is binary.

We deploy the metrics proposed in (Guillaumin et al.
2009) for evaluation. The precision (Pre) P and the re-
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Figure 3: Ablation study. MLL performance along with training iterations in the CUB dataset. Different color indicates different
models. Red: Our complete model. Blue: without domain adaptation and pseudo labeling. Purple: without relation network
and pseudo labeling. Green: without domain adaptation and relation network. Yellow: only domain adaptation.
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Figure 4: Visualization of 10 labelled (blue) and unlabelled
(red) data before (a) and after (b) the projection.

call (Rec) R are calculated. P =
tp

tp+fp
and R =

tp
tp+fn

,
where tp is true-positive, fp is false-positive, and fn is false-
negative. For easy comparison, we calculate the F1-score,
the harmonic mean of R and P , where F1 = 2P×R

P+R . The
number of labels with a non-zero recall (N-R) value and
the mean average precision (mAP) (Wu, Lyu, and Ghanem
2015) are further used for comprehensive evaluation. In all
metrics, the higher value, the better performance.

Conventional & Zero-shot MLL

The result of conventional MLL is shown in Table 1. Our
approach surpasses other baselines in most evaluations. Fur-
thermore, (Wu, Lyu, and Ghanem 2015) proposes an aug-
mented label set for Corel5K and ESP Game datasets. It in-
creases average label number of Corel5K from 3.40 to 4.84,
and the ESP from 4.69 to 7.27. We evaluate our model based
on these label sets. The results (Table 2) indicates that our
approach still achieves the best performance in most of the
matrices.

We further apply our method to zero-shot MLL scenario
which means the classes in training and testing sets are
non-overlapping, while they still share same the multi-labels
(e.g., horse and Zebra). It is more difficult because of the
larger distribution gap between the two sets. We evaluate
our approach based on SUN, CUB and AWA datasets. The
default training and testing splits are provided. The specific
splits are 645/72, 40/10 and 150/50 respectively. For CUB,

0 1 2 3 4 5 6 7
Time consumption in inferring (s)

Ours
AG2E

SAE
ML-PGD
FastTag

SSMLDR
LR

Figure 5: Time consumption in inferring process.

there are 4 different ways to split. We test the model once for
each split and calculate the average performance. For SUN
and AWA datasets, we test the model for 5 times and calcu-
late the mean performance.

Table 3 indicates that our approach outperforms other
methods which demonstrates that our approach is accurate
and robust. In the real world, this is helpful since collect-
ing the images from all possible classes is impossible. We
also notice that our approach cannot achieve the highest per-
formance in AWA dataset. We consider this in the follow-
ing reasons. 1), AWA samples that belong to the same class
share only one consistent semantic description, thus, it is dif-
ficult to comprehensively learn the feature-label relations;
2), there are limited relation information learned by CDN
due to the consistent label issue.

Ablation Study

We run our model with and without CDN and the domain
adaptation strategy on CUB dataset. Figure 3 illustrates the
performance with the iteration increasing and details are in-
troduced in the caption. The result illustrates that all the
strategies can effectively improve the performance respec-
tively, and the combination of all the proposed approaches
do help each other and dramatically improve/stabilize the
performance. We further visualize the original and projected
features of 10 labelled (blue circle) and 10 unlabelled(yellow
circle) classes from CUB dataset (Figure 4) by t-SNE (Van
Der Maaten 2014). It illustrates that two distribution gap be-
comes smaller which demonstrates the effectiveness of the
domain adaptation strategy.

Figure 5 shows the time consumption of each method in
the test stage. Due to the simple feed-forward network struc-
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Figure 7: Image retrieval result of SUN dataset in the zero-shot scenario. Each row shows the images with the highest corre-
sponding label scores. Green and red boxes indicate correct and incorrect retrieval, respectively. For each target label, we show
incorrect retrieval result and its score rankings on the image right corner.

ture and the usage of GPU acceleration, even if the compu-
tational cost is a little higher, our approach only spends an
average of 0.12 seconds to infer 2081 test samples which is
the second fastest method. It indicates that our approach fits
well for large-scale real-world applications.

Image Retrieval

The goal of Image retrieval is to find the images from a large
dataset which contain one or more specific labels. We obtain
the labels of each candidate image using our well-trained
model then rank the labels by the predicted scores. We still
deployed the zero-shot split setting since it is a more practi-
cal setting for most real-world applications.

Figure 7 shows the images extracted from the dataset
based on specific labels. We select incorrect results and mark
the images with the ranking numbers on the bottom corner.
We can see that most images are correctly retrieved with
only a few errors. First, the adjective and verb labels are eas-
ier to retrieve than noun labels. And noun labels are easier to
make a mistake when the image has a similar label and sim-
ilar color (e.g., ice and running water). Second, the model
always retrieval the scene from very similar class. Such as
Asphalt, the model prefers to retrieve all field scenes on the
road and in the airport. We can study these in the future.

Image Annotation

We evaluate image annotation performance on SUN dataset
in Figure 6. We set different colors to indicate different la-
bels and details can be found in the caption. We observe that

most recovered labels are correct in our experiment. Under
some circumstances, our model even discovered “new” la-
bels. This proves that our approach is robust, effective and
is able to recover the vast majority of labels with high accu-
racy. Furthermore, our model can discover the missing and
error labels of the ground truth.

Conclusion

In this paper, we proposed a Dual Relation Multi-label
Learning (DRML) approach for Semi-supervised manner.
DRML explores the instance-level relations across labeled
and unlabeled samples in feature space. Meanwhile, it fur-
ther explores the label-level relations residing in each sam-
ple in label space. A projector associated with two-classifier
has been designed to align the distribution gap. A pseudo la-
bel assignment strategy is proposed to further improve learn-
ing performance. A relation network has been further de-
ployed to automatically explore the relations across labels.
All modules are optimized simultaneously. Experiments
demonstrate the efficiency and effectiveness of DRML. Ab-
lation study has demonstrated the necessities of all proposed
strategies for high accuracy.
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