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Abstract

Anomaly detection attempts to identify instances that deviate
from expected behavior. Constructing performant anomaly
detectors on real-world problems often requires some la-
beled data, which can be difficult and costly to obtain. How-
ever, often one considers multiple, related anomaly detection
tasks. Therefore, it may be possible to transfer labeled in-
stances from a related anomaly detection task to the problem
at hand. This paper proposes a novel transfer learning algo-
rithm for anomaly detection that selects and transfers rele-
vant labeled instances from a source anomaly detection task
to a target one. Then, it classifies target instances using a
novel semi-supervised nearest-neighbors technique that con-
siders both unlabeled target and transferred, labeled source
instances. The algorithm outperforms a multitude of state-of-
the-art transfer learning methods and unsupervised anomaly
detection methods on a large benchmark. Furthermore, it out-
performs its rivals on a real-world task of detecting anoma-
lous water usage in retail stores.

1 Introduction
Anomaly or outlier detection is a fundamental data analysis
task that involves identifying instances in a dataset that differ
from what was expected (Chandola, Banerjee, and Kumar
2009). Anomaly detection is important in practice as anoma-
lies often correspond to substantial problems that could have
significant costs, such as abnormal web traffic (Robberechts
et al. 2018), or credit card fraud (Chan et al. 1999).

Anomaly detection can naturally be posed as an unsuper-
vised learning task (Ramaswamy, Rastogi, and Shim 2000;
Breunig et al. 2000). Typically, unsupervised approaches ex-
ploit the underlying assumption that anomalies occur infre-
quently, which means they fall in low-density regions of the
instance space, or that anomalies are far away from normal
instances to identity them. However, real-world data regu-
larly violate this assumption, degrading the unsupervised ap-
proaches’ performance (e.g., system maintenance can occur
infrequently and irregularly, but is not anomalous). Labeled
data offers the possibility to correct the mistakes made by
unsupervised detectors. Unfortunately, a fully supervised ap-
proach to anomaly detection is infeasible due to the fact that
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collecting examples of real-world anomalies is often expen-
sive (e.g., a machine breaking), meaning that is not a viable
strategy to permit anomalous behavior for the sake of data
generation. This has spurred interest in semi-supervised ap-
proaches to anomaly detection, usually in conjunction with
active learning to efficiently collect the labels.

Real-world anomaly detection tasks often involve moni-
toring numerous assets, each of which is only slightly differ-
ent. Such a situation may arise when monitoring machines
in a factory, resource usage in a chain of retail stores, or
windturbine farms. These use cases entail monitoring a large
number of assets as a big retail chain could have 100s if
not 1000s of stores. Therefore, even when using a strategy
like active learning, it may be impossible to collect labels
for each individual asset. Given that these use cases involve
multiple similar anomaly detection tasks, it may be possi-
ble to employ transfer learning to transfer labeled instances
from one task to another. This could then alleviate the need
to collect labels for each task separately.

Motivated by these types of applications, this paper pro-
poses LOCIT, a novel transfer learning algorithm tailored
towards anomaly detection. It works in two steps. First,
given a partially labeled source dataset and an unlabeled tar-
get dataset, LOCIT selects a subset of the labeled source
instances to transfer to the target dataset. It picks those
instances that have similar localized data distributions in
both the source and target dataset. Second, it assigns an
anomaly score using a semi-supervised nearest-neighbor ap-
proach that considers both the transferred, labeled source
instances and the unlabeled target instances. Empirically,
LOCIT outperforms a multitude of existing transfer learning
and anomaly detection methods on a new transfer learning
benchmark for anomaly detection. Moreover, it outperforms
its competitors on a real-world anomaly detection prob-
lem of identifying anomalous water usage in multiple retail
stores. Finally, we provide an implementation of LOCIT.1

2 Preliminaries

Transfer Learning for Anomaly Detection. Transfer
learning aims to learn a model for one dataset (the target do-

1https://github.com/Vincent-Vercruyssen/LocIT
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main) given access to data from a related dataset (the source
domain) (Van Haaren, Kolobov, and Davis 2015). As this
paper concerns anomaly detection, the task is to assign a
score to each instance in the target dataset that quantifies
how anomalous it is. We use DS (DT ) to denote the source
(target) dataset. We use xs (xt) to refer to an instance from
the source (target) dataset.

Three common transfer learning assumptions (Kouw and
Loog 2018) apply to the anomaly detection task. First, the
source and target data are from the samem-dimensional fea-
ture space. Second, the source and target marginal distribu-
tions differ (covariate shift assumption). This happens when
distinct behaviors are observed in either domain. Third, the
conditional distributions can differ due to changes in con-
text: the same behavior may have different meanings in the
two domains (concept shift assumption). The last two as-
sumptions complicate the transfer task.

Nearest Neighbors and KNNO. We use several nearest
neighbors concepts. The k-distance of an instance x is the
distance to its kth nearest neighbor in a datasetD, and is de-
noted by k-dist(x,D). The set of x’s k nearest neighbors in
D is denoted byNk(x,D). The standard weighting function
in distance-weighted KNN is w(xi;xj) = 1

δ(xi,xj)2
, where

δ is the Euclidean distance between two instances xi and
xj . Finally, KNNO ranks all instances in a dataset by their k-
distance, with higher distances signifying more anomalous
instances (Ramaswamy, Rastogi, and Shim 2000).

3 The LOCIT Algorithm

The problem we are trying to solve can be defined as:

Given: A (partially) labeled source dataset DS and an un-
labeled target dataset DT from the same feature space;

Do: Assign an anomaly score to each instance in DT using
DT and a subset of DS .

Our novel localized instance-transfer algorithm (LOCIT)
takes a two-step approach for addressing this task. First,
LOCIT decides in a label-agnostic way whether to transfer
each source instance to the target domain by checking if the
instance’s local data distribution is similar in both the source
and target domains. LOCIT takes an unsupervised transfer
approach because the target labels are not available and the
value of the source label should not influence the transfer de-
cision. Second, LOCIT assigns an anomaly score to each tar-
get instance by employing a novel semi-supervised anomaly
detection algorithm. Algorithm 1 details the overall control
flow of LOCIT and the following subsections describe each
step in more detail.

3.1 Localized Instance-Based Transfer

An instance-transfer function f(xs;DS , DT ) �→ {0, 1} de-
cides whether to transfer each source instance xs ∈ DS to
the target domain (1) or not (0). Ideally, each transferred
source instance has the same meaning (i.e., would be labeled
similarly) in both domains. It only makes sense to transfer a
source anomaly (normal) to the target domain if it is similar
to a target anomaly (normal). However, LOCIT must make

Algorithm 1: LOCIT(DS , DT , ψ, k)
Input: source data DS , target data DT ,

neighborhood sizes ψ and k
Result: Anomaly score for the instances in DT

Phase (i): Localized instance-based transfer.
1 Fpos, Fneg = ∅

2 for xt ∈ DT do
3 xn is the nearest neighbor of xt in DT \ {xt}
4 xf is the farthest neighbor of xt in DT \ {xt}
5 N1 = Nψ(xt, DT ) and N2 = Nψ(xn, DT )
6 Fpos = Fpos ∪ {[d1(N1, N2), d2(N1, N2)]}
7 N2 = Nψ(xf , DT )
8 Fneg = Fneg ∪ {[d1(N1, N2), d2(N1, N2)]}
9 svm = fitSVM (Fpos, Fneg)

10 Dtrans = ∅

11 for xs ∈ DS do
12 N1 = Nψ(xs, DS) and N2 = Nψ(xs, DT )
13 fs = [d1(N1, N2), d2(N1, N2)]
14 if svm.predict(fs) = pos then
15 Dtrans = Dtrans ∪ {xs}

Phase (ii): Prediction in the target domain.
16 D∗ = DT ∪Dtrans

17 for xt ∈ DT do
18 Predict xt’s anomaly score using Eq. 4, D∗ and k

this assessment without access to any labels for the target in-
stances. Consequently, LOCIT makes the intuitive assump-
tion that an instance has a similar meaning in both the source
and target domain if the local structure of the source and
target marginal distributions around the instance are similar,
where the structure of the distributions is characterized by
first and second order statistics.

Characterizing an Instance’s Local Structure. For a
given source instance xs, LOCIT defines the localized
source distribution using the setNψ(xs, DS) of xs’s ψ near-
est neighbors in the source data. Similarly, the localized
target distribution is based on the set Nψ(xs, DT ) of xs’s
ψ nearest neighbors in the target data. The assumption is
that if the distribution over Nψ(xs, DS) is sufficiently sim-
ilar to the distribution over Nψ(xs, DT ), xs can be trans-
ferred, where the similarity is measured by comparing the
following first and second order statistics of Nψ(xs, DS)
and Nψ(xs, DT ):
Location distance: This is the l2-norm of the difference

between the centroids (i.e., arithmetic mean) of two
neighborhood sets N1 and N2:

d1(N1, N2) =

∥∥∥∥∥∥
1

k

⎛
⎝ ∑
xi∈N1

xi −
∑
xj∈N2

xj

⎞
⎠
∥∥∥∥∥∥
2

. (1)

Here, LOCIT computes d1(Nψ(xs, DS), Nψ(xs, DT )).
Intuitively, large values of d1 indicate less overlap be-
tween the regions covered by the two sets, which corre-
spondingly decreases the chance of meaningful transfer.
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infrequent normalsinfrequent normalsinfrequent normals

(A) Source and target domain

suboptimal transfersuboptimal transfersuboptimal transfer

(B) After transfer with Coral

correct transfercorrect transfercorrect transfer

(C) After transfer with LocIT

Target normal

Target anomaly

Source normal

Source anomaly

Transformed source normal

Transformed source anomaly

Figure 1: Both the source and target domain (panel A) contain a small (infrequent) cluster of normal instances, which many
unsupervised algorithms would incorrectly flag as anomalous. Hence, transferring labeled instances from the source to the
target could help. CORAL (panel B) transforms the source data to align the global statistics between the domains. However,
outliers skew the correction, resulting in a suboptimal mapping. Here, source normals are mapped to target anomalies and the
clusters of infrequent normal instances do not match. LOCIT (panel C), on the other hand, only transfers the subset of source
instances for which the localized source and target distributions match. Hence, it correctly transfers labeled source instances to
the small cluster of infrequent normals, while avoiding incorrect transfer on the lower right.

Correlation distance: This is the relative distance between
the covariance matrices of two neighborhood sets:

d2(N1, N2) =
‖CN1 − CN2‖F

‖CN1‖F
(2)

where ‖·‖F is the Frobenius norm and C is
the covariance matrix. Again, LOCIT computes
d2(Nψ(xs, DS), Nψ(xs, DT )). If d2 is large, this
signals that the underlying localized source and target
distributions are distinct in shape and/or orientation,
which again reduces the chance of meaningful transfer.

The size of the neighborhood set ψ is the only hyperparam-
eter in the transfer step of LOCIT. Intuitively, ψ controls the
strictness of the instance transfer. If ψ is maximal (the min-
imum of the number of source or target instances), LOCIT
ignores local distributional differences and considers the full
global structure of the source and target domains to deter-
mine transfer. If ψ is 1, LOCIT only transfers a source point
when the distance to its nearest neighbor in the source and
target domain is similar to the average distance between any
two neighboring points in the target domain.

Learning the Instance-Transfer Function. The instance
transfer function f needs to decide whether to transfer xs by
combining the information provided by d1 and d2. LOCIT
learns an SVM classifier on the target distribution to serve as
f . The classifier predicts if a source instance xs belongs to
the target domain by looking at the correlation and location
distance between the neighborhood sets of the instance in
the source and target data.

To train the classifier, LOCIT generates training data
by only considing the target data. It does so by lever-
aging the smoothness assumption that neighboring tar-
get instances should have similar localized distributions
while far-away instances should not. Thus, one pos-
itive training example is generated for each instance
xt ∈ DT by finding its nearest neighbor xn ∈
DT \ {xt} and computing d1(Nψ(xt, DT ), Nψ(xn, DT ))
and d2(Nψ(xt, DT ), Nψ(xn, DT )). Similarly, the negative
training examples are generated by computing for each in-
stance xt ∈ DT a feature vector consisting of the distances

k-distk-distk-dist

k = 4k = 4k = 4
Normal ∈ Dtrans

Anomaly ∈ Dtrans

Unlabeled ∈ DT

xt ∈ DT

Figure 2: After transfer, SSKNNO computes an anomaly
score for each target instance as a weighted combination of
an unsupervised score and a supervised score. In this exam-
ple using k = 4, xt’s nearest neighbors are two source nor-
mals, a source anomaly, and an unlabeled target instance.
Because xt does not belong to the neighborhood sets of the
two source normals (green circles), they are excluded when
computing the weight for the supervised component of the
score. Thus, the weights of the unsupervised and supervised
components are respectively 3

4 and 1
4 .

between the neighborhood sets of xt and its farthest neigh-
bor xf ∈ DT \ {xt}.

LOCIT tunes the SVMs hyperparameters using three-
fold cross-validation on the generated training data. It
selects either a linear or Gaussian kernel and sets
C ∈ [0.01, 0.1, 0.5, 1, 10, 100] for both kernels and σ ∈
[0.01, 0.1, 0.5, 1, 10, 100] for the Gaussian kernel.

Figure 1 compares LOCIT with a popular global domain
alignment strategy, CORAL (Sun, Feng, and Saenko 2016),
on a small source and target dataset.

3.2 Prediction in the Target Domain

After transfer, there are two challenges with making predic-
tions for the target instances. First, the target domain now
contains a mix of labeled and unlabeled instances. Second,
because this is an anomaly detection problem, the known la-
bels in a target instance’s neighborhood are not necessarily
informative of its label.
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The second contribution of LOCIT is a semi-supervised
anomaly detection method, SSKNNO, that combines the un-
labeled and (transferred) labeled instances to compute an
anomaly score for each target instance. On the one hand, it
considers the local distribution of the unlabeled target in-
stances when computing the score. On the other hand, it
weights this score by comparing the neighborhoods of the
(transferred) labeled instances and the unlabeled instances
in the target data.

Let D∗ = DT ∪ Dtrans be the set of instances that in-
cludes both the target instances and the transferred source
instances. For a given target instance xt, we find the set of
all neighbors Nk(xt, D∗) and denote its subset of labeled
neighbors as Lk(xt, D∗). The weight Wl of the labeled in-
stances in the neighborhood of xt is now:

Wl(xt) =
|xi : xi ∈ Lk(xt, D

∗) ∧ xt ∈ Nk(xi, D
∗)|

k
.

(3)
Intuitively, when assigning an anomaly score to xt, we only
want to consider the label of a transferred source instance if
the source instance is similar to xt. For example, if xt is an
isolated instance, its k-nearest neighbors will be far-away.
Even if labeled, such instances will not be very predictive of
xt’s label. This is reflected in Wl(xt), which only considers
instances in xt’s neighborhood that also include xt in their
neighborhood.

This weight can now be used to compute the anomaly
score a(xt) for instance xt as a weighted combination be-
tween an unsupervised component au, that considers the lo-
cal data distribution, and a supervised component al, that
considers nearby labeled instances:

a(xt) = (1−Wl(xt)) au(xt) +Wl(xt) al(xt). (4)
The supervised component of the score al is the distance-

weighted average of the labels of the instances in the neigh-
borhood of xt:

al(xt) =

∑
xi∈Lk

1yi=anomaly(xi) w(xi;xt)∑
xi∈Lk

w(xi;xt)
(5)

where w is defined as in Section 2 and 1yi=anomaly(xi) is 1
if the instance xi is labeled as anomalous, 0 otherwise. The
unsupervised component of the score au uses k-dist based
on the KNNO algorithm but bounds the distance to [0, 1] us-
ing a squashing function from the exponential family:

au(xt) = 1− exp

(
−k-dist(xt, D∗)2

2γ2

)
(6)

where γ is the assumed percentage of anomalies and is set
to be the proportion of known anomalies in the source do-
main. This exponential quashing is a monotone function and
higher values still represent more anomalous instances. See
Figure 2 for a graphical explanation of SSKNNO.

In extreme cases the weight Wl(xt) can be zero or one. If
none of xt’s neighbors are labeled, Lk is empty and Wl(xt)
becomes zero, reducing Eq. 4 to the scaled KNNO score. This
can happen if LOCIT’s transfer function selects no instances
to be transferred. Conversely, if all of xt’s neighbors are la-
beled and xt belongs to the neighborhood set of each of
its neighbors, the final anomaly score is then the standard,
weighted KNN classifier.

4 Related Work

We discuss the most closely related work in transfer learn-
ing, domain adaptation, and anomaly detection.

Instance-Based Transfer. Many different types of trans-
fer learning exist (Weiss, Khoshgoftaar, and Wang 2016;
Pan and Yang 2010). We focus on instance transfer where
weighted source domain instances are used to construct a de-
cision function in the target domain (Mignone et al. 2019).
Chattopadhyay et al. (2012) proposed 2SW-MDA and CP-
MDA. However, unlike our problem setting CP-MDA re-
quires labeled target data to work, while 2SW-MDA does
not work when only instances of one class are labeled in
the source domain.

Domain Adaptation. Domain adaptation techniques
transform both the source and target data into a new, latent
feature space that minimizes the distributional differences
while preserving the intrinsic structure in the data. Then,
they apply standard classifiers in the newly-found space. To
find the latent space, one class of methods, such as TCA (Pan
et al. 2011), TJM (Long et al. 2014), and GFK (Gong et al.
2012), corrects only the differences in marginal distribu-
tions. A second class of methods, such as JDA (Long et al.
2013) and JGSA (Zhang, Li, and Ogunbona 2017), attempts
to correct both the marginal and conditional distributions
by computing pseudo-labels for the unlabeled source and
target data. Finally, methods such as CORAL (Sun, Feng,
and Saenko 2016) align the source and target domains in the
original feature space. All these methods use the 1-nearest
neighbor classifier for the target data, with the transformed
source data as the training set.

LOCIT differs from these approaches in three key ways.
First, it implicitly corrects for conditional distribution differ-
ences between the source and target domains by observing
the densities of the data distributions. Second, it uses a semi-
supervised nearest-neighbors style classifier in the target do-
main, which we will show empirically leads to better per-
formance. Third, LOCIT’s target domain nearest-neighbors
classifier works even if instances from only one class are
transferred because it interpolates between a supervised and
unsupervised score. In contrast, the other approaches require
that labeled instances from all classes are transferred.

Transfer Learning for Anomaly Detection. Only a hand-
ful of papers explore the use of transfer learning for anomaly
detection. CBIT (Vercruyssen, Meert, and Davis 2017) se-
lects labeled source instances to transfer using a density-
based approach and a cluster-based approach and constructs
a 1NN classifier in the target domain based on these in-
stances. Unlike LOCIT, CBIT fails if the source domain con-
tains labels from only one class or if all transferred source
instances come from the same class. Andrews et al. (2016)
tries to reuse learned image representations across different
image datasets. Finally, Xiao et al. (2015) designed a robust
one-class transfer learning method. Unlike LOCIT, the lat-
ter two approaches require labeled target instances to con-
struct the classifier. The lack of labels in anomaly detection
task that motivated our approach prohibits using these ap-
proaches.

6057



Unsupervised Anomaly Detection. Unsupervised
anomaly detection assumes that anomalies are infrequent
and different from the normal instances. The three most
popular and successful classes of methods in this area are
local density-based methods (Papadimitriou et al. 2003;
Breunig et al. 2000), k-nearest neighbor detectors (Ra-
maswamy, Rastogi, and Shim 2000), and isolation
methods (Liu, Ting, and Zhou 2008). Extensive empirical
evaluations have found that both KNNO (Campos et al. 2016;
Goldstein and Uchida 2016) and IFOREST (Domingues
et al. 2018) perform very well compared to a number of
competitors. Interestingly, the aforementioned studies do
not directly compare IFOREST with KNNO. In contrast,
we propose a new, semi-supervised anomaly detection
technique that forms a weighted combination of standard
KNN and KNNO. The technique also differs from IFOREST,
which cannot handle labeled instances.

5 Benchmark Experimental Evaluation

We address the following four empirical questions:

Q1: How does LOCIT perform compared to state-of-the-art
transfer learning and anomaly detection algorithms?

Q2: How does the percentage of labeled source instances
affect the transfer learning algorithms’ performance?

Q3: How does our nearest-neighbor’s approach for classi-
fying target instances affect performance?

Q4: How do the values of hyperparameters ψ and k affect
the performance of LOCIT?

The code, benchmark data, elaborated explanations, full pa-
rameter settings, and further experiments are available in an
online appendix.2

5.1 Benchmark and Experimental Setup

Compared Approaches. We compare 12 approaches,
which can be divided into three categories:

Baseline anomaly detection algorithms. We consider four
standard unsupervised anomaly detection techniques that
only consider the target domain data: KNNO (a distance-
based outlier detection technique (Ramaswamy, Rastogi,
and Shim 2000)), LOF (a density-based outlier detection
technique (Breunig et al. 2000)), IFOREST (an ensemble-
based outlier detection technique (Liu, Ting, and Zhou
2008)), and HBOS (a histogram-based outlier detection
technique (Goldstein and Dengel 2012)).

Baseline transfer learning approaches. We consider eight
transfer learning approaches: TRANSFERALL (a naive
baseline that transfers all source instances as is to the
target domain), CORAL (Sun, Feng, and Saenko 2016),
TCA (Pan et al. 2011), GFK (Gong et al. 2012), JDA (Long
et al. 2013), TJM (Long et al. 2014), JGSA (Zhang, Li,
and Ogunbona 2017), and CBIT (Vercruyssen, Meert, and
Davis 2017). After transfer, these methods use a KNN
classifier to classify the target instances.

LOCIT. This is our proposed transfer learning approach.
2https://github.com/Vincent-Vercruyssen/LocIT

Benchmark Construction. We construct our own bench-
mark because the current transfer learning benchmarks
(e.g., (Long et al. 2013; Sun, Feng, and Saenko 2016;
Pan et al. 2011)) do not contain anomalies, while the current
anomaly detection benchmarks (e.g., (Campos et al. 2016;
Goldstein and Uchida 2016)) do not contain source-target
pairs for each problem. Our benchmark should display three
characteristics. First, for empirical evaluation purposes, the
benchmark should contain a large number of source-target
domain pairs that have varying degrees of differences be-
tween their joint data distributions. Second, each source-
target domain pair should live in the same feature space.
We start from one of 12 publicly available, multi-class mas-
ter datasets. To generate a target domain, we sample nor-
mal (anomalous) target instances from the largest (second
largest) class in the master dataset. To ensure distributional
differences between the source and the target, we construct
source domains by sampling source anomalies and normals
from either the same classes or different classes than used in
the target domain. We generate 56 unique source-target pairs
in this manner. Third, the source and target domains should
contain normal and anomalous instances that are nontrivial
to classify. We follow Emmott et al.’s procedure (2013) to
satisfy this condition.

Experimental Setup. We employ the standard transfer
learning experimental setup used in previous work (Long
et al. 2013; Zhang, Li, and Ogunbona 2017). For each of
the 56 source-target pairs in the benchmark, the following
two steps are performed. First, each method transforms the
source data and/or selects the source instances to transfer to
the target domain. Second, a final classifier is learned using
the transferred, labeled source data (and the unlabeled target
data) and a prediction is made for each target instance. The
anomaly detection algorithms are simply run on the target
data (i.e., they do not use any source data). The final classi-
fier’s performance is evaluated using the area under the re-
ceiver operating characteristic (AUROC), as is standard in
anomaly detection (Emmott et al. 2013).

Hyperparameter tuning using cross-validation is impossi-
ble because there are no labels in the target domain and the
distribution of the source data is different (Pan et al. 2011).
We simply use the baselines with the hyperparameters rec-
ommended in the original papers or in comparative studies.
LOCIT has two hyperparameters. We set the neighborhood
size ψ = 20 and k = 10 in SSKNNO. Q4 analyzes the im-
pact of ψ and k on LOCIT’s performance. Further details on
the hyperparameters can be found in the online Appendix.

5.2 Experimental Results and Discussion

Q1: LOCIT vs. State-of-the-art. Table 1 compares LOCIT
to all baselines when the source domain is fully labeled.
LOCIT outperforms all baselines on the full benchmark,
having the lowest average AUROC rank (lower rank is bet-
ter) and achieving the highest average AUROC.

Furthermore, LOCIT yields an average increase in AU-
ROC of at least >9% compared to performing unsupervised
anomaly detection. This provides evidence that LOCIT’s ap-
proach to transfer can help in anomaly detection tasks. Fi-
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Table 1: Comparison of LOCIT to the state-of-the-art baselines when the source domains are fully labeled. The table shows
over the full benchmark: the average AUROC rank ± standard deviation (SD) of each method; the average AUROC ± SD of
each method; the number of times LOCIT wins (higher AUROC), draws (absolute difference in AUROC < 0.005), and loses
(lower AUROC) vs. each method; and the average percentage change in AUROC ± SD of using LOCIT over each method.

Transfer method Final classifier Average AUROC rank
± SD of each method

Average AUROC ± SD
of each method

# times LOCIT Average % change in AUROC
using LOCIT over all datasetswins draws loses

LOCIT SSKNNO 3.741± 3.318 0.762± 0.182 - - - -
- KNNO 5.321± 3.663 0.705± 0.177 44 4 8 +9.63%± 18.31%
CORAL KNN 5.848± 3.311 0.666± 0.188 36 1 19 +20.65%± 40.60%
- LOF 6.018± 4.413 0.677± 0.113 37 0 19 +14.53%± 31.53%
TRANSFERALL KNN 6.732± 3.646 0.649± 0.185 37 0 19 +27.34%± 62.98%
- IFOREST 6.795± 3.898 0.690± 0.169 50 1 5 +11.32%± 13.53%
GFK KNN 7.125± 3.312 0.642± 0.186 38 1 17 +29.10%± 67.03%
TCA KNN 7.348± 2.356 0.656± 0.154 44 1 11 +18.20%± 27.64%
- HBOS 7.920± 4.015 0.646± 0.216 48 2 6 +29.16%± 53.65%
TJM KNN 8.000± 2.793 0.627± 0.175 44 2 10 +27.22%± 39.12%
CBIT KNN 8.223± 2.345 0.623± 0.150 46 0 10 +24.57%± 28.54%
JDA KNN 8.509± 2.910 0.617± 0.170 44 0 12 +30.51%± 48.76%
JGSA KNN 9.420± 3.845 0.576± 0.096 46 0 10 +33.99%± 33.27%

nally, LOCIT achieves average AUROC gains of>18% over
all the transfer learning baselines, indicating that it substan-
tially outperforms the state-of-the-art transfer approaches.

Q2: Effect of Varying the Percentage of Source Labels.
To explore how the amount of labeled source data affects
performance in the target domain, we vary the proportion of
labeled sources instances. This is relevant because often it
is difficult to obtain fully labeled data for anomaly detection
problems. We randomly sampled 10%−100% with incre-
ments of 10% of the source instances and only considered
the labels of these instances when performing transfer. We
repeated this procedure five times and averaged results.

Figure 3 shows how the average AUROC varies as a
function of the proportion of labeled source instances on
four representative master datasets. For readability, the plots
show the results for LOCIT as well as CORAL and KNNO,
which are the best transfer and anomaly detection base-
lines respectively as determined by Table 1. KNNO’s curves
are straight lines because it only considers the target data.
CORAL improves as more source labels become available.
Regardless of the proportion of source labels, LOCIT out-
performs CORAL on nine of the 12 master datasets. Further-
more, with only 10% of the source labels, LOCIT performs
better than or similar to KNNO on eight of the 12 master
datasets. As more source labels become available, LOCIT’s
performance improves and with 50% of the source labels,
LOCIT always performs better or equivalently to KNNO. As
source labels continue to be added, the performance gap
with KNNO widens.

Q3: Impact of the SSKNNO Approach. To assess how
much of LOCIT’s gains come from using our novel
SSKNNO approach, we use SSKNNO instead of KNN as
the target domain classifier for the best competing transfer
methods from Table 1. Table 2 shows the results for this
experiment. For CORAL, GFK, TRANSFERALL, and CBIT,
using SSKNNO as the classification approach results in im-
proved performance versus the KNN classifier. The excep-
tion is TCA. Even when they are coupled with the SSKNNO

Table 2: LOCIT vs. the best transfer baselines from Table 1
coupled to use SSKNNO as the target domain classifier. The
table shows the average AUROC ± SD and the average per-
centage change in AUROC ± SD of using LOCIT over each
competitor for fully labeled source domains.

Transfer method
+ SSKNNO

Average AUROC ± SD
of each method

Average % change in AUROC
using LOCIT over all datasets

LOCIT 0.762± 0.182 -
CORAL 0.735± 0.171 +3.88%± 9.54%
TRANSFERALL 0.727± 0.173 +5.17%± 10.29%
GFK 0.705± 0.172 +8.95%± 13.28%
CBIT 0.713± 0.171 +7.28%± 10.64%
TCA 0.533± 0.177 +74.81%± 116.18%

classifier, LOCIT outperforms all the baselines. It performs
better than or similar to (difference in AUROC < 0.005) all
competitors on at least 37 out of 56 benchmark datasets, and
achieves a higher average AUROC than all other methods.
This indicates that both LOCIT’s novel instance selection
procedure for transfer and its approach to classification in
the target domain contribute to its superior performance.

Q4: Impact of LOCIT’s Hyperparameters. LOCIT has
two hyperparameters. First, the hyperparameter ψ con-
trols the strictness of the instance-selection step. Choosing
ψ ≥ 20 generally yields good performance. Lower val-
ues degrade performance. Second, hyperparameter k in the
SSKNNO step of LOCIT controls the number of neighbors
considered when deriving an anomaly score for an instance.
A good value of k depends on the type of dataset. Lower
values of k < 20 are an overall good choice across a range
of datasets. See Figure 6 in the online Appendix.

6 Real-world Experimental Evaluation

We evaluate LOCIT’s effectiveness on a real-world transfer
task of detecting anomalous water usage in a chain of retail
stores. The retail company operates hundreds of stores and
wants to avoid excess usage due its harmful environment im-
pact and to minimize costs. Detecting anomalous usage is
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Figure 3: The AUROC averaged over all source-target pairs on four representative master datasets, as a function of the percent-
age of labeled source data for LOCIT, KNNO, and CORAL. LOCIT’s and CORAL’s performances improve as labels are added
to the source domain. With 50% of the source labels, LOCIT always performs better or equivalently to KNNO.

Table 3: The average AUROC ± SD on the real-world water
usage data by LOCIT, the best non-transfer baseline (KNNO)
and the two best transfer baselines (CORAL and TRANSFER-
ALL) from the benchmark. Best results are in bold. LOCIT
consistently outperforms its competitors.

source target KNNO TRANSFERALL CORAL LOCIT

store 1 store 2 0.779± 0.126 0.611± 0.154 0.646± 0.133 0.800± 0.112
store 1 store 3 0.943± 0.063 0.758± 0.192 0.776± 0.182 0.969± 0.049
store 2 store 1 0.754± 0.227 0.771± 0.207 0.771± 0.219 0.779± 0.227
store 2 store 3 0.943± 0.063 0.790± 0.232 0.794± 0.232 0.969± 0.050
store 3 store 1 0.754± 0.227 0.704± 0.159 0.702± 0.159 0.779± 0.227
store 3 store 2 0.779± 0.126 0.592± 0.164 0.638± 0.135 0.800± 0.112

challenging because the data contains infrequent, but nor-
mal irregularities such as maintenance patterns, after-hour
events, and temporary alterations in opening hours. Simi-
larly, certain abnormal behaviors such as leaks occur rel-
atively frequently. Hence, the data violate the standard as-
sumptions made in unsupervised anomaly detectors.

Having access to some labeled examples could help im-
prove detection performance and correct the mistakes made
by unsupervised detectors. Unfortunately, it is not feasible
to label even a small subset of the data for every store due to
the time costs associated with labeling. This raises the fol-
lowing the question:

Can labeled instances be transferred between different
stores to improve anomaly detection performance?

However, transfer in this setting is not straightforward be-
cause the observed usage, and consequently what consti-
tutes (ab)normal behavior, varies substantially due to con-
textual differences among stores (e.g., location, size, clien-
tele, opening hours, services offered, etc.).

6.1 Data and Methodology

We have three full years of historical water usage time series
data for three stores. The data consists of a univariate mea-
surement that is recorded every five minutes. In each store,
company experts labeled about ten percent of the data, with
each of the provided labels indicating whether a block of one
hour (e.g., 01:00-02:00) shows normal behavior or not. The
rest of the data is unlabeled.

In each store, the time series data is first divided into non-
overlapping one-hour windows (i.e., 00:00-01:00, 01:00-
02:00, etc.). Then, each window is transformed into a length
31 feature vector describing the signal’s characteristics dur-
ing that window (Vercruyssen et al. 2018). Because of a
store’s opening hours, the time of day has a significant ef-
fect on water usage. Therefore, all windows for the same
hour interval (e.g., 11:00-12:00) are grouped, resulting in 24
groups per store. A separate anomaly detector is trained for
each group.

In the transfer learning experiment, each window group
for one store is treated as the unlabeled target domain, while
each of the 24 window groups from a different store serves
as the partially labeled source domain (about ten percent of
the instances is labeled). Having three stores, we construct
six unique source-target store combinations, each of which
has 576 source-target pairs.

6.2 Experimental Results and Discussion

Table 3 reports the AUROCs of this experiment, averaged
per source-target store combination. In aggregate, LOCIT is
always better than both KNNO and CORAL on all six store-
store combinations. On all 3456 transfer tasks (576 tasks
per store-store pair × six pairs), LOCIT wins (difference
in AUROC > 0.01) 2427 and ties (difference in AUROC
< 0.01) 280 times with CORAL. It wins 2512 and ties 272
times versus TRANSFERALL. Finally, it wins 1868 and ties
1441 times versus KNNO. LOCIT outperforms or ties with
KNNO on 95% of the real-world transfer tasks, which pro-
vides evidence of the effectiveness of label transfer to im-
prove anomaly detection in a real-world setting.

7 Conclusions

While anomaly detection would benefit from labeled data, it
is often done in an unsupervised manner because acquiring
labels in practice, particularly for anomalies, can be diffi-
cult and costly. We considered using transfer learning to ac-
quire labeled instances from a different, but related anomaly
detection task. We proposed a novel instance-based trans-
fer method for anomaly detection. Empirically, we have
shown that it outperforms numerous unsupervised and trans-
fer learning approaches on a large benchmark. Morever, we
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showcased its ability to outperform its competitors on real-
world anomaly detection task of monitoring water usage in
multiple retail stores of a large retail company.
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