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Abstract

Learning general latent-variable probabilistic graphical mod-
els is a key theoretical challenge in machine learning and ar-
tificial intelligence. All previous methods, including the EM
algorithm and the spectral algorithms, face severe limitations
that largely restrict their applicability and affect their perfor-
mance. In order to overcome these limitations, in this pa-
per we introduce a novel formulation of message-passing in-
ference over junction trees named predictive belief propaga-
tion, and propose a new learning and inference algorithm for
general latent-variable graphical models based on this for-
mulation. Our proposed algorithm reduces the hard param-
eter learning problem into a sequence of supervised learning
problems, and unifies the learning of different kinds of latent
graphical models into a single learning framework, which is
local-optima-free and statistically consistent. We then give a
proof of the correctness of our algorithm and show in ex-
periments on both synthetic and real datasets that our algo-
rithm significantly outperforms both the EM algorithm and
the spectral algorithm while also being orders of magnitude
faster to compute.

1 Introduction

Probabilistic graphical models with latent variables are pow-
erful in modeling many important problems in machine
learning and artificial intelligence (Koller and Friedman
2009; Bishop 2006). The existence of latent variables in such
models provides us with the ability to capture richer sta-
tistical dependencies among observed variables. However,
learning latent-variable graphical models is often difficult,
due to the non-convex nature of their parameter learning
problem and the intractability in the corresponding inference
procedure.

Currently, there are two main types of learning algorithms
for latent-variable graphical models. The first one is the
Expectation-Maximization algorithm (Dempster, Laird, and
Rubin 1977), which transforms the parameter learning prob-
lem into an iterative procedure that maximizes a non-convex
objective function. However, the EM algorithm only pro-
vides weak theoretical guarantees, can lead to bad local op-
tima and has slow convergence. To address these problems
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Figure 1: Comparison between predictive belief propagation
and conventional methods for belief propagation during in-
ference over latent-variable junction trees.

of EM, recently a second type of methods called spectral
learning has been proposed (Hsu, Kakade, and Zhang 2009;
Anandkumar et al. 2014; Parikh, Song, and Xing 2011).
Spectral learning algorithms are based on the idea of method
of moments and reparametrize the latent graphical models
such that the learning procedure can be performed through
tensor algebra using only observed quantities. Although
spectral algorithms enjoy the benefits of being provably con-
sistent, computationally efficient and local-optima-free, they
have three key limitations. First, most spectral learning al-
gorithms only apply to restricted types of latent structures
(mostly trees), and are hard to generalize to more compli-
cated latent structures beyond trees (e.g. loopy graphs). Sec-
ond, most spectral learning algorithms can only deal with
discrete random variables and cannot be easily extended to
handle continuous random variables. Third, the current spec-
tral algorithms are generally idiosyncratic to the specific
model structures that they are targeted to learn, and thus can-
not provide a flexible learning framework to incorporate dif-
ferent prior knowledge and probabilistic assumptions when
facing different learning scenarios.

In order to overcome these limitations of previous meth-
ods, in this paper we propose a new algorithm for learn-
ing general latent-variable graphical models that applies to
all different types of latent structures, can handle both dis-



crete and continuous variables of arbitrary forms of prob-
ability distribution in a nonparametric fashion, and allows
us to incorporate different types of prior knowledge into the
learning process, while still remaining provably consistent,
local-optima-free and fast to compute. To achieve this, we
introduce a new way of formulating message-passing in-
ference over junction trees called predictive belief prop-
agation. In contrast to conventional formulations of mes-
sage passing, which treat a message as a direct summary
of all the probabilistic information seen in the past, we in-
stead think of a message as encoding our predictions about
the probabilistic information of all the variables in the fu-
ture part of the graphical model given what we have seen
in the past. This new perspective allows us to systematically
reparametrize message passing inference on latent junction
trees purely in terms of observable variables, and to directly
learn this alternative parametrization from observed quanti-
ties in training data. During learning, our algorithm first con-
verts a latent graphical model into its corresponding latent
junction tree, and then reduces the parameter learning prob-
lem down to a sequence of regression problems using a sim-
ple and fast approach called Two-Stage Regression, which
also allows us to incorporate prior knowledge into the learn-
ing process. Moreover, our proposed learning algorithm is
also flexible enough to allow us to easily extend it to handle
graphical models with continuous random variables using
the technique of Hilbert Space Embeddings. When dealing
with continuous variables, we first embed their distributions
into reproducing-kernel Hilbert spaces, and then use the ker-
nel trick to perform all necessary learning operations over
latent junction trees via tensor algebra.

The main contributions of our work are:

(1) We introduce a novel formulation of message-passing
inference over latent-variable junction trees named predic-
tive belief propagation (Section 3), and then propose a
new algorithm for learning general latent-variable graphical
models based on it using Tvo-Stage Regression (Section 3
and 4). Our new algorithm overcomes many severe limita-
tions faced by previous methods for learning latent graphi-
cal models, including EM and the spectral algorithms, and
provides a general algorithmic framework that unifies the
learning of all different kinds of latent graphical models.

(2) We prove the correctness of our new algorithm by
showing that it learns to compute a statistically consistent
estimator of any conditional probability distribution over ob-
servable variables that we may query in a latent-variable
graphical model during inference (Appendix A.5).

(3) We extend our algorithm from discrete domain to con-
tinuous domain using Hilbert Space Embeddings of distri-
butions (Section 5).

(4) We demonstrate that our learning algorithm outper-
forms both the EM algorithm and the spectral algorithm and
runs significantly faster in experiments on both synthetic and
real datasets (Section 6).

Related Work

Previously, Parikh et al. proposed a spectral algorithm
(Parikh et al. 2012) for learning latent junction trees based
on an alternative tensor parameterization. However, the al-
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gorithm in (Parikh et al. 2012) can only yield the marginal
joint probability of all the observable variables in a la-
tent graphical model together, without the ability to flexi-
bly compute the posterior probability of arbitrary observable
variables given other observed variables as evidence in a
tractable manner. In contrast, our new algorithm overcomes
this limitation and supports arbitrary inference in tractable
forms by introducing a more flexible predictive message-
passing paradigm. Moreover, our algorithm provides the
ability to freely incorporate prior knowledge and to handle
continuous variables, which also cannot be achieved by the
spectral algorithm in (Parikh et al. 2012).

2  Formulation of the Learning Problem

The central machine learning problem that we are deal-
ing with in this paper is to learn general latent-variable
probabilistic graphical models such that we can perform
accurate inference over them among the observable vari-
ables. Traditionally, latent-variable graphical models are of-
ten parametrized using a set of local conditional probabil-
ity tables (CPTs) that are associated with the edges in the
graphs, and learning these models would mean to explicitly
recover their CPT parameters from training data (Koller and
Friedman 2009). However, in most cases of application, the
primary goal of learning a latent-variable graphical model is
to be able to make accurate inference and predictions over
its observable variables, and recovering its original CPT pa-
rameters is not needed at all. Therefore, in this paper we
develop a new learning method that learns an alternative
parametrization of general latent-variable graphical models
purely based on observable quantities, such that we can di-
rectly perform accurate probabilistic inference on them us-
ing the learned alternative parametrization. We don’t aim to
learn the original CPT parameters of latent graphical mod-
els, and bypass them using our alternative parametrization.

For a latent-variable probabilistic graphical model G of
arbitrary graph structure, let ¢ denote the set of all ob-
servable variables in G: 0 = {Xi,...,X|g}, and let
A denote the set of all latent variables in G: 7
{X|6/41, s X|6|+]22|}- Now our learning and inference
problem at hand can be mathematically formulated as the
following desired input-output behavior:

Input: given a training dataset of NV ¢.i.d. samples of the
set of all observable variables {x{, ..., 7{j; } )7, a set of ob-

served evidence {X; = ;}ice (here £ denotes the set of
index for the set of observable variables that are observed as
evidence), and the index () of the query node X,.

Output: calculate an estimate of the posterior distribu-
tion of the query node conditioned on the observed evidence:
PXq [ {Xi = zi}ice].

Here the variables in GG can be either discrete-valued
or continuous-valued, and if the variables are continuous-
valued, they are not restricted to have any specific func-
tional forms of probability density function. Our algorithm
can handle all of them gracefully in a nonparametric fashion.



(b)

Figure 2: (a) An example of a latent-variable graphical
model. Blue nodes indicate observable variables and white
nodes indicate latent variables. (b) A corresponding latent
junction tree that the graphical model in (a) is converted to.
Pink squares indicate clique nodes and yellow squares indi-
cate separator sets. Variable nodes with red circles around
them are associated with their current leaf clique nodes.

3 Predictive Belief Propagation
Preliminaries

Here we first introduce two important notions that will be
used throughout this paper.

Sufficient Statistics Feature Vector In statistics and
machine learning, the sufficient statistics feature vector of a
random variable X is such a feature vector v(X) that know-
ing its expectation Ex.,[v(X)] under X’s probabilistic
distribution p would completely determine that distribution
p. And similarly, the sufficient statistics feature vector
of a group of random variables {Xi,..., Xy} is such a
feature vector v({ X7, ..., X3 }) that knowing its expectation
Eix,,...x3~plv({ X1, ..., X3 })] under { X1, ..., X3 }’s joint
probabilistic distribution p would completely determine that
joint distribution p. For example, if X is a discrete random
variable, then its sufficient statistics feature vector v(X)
can be the vector of indicator functions whose i-th entry is
1 if X takes the i-th value, and is O if otherwise. And for a
group of discrete-valued random variables, their sufficient
statistics feature vector can be the vectorized version of
the outer product of all their individual vectors of indicator
functions. See Appendix A.4 for the continuous-valued case.

Junction Trees In probabilistic graphical models, junc-
tion trees are a classical type of transformation that allows
efficient message-passing inference algorithms to be per-
formed over loopy graphical models. In order to design a
learning and inference algorithm for general latent-variable
graphical models, which may have loopy or non-loopy graph
structures, we need to first resort to the junction tree algo-
rithm (Lauritzen and Spiegelhalter 1988) to transform latent
graphical models into their corresponding latent junction
tree representations, over which we can perform message-
passing inference. Consider the latent graphical model G
defined in Section 2. We first run the junction tree algorithm
to convert G into a latent junction tree 7', and then associate
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each observable variable in G with one leaf clique in 7". Now
pick a non-leaf clique node C'. as the root of T', which natu-
rally sets a topological order over 7. Then for each separator
set S in T, we define its inside tree In(.S) to be the subtree
rooted at S, and define its outside tree Out(S) to be the rest
of T excluding S and In(S). See Figure 2 and 3 for an ex-
ample.

Difficulty Facing Conventional Belief Propagation

In conventional methods for running belief propagation in-
ference over junction trees, such as the Shafer-Shenoy al-
gorithm (Shenoy and Shafer 1990) and the Hugin algorithm
(Lauritzen and Spiegelhalter 1988; Anderson et al. 1989),
the messages are defined to integrate together all the local
probabilistic information from the past part of the junction
tree in the form of partial results of sum-product calculations
and send this compact summary of the past to the future part
of the junction tree.! This requires the learning algorithm to
be able to estimate the innate parametrization of the original
latent graphical model, in the form of local conditional prob-
ability tables or local potential functions, directly from the
training data. However, the innate parametrization of latent
graphical models heavily involves hidden variables that we
cannot observe, which makes it hard to directly learn this
parametrization from training data. This discrepancy gives
rise to the key difficulty in learning general latent graphical
models, and forces previous methods to resort to inefficient
local search heuristics such as EM.

The Central Idea of Predictive Belief Propagation

To overcome this difficulty, we draw inspiration from the
notion of predictive state representations (PSRs) (Littman,
Sutton, and Singh 2001; Singh, James, and Rudary 2004),
which are a popular class of models for discrete-time dy-
namical systems. The key idea behind PSRs is to represent
the state of a dynamical system as a set of predictions of
features of observable variables in the future, which distin-
guishes them from the traditional history-based models and
hidden-state-based models (Kaelbling, Littman, and Cassan-
dra 1998). Such an alternative representation of state based
on observable quantities allows us to directly learn to per-
form filtering and prediction over dynamical systems from
training data in a fast, provably consistent and local-optima-
free fashion (Boots, Siddiqi, and Gordon 2011).

In essence, the state of a system is a time bottleneck that
compactly summarizes everything we need to know about
the past in order to predict the future. From this viewpoint,
when we perform belief propagation over a latent junction
tree, the message that we send across a separator set can be
viewed as the current state of the junction tree inference sys-
tem at that particular separator set. Therefore, in analogy to

"Formally, when we pass a message across a separator set in a
junction tree, we can split the junction tree from this separator set
into two separate subtrees. We refer to the subtree that the message-
passing direction is pointing toward as the future part of the junc-
tion tree, and the other subtree as the past part of the junction tree.
See Figure 3 for an example.
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Figure 3: Illustration of the inside tree (future), outside tree
(past), core group a(S“?) and evidence set 3(S4%) for a
specific separator set S in the latent junction tree in Fig-
ure 2(b).

PSRs, we can let the messages to encode our posterior pre-
dictions about the probabilistic information of the observ-
able variables in the future part of the junction tree, given the
observed evidence that we have absorbed from the past part
of the junction tree. In PSRs, a common approach is to use a
vector of sufficient statistics for a finite window of future ob-
servations to represent the state of a dynamical system. And
analogously, in our case, at each separator set we can use a
vector containing features of sufficient statistics for a subset
of core observable variables in the future part of the junction
tree to represent the message that we send across that separa-
tor set. Then during inference, we pass these predictive mes-
sages around over the latent junction tree to collect and prop-
agate information we observe from evidence nodes and to
compute the results of our inference queries. This forms our
central idea of predictive belief propagation, which is the
foundation of our new algorithm for learning latent-variable
graphical models. The major advantage of this new way of
thinking about message passing from a predictive perspec-
tive is that it enables us to efficiently learn general latent
graphical models directly from observed quantities under a
unified framework. Figure 1 provides an illustration of the
comparison between predictive belief propagation and con-
ventional belief propagation.

Definition of Predictive Messages

Now under the predictive belief propagation (PBP) frame-
work, we first need to define what exactly are the predictive
messages that we pass around over a latent junction tree
during inference. As discussed above, the predictive mes-
sages in PBP are analogous to the predictive states in PSRs.
In PSRs, a common approach is to use a vector of sufficient
statistics (called the core set of tests) for a finite window
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of future observations to represent the predictive state of a
dynamical system, because the infinite system-dynamics
matrix can often be proven to have finite rank. Then
analogously, in our PBP case, at each separator set we can
use a sufficient statistics feature vector for a group of core
observable variables in the future part of the junction tree
to represent the predictive message that we send across
that separator set. Now we make the following two key
definitions:

Definition 1. We define the core group of observable vari-
ables «(S) for each separator set S to be a subset of all
the observable variables that are associated with the leaf
clique nodes in In(S) whose posterior joint distribution
conditioned on evidence from Out(S) completely deter-
mines the posterior joint distribution of all the observable
variables that are associated with the leaf clique nodes in
In(S). More formally, let OV [In(S)] denote all the ob-
servable variables that are associated with the leaf clique
nodes in the inside tree In(S), and let OV [Out(S)] denote
all the observable variables that are associated with the leaf
clique nodes in the outside tree Out(.S), then the core group
a(S) satisfies the conditional independence property that:
{OVI[In(S)]\ a(S)} 1L OVI[Out(S)] | a(S).

Such a core group of observable variables «(S) al-
ways exists for each separator set S, since at least the
set OV[In(S)] would certainly qualify as being «(S),
by definition. But in order to reduce the computational
complexity of our learning and inference algorithm, it is
desirable to find the minimal core group «(S) for each S.
We present the process for determining the minimal core
group in Appendix A.2.

Definition 2. Let 0°[«(S)] denote a sufficient statistic fea-
ture vector for «(.S), and let 2 denote the evidence infor-
mation that we observe from Out(S). Then we define the
predictive message that we send across each separator set
S to be the conditional expectation of 6°[a(.S)] conditioned
on Q,ie. E[0%[a(9)] | ).

Relationship between Predictive Messages

Now the goal of our learning algorithm is to learn how
these predictive messages relate to each other during PBP
inference over a latent junction tree from training data.
Without loss of generality, let’s consider a non-leaf sepa-
rator set S in a latent junction tree 7, where S is con-
nected with K child separator sets {57, 52, ..., Sk } below
it through a clique node C'. According to the definition of
core groups in Definition 1, since a(S1), a(S2), ... , a(Sk)
are all contained in In(.S), their posterior joint distributions
Pla(S1) | Q],P[a(S2) | Q],....P[a(Sk) | Q] are thus
all completely determined by P[c(S) | 2]. Therefore, the
conditional expectations E [0 [a(S1)] | ], E[0°2[c(S2)] |
Q], ... E[0°%[a(Sk)] | €], as well as their outer product,
must also be fully determined by the conditional expecta-
tion E[6%[a(5)] | ©2] (because all the §’s here are sufficient
statistics feature vectors). That is to say, there exists a linear
operator WS in the form of a (K +1)-th order tensor with



each mode corresponding to S, 57,52, ..., Sk respectively,
such that:

é’lE[QSk [a(Sk)] | Q] =W xsE[0%[a(S)] | Q] (1)

for any outside tree evidence {2, where ® denotes outer prod-
uct and x g denotes mode-specific tensor multiplication’
along mode S.

Therefore, the predictive messages in PBP relate to each
other through W? according to Eq. (1). This linear operator
W? essentially acts as a message processor and distributor
during PBP inference.

Two-Stage Regression on Latent Junction Trees

Therefore, the major goal of our learning algorithm is to
learn the linear operator YW for each non-leaf separator set
S'in T from training data. Previously, (Hefny, Downey, and
Gordon 2015) proposed a method named Two-Stage Regres-
sion (2SR) to learn PSRs of linear dynamical systems. 2SR
learns PSRs by solving a sequence of regression problems,
and is fast and statistically consistent. The key idea of 2SR
is to use instrumental variable regression (Stock and Wat-
son 2011) to recover an unbiased estimate of the linear map-
pings in PSRs. Here we generalize 2SR to latent junction
trees to learn W9, First, pick a feature vector for Out(S)
and denote it by 7°[Out(S)]. Then using n°[Out(S)] as our
instrumental variable, we can perform our Two-Stage Re-
gression to learn WW* in three steps: (1) regress 6°[a/(S)] on

1S [0ut(S)]; (2) regress él 05+ [a(Sk)] on 75 [0ut(S)]; (3)

run a linear regression from the predictions obtained in step
(1) to the predictions obtained in step (2) to recover an unbi-
ased estimate of V°. These three steps of supervised learn-
ing constitute our new Two-Stage Regression approach for
latent junction trees, which will manifest itself in the learn-
ing algorithm in Section 4.

4 Main Algorithm

We are now ready to present our new algorithm for learning
general latent-variable probabilistic graphical models based
on the framework of predictive belief propagation. It has two
components: a learning algorithm and a corresponding infer-
ence algorithm that allows us to perform probabilistic infer-
ence over latent graphical models using the results learned
from the learning algorithm. Here we first describe the basic
version of our algorithm for the case where all observable
variables in a graphical model are discrete-valued. Then we
show how to extend our algorithm to handle graphical mod-
els with continuous-valued variables in Section 5. See Ap-
pendix A.3 for a pseudocode summary of our algorithm and
see Appendix A.5 for the proof of consistency of our algo-
rithm.

2For a detailed introduction to tensor algebra, we refer the read-
ers to (Kolda and Bader 2009). In this paper we adopt the notations
from (Parikh et al. 2012) to label the modes of tensors with random
variables.
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The Learning Algorithm

Step 1. Model Construction: Run the junction tree
algorithm to convert GG into an appropriate latent-variable
junction tree 1" and pick a root C,. for T, such that each
observable variable in G can be associated with one leaf
clique in 7. See Figure 2(a) and 2(b) for a concrete example.

Step 2. Model Specification: For each separator set S
in 7', among all the observable variables that are associated
with the leaf clique nodes in its inside tree In(.S), determine
its minimal core group a(S) = {A1, Az, ..., Ajo(s) } using
the procedure described in Appendix A.2. And among all the
observable variables associated with its outside tree Out(.S),
select a subset of variables 3(S) = {B1, Bz, ..., Bjg(s)|}
(this can be any subset). (See Figure 3 for a concrete
example.) Now pick a feature vector 8 [« (5)] for a(.S) and
a feature vector 7°[3(S)] for B(S), where we require that
6° must be a sufficient statistics feature vector for a(.S) and
7n° can be any feature vector. For discrete-valued a/(.S), this
sufficient statistic feature vector can simply be the (vector-
ized) outer product of the vectors of indicator functions of
all the variables in «(.S); and for continuous-valued «/(.5),
this sufficient statistic feature vector can be the (vectorized)
outer product of the implicit feature map of characteristic
kernels of all the variables in «(.S) (see Appendix A.4).

Step 3. Stage 1A Regression (S1A): At each non-leaf
separator set S in 7', learn a (possibly non-linear) regression
model to estimate #5 = E[§° | n°]. The training data for
this regression model is {(6%[a(S5)%],n%[3(5)%]) }fivzl
across all IV ¢.i.d. training samples.

Step 4. Stage 1B Regression (S1B): At each non-leaf
separator set S in 7', where S is connected with K child
separator sets {S1,S2,..., Sk} below it, learn a (possi-

K
bly non-linear) regression model to estimate ® 0S¢ =
k=1

K
E[ ® 6% | n°]. The training data for this regression model
k=1

are {(kgl o5 [a(Sk)d]mS[ﬂ(S)d])}g:l across all N i.i.d.
training samples.

Note: In the S1A and S1B regression steps above, we
can use any supervised learning algorithm as our regression
model. This provides us with the flexibility to incorporate
different prior knowledge into our learning process.

Step 5. Stage 2 Regression (S2): At each non-leaf
separator set .S in 7', use the feature expectations estimated
in S1A and S1B to train a linear regression model to predict

K _
® 05 = W5 x5 05, where W?* is the linear operator
k=1

associated with S. Output the learned parameter tensor

W*. The training data for this linear regression model are

K _
estimates of ( ® 6°%,65) for all the training samples that

we obtained from S1A and SI1B regressions.



Step 6. Root Tensor Estimation: At the root C,., estimate
the expectation of the outer product of the inside tree feature
vectors of all adjacent separator sets that are connected with
C, by taking average across all the IV i.i.d. training samples:

& ®

TC =E 05[a(9)]] = — 65 [a(S)
[sewcr) ()] N =1 sev(cy) (5]

where v(C,) denotes the set of all separator sets that are
connected to C,. Output the learned parameter tensor
T . This root tensor 7~ will later serve the function of
exchanging information at the root clique C, during Step
3(2) of the inference algorithm below.

Output: The final outputs of our learning algorithm are
the linear operators YW for each non-leaf separator set that
we obtained from Step 5 above, and the root tensor TEr that
we obtained from Step 6 above. These WW* and 7" essen-
tially serve as an alternative parametrization of the latent-
variable graphical model GG that supports inference based on
predictive belief propagation. In our inference algorithm be-
low, we will use WW* and 7 to build our message-passing
protocols and to calculate the result of our inference query.

The Inference Algorithm

Our inference algorithm uses the learned alternative
parametrization WS and 7" outputed by the learning
algorithm above to compute inference query through
predictive belief propagation.

Step 1. Leaf Tensor Construction: For each
leaf separator set S; of 7T, whose core group is
a(S;) = {A1, Az, ..., Ajg(s,)}> construct a leaf tensor
&5 with modes 65, Ay, Ao, ..., Aja(sy)| and dimensions
length(057) x N'(A1) x N(A2) X ... x N'(A|a(s,)|)» where
N (X) denotes the number of values for a discrete random
variable X . Each fiber® of the tensor ® along mode #°!
takes the value of the feature vector §°! evaluated at the
corresponding values of variables Ay, Aa, ..., Ajq(s,)]> 1€,

5 (1, Z(a1),Z(a2), ... Z(aja(s,)|)) =
05 [al, as, ..., a|a(Sl)|}

where Z(a) denotes the order index of a value a in all the
possible values of A. The purpose of these leaf tensors
® is to completely encode the sufficient statistic feature
information of all the observable variables in G into our
PBP inference system.

Step 2. Initial Leaf Message Generation: At each leaf
clique node C; in T, let §(C') denote the set of all observable
variables that are associated with ('}, and let S; denote the
separator set right above C;. We define a function {(X) of
an observable variable X that evaluates to an all-one vector
if X is not observed in the evidence and evaluates to a one-
hot-encoding value indicator vector e, if X is observed to

3As explained in (Kolda and Bader 2009), a fiber of a tensor is
a higher-order analogue of matrix rows and columns. A fiber along
amode is defined by fixing every mode of the tensor except for that
one.
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have value x in the set of observed evidence*. That is to say:

I, if X is not observed
if X is observed to have value x

X _=
) ={7
Then the upward message that we send from Cj to its parent
clique node C), can be calculated as:
()@

m — 35 x ®
=Gy eenl, 2
where  denotes Moore-Penrose pseudoinverse. This step
serves the purpose of collecting all the observed information
in the evidence.

Step 3. Message Passing:

(1) From leaf to root (the upward phase): For each non-
root parent clique node C'in T" where it is separated by a sep-
arator set .S from its parent node C),, once it has received the
messages from all of its child nodes C1, Cs, ..., C'x, which
are separated from it by separator sets S1, S5, ..., Sk respec-
tively, compute and send the upward message:

3)

s
me—c, =W Xs;

Jje{1.2,.... K}

mCJ*)C

This step gradually collects all the local observed evidence
information from all the leaf cliges up to the root clique.

(2) At the Root: At the root clique node C,. of T', which is
surrounded by its K child nodes C1, ..., Ck (each separated
from it by separator sets S, ..., Sk respectively), for each
ke {1,2,..., K}, once C, hasreceived all the K — 1 upward
messages from all of its other K — 1 child nodes except for
CY, compute and send the downward message:

me, o, =T Xs; 4)

Je({1,2,...., K}\K)

ij —C,

This step summarizes and exchanges evidence information
from different subtrees at the root clique.

(3) From root to leaf (the downward phase): For each
non-root parent clique node C' in 1" where it is separated
from its parent node C), by a separator set .S and separated
from its K child nodes C4,Cs,...,Ck by separator sets
S1, 99, ..., Sk respectively, once it has received the down-
ward message mc, ¢ from Cp, foreach k € {1,2, ..., K},
compute and send the downward message:
me;—»co (5)

s
me—c, = W” Xsme,—c Xs;

Jje({1.2,...,K}\k)

This step is the core operation of predictive belief propa-
gation. We gradually compute predictive messages level
by level from the root clique down to the leaf cliques. All
the downward messages mc—_,c, in this step are predictive
messages, as defined in Definition 2.

Step 4. Computing Query Result: For the query node
X associated with Cg, denote Cg’s parent node as C),

*For example, if X is a discrete random variable that can take
6 possible values {1,2,3,4,5,6}, and X is observed to have value
3 in the evidence, then ez = [0, 0, 1,0, 0, 0]



and the separator set between them as S. First use the leaf

tensor 52 and its Moore-Penrose pseudoinverse i b to
transform the downward incoming message mc, ¢, and
the upward outgoing message mc, ¢, respectively, and
then compute the Hadamard product of these transformed
versions of the two messages to obtain an estimate of the
unnormalized conditional probability of 6(Cg) given all the
evidence {X; = w; }iee:

P[o(Cq) |T{Xz‘ = Z;}tice) X
(Mo, g Xsq ©59) 0 (899 x5, meg0,)

Now we marginalize out the variables in §(Cg)\ X and
renormalize to obtain the final query result - the estimate of
the conditional probability distribution of the query variable

X given all the evidence: I@[XQ [ {X; = 2 }tice]

[Additional Note]: Another important type of query that
we can also compute here is the joint probability of all
the observed evidence: P[{X; = z;}ice]. In Step 4 above,
before marginalization and renormalization, the Hadamard

~

product is indeed equal to P[§(Cq),{X;, = i}tice] (see
Appendix A.5 for the proof). We can marginalize out all the
variables in §(C) from it to obtain P[{X; = z;};c¢]. For
example, this type of query is used for classification in the
handwritten digit recognition task in the experiment in Sec-
tion 6.

S5 Extending to Continuous Domain through
RKHS Embeddings

One of the biggest advantages of our new algorithm com-
pared to previous methods is that it can be seamlessly ex-
tended from discrete domain to continuous domain in a non-
parametric fashion using the technique of kernel embed-
dings. When encountering continuous random variables in
a latent graphical model, we use reproducing-kernel Hilbert
space (RKHS) embeddings (Boots, Gretton, and Gordon
2013; Song et al. 2010; Song, Gretton, and Guestrin 2010;
Song, Parikh, and Xing 2011) of distributions as suffi-
cient statistic features and express all the learning and be-
lief propagation operations as tensor algebra in the infinite-
dimensional Hilbert space, and then employ the kernel trick
to transform these operations back into tractable finite-
dimensional linear algebra calculations over Gram matrices
(Song et al. 2011; Grunewalder et al. 2012). We present our
full derivation of this extension in Appendix A.4.

6 Experiments

We design two sets of experiments to evaluate the perfor-
mance of our proposed algorithm, one using synthetic data
and the other one using real data.

Synthetic Dataset

In this experiment, we test the performance of our algorithm
on the task of learning and running inference on the discrete-
valued latent-variable graphical model depicted in Figure
4 using artificially generated synthetic data and compare it
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Figure 4: A directed latent-variable graphical model. Green
nodes indicate observable variables and red nodes indicate
latent variables.

with both the standard EM algorithm (Dempster, Laird, and
Rubin 1977) and the stepwise online EM algorithm (Liang
and Klein 2009).
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Figure 5: Comparison between our learning algorithm, the
EM algorithm and the stepwise online EM algorithm on the
synthetic dataset.

We randomly initialize all the conditional probability ta-
bles in this model as the ground truth parameters, and then
sample a dataset containing joint observations of the ob-
servable variables. Next we apply our proposed algorithm
to learn this model, and evaluate its performance on the task
of inferring the posterior distribution of variable D given
the observed values at variables G, H, and FE. In our exper-
iment, we use ridge regression (Friedman, Hastie, and Tib-
shirani 2009) for S1A and S1B. We compute the Kullback-
Leibler divergence between our algorithm’s inferred poste-
rior and the ground truth posterior calculated using the ex-



act Shafer-Shenoy algorithm and average across all possible
joint realizations of the variables (g, h, ¢). We report the re-
sults in Figure 5, where we see that the average KL diver-
gence between our algorithm’s results and the ground truth
posterior quickly decreases and approaches 0 as the size of
the training data increases. This result demonstrates that our
algorithm learns quickly to perform accurate inference over
latent graphical models.

We also run the standard EM algorithm (Dempster, Laird,
and Rubin 1977) and the stepwise online EM algorithm
(Liang and Klein 2009) to learn the same model with the
same synthetic dataset, and compare their performance and
training time with our algorithm (Figure 5).> Our algorithm
achieves equally good learning performance as EM and on-
line EM do, but is much faster to train than both of them.
The spectral algorithms can not perform such inference task
on individual observable variables in a tractable manner, so
we didn’t include them as our baselines here.

o-0

Figure 6: A directed latent-variable graphical model to
model the generative process of the 16-dimensional feature
vectors of handwritten digits.

Handwritten Digit Recognition

In this experiment we consider the task of recognizing hand-
written digits using the Pen-Based Recognition of Handwrit-
ten Digits dataset in the UCI machine learning repository
(Asuncion and Newman 2007). This dataset collected 10992
handwritten digit samples from 44 writers on a tablet with
500 x 500 pixel resolution and then normalized all the coor-
dinates into integer values between 0 and 100. It then used
spatial resampling to obtain 8 regularly spaced points to rep-
resent each handwritten digit, and the feature vector for each
digit is the 16-dimensional vector consisting of the (x, y) co-
ordinates of the 8 representative points. In order to learn to
classify these handwritten digits, we design a latent variable
graphical model structure (shown in Figure 6) to model the
generative process of the 16-dimensional feature vectors of
handwritten digits. The blue nodes indicate observable vari-
ables that corresponds to the coordinate values, and the or-
ange nodes indicate latent variables. We apply our learning
algorithm to learn a different generative model for each of
the 10 digit categories, and then during test time, we use our
inference algorithm to calculate the probability that a test in-
stance is generated from each of the 10 different models, and

>In our experiment, we give both EM and online EM 10 random
restarts and take the best ones as their performance evaluation.
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choose the one with the highest probability as our predicted
category. Here we use 7000 samples as our training set, 494
samples as our validation set, and the other 3498 samples as
our testing set. In our experiment, we use Gaussian radial
basis function kernel embeddings with bandwidth parame-
ter o = 10 as our feature vectors, and use ridge regression
(Friedman, Hastie, and Tibshirani 2009) with regularization
parameter A = 0.1 for S1A and S1B.
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Figure 7: Comparison of our learning algorithm, the spectral

algorithm, the EM algorithm and the stepwise online EM
algorithm on the handwritten digit recognition experiment.

We also run the standard EM algorithm (Dempster, Laird,
and Rubin 1977), a stepwise online EM algorithm (Liang
and Klein 2009), and a spectral algorithm as the baselines to
learn the same model, and compare their classification accu-
racy and training time with our algorithm (Figure 7). From
the experimental results we can clearly see that our learning
algorithm performs much better and is much faster to train
than both the spectral algorithm and the two EM algorithms
on this handwritten digit classification task. And moreover,
we observe that our algorithm is also very robust and yields
good performance even when the size of the training data is
relatively small, while the other three algorithms all perform
poorly in this scenario.



7 Conclusion

In this paper, we have introduced predictive belief propa-
gation as a new formulation of message-passing inference
over latent junction trees and developed a new algorithm for
learning general latent-variable graphical models based on
it. Our new algorithm unifies the learning and inference of
all different types of latent graphical models under a sin-
gle flexible framework, and overcomes many severe limita-
tions faced by previous methods like EM and spectral algo-
rithms (see Appendix A.1 for a detailed comparison between
our algorithm and previous algorithms). We also proved that
our new algorithm gives a consistent estimator of inference
queries over all latent graphical models. We evaluated its
performance on both synthetic and real datasets, and showed
that it learns different types of latent graphical models effi-
ciently and achieves superior inference performance. There-
fore, we believe that our algorithm provides a powerful and
flexible new learning framework for general latent-variable
graphical models.
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