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Abstract

Multi-label classification (MLC) assigns multiple labels to
each sample. Prior studies show that MLC can be transformed
to a sequence prediction problem with a recurrent neural net-
work (RNN) decoder to model the label dependency. How-
ever, training a RNN decoder requires a predefined order of
labels, which is not directly available in the MLC specifi-
cation. Besides, RNN thus trained tends to overfit the label
combinations in the training set and have difficulty generat-
ing unseen label sequences. In this paper, we propose a new
framework for MLC which does not rely on a predefined la-
bel order and thus alleviates exposure bias. The experimental
results on three multi-label classification benchmark datasets
show that our method outperforms competitive baselines by a
large margin. We also find the proposed approach has a higher
probability of generating label combinations not seen during
training than the baseline models. The result shows that the
proposed approach has better generalization capability.

Introduction

Multi-label classification (MLC) is a fundamental but chal-
lenging problem in machine learning with applications such
as text categorization (Yang et al. 2018b), sound event de-
tection (Gemmeke et al. 2017; Yu et al. 2018), and image
classification (Tsai and Lee 2018). In contrast to single-label
classification, multi-label predictors must not only relate la-
bels with the corresponding instances, but also exploit the
underlying label structures. Take for instance the text clas-
sification dataset RCV1 (Lewis et al. 2004), which uses a
hierarchical tree structure between labels.

Recent studies show that MLC can be transformed to a se-
quence prediction problem by probabilistic classifier chains
(PCC)(Read et al. 2011; Cheng, Hüllermeier, and Dem-
bczynski 2010; Dembczynski, Waegeman, and Hüllermeier
2012). PCC models the joint probabilities of output labels
with the use of the chain rule and predicts labels based on
previously generated output labels. Furthermore, PCC can
be replaced by a RNN decoder to model label correlation.
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ence and Technology of Taiwan.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Wang et al. (2016) propose the CNN-RNN architecture to
capture both image-label relevance and semantic label de-
pendency in multi-label image classification. Nam et al.
(2017) and Yang et al. (2018b) show that state-of-the-art
multi-label text classification results can be achieved by us-
ing a sequence-to-sequence (seq2seq) architecture to encode
input text sequences and decode labels sequentially.

However, this kind of RNN-based decoder suffers from
several problems. First, these models are trained using maxi-
mum likelihood estimation (MLE) on target label sequences,
which relies on a predefined ordering of labels. Previous
studies (Vinyals, Bengio, and Kudlur 2016; Yang et al.
2018a) show that ordering has a significant impact on the
performance. This issue also appears in the PCC, It is ad-
dressed by ensemble averaging (Read et al. 2011; Cheng,
Hüllermeier, and Dembczynski 2010), ensemble pruning (Li
and Zhou 2013), pre-analysis of the label dependencies by
Bayes nets (Sucar et al. 2014) and integrating beam search
with training to determine a suitable tag ordering (Kumar et
al. 2013). However, these approaches rely on training multi-
ple models to ensemble or determine a proper order, which
is computationally expensive.

Although Nam et al. (2017) and Yang et al. (2018b)
compare several ordering strategies and suggest ordering
positive labels by frequency directly in descending order
(from frequent to rare labels), it is unnatural to impose a
strict order on labels, which may break down label correla-
tions in a chain. Furthermore, we find that this kind of model
tends to overfit to label combinations and shows poor gener-
alization ability.

Second, during training, the RNN-based models are al-
ways conditioned on correct prefixes; during inference, how-
ever, the prefixes are generated by the RNN-based model,
yielding a problem known as exposure bias (Ranzato et al.
2015) in seq2seq learning. The error may propagate as the
model might be in a part of the state space that it has not seen
during training (Senge, Del Coz, and Hüllermeier 2014).

In this paper, we propose a novel learning algorithm for
RNN-based decoders on multi-label classification not rely
on a predefined label order. The proposed approach is in-
spired by optimal completion distillation (OCD) (Sabour,
Chan, and Norouzi 2018), a training procedure for optimiz-
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ing seq2seq models. In this algorithm, we feed the RNN de-
coder generated tokens by sampling from the current model.
Hence, the model may encounter different label orders and
wrong prefixes during training, so the model explores more,
and exposure bias is alleviated.

Another common and straightforward way to avoid
the need for ordered labels in MLC is binary relevance
(BR) (Tsoumakas and Katakis 2007), which decomposes
MLC into multiple independent single-label binary classi-
fication problems. However, this yields a model that cannot
take advantage of label co-occurrences. In this paper, we fur-
ther propose helping the model to learn better by use of an
auxiliary binary relevance (BR) decoder jointly trained with
the RNN decoder within a multitask learning (MTL) frame-
work.

In addition, at the inference stage, the predictions of the
BR decoder can be jointly combined in the RNN decoder
to improve performance further. We propose two methods
to combine their probabilities. Extensive experiments show
that the proposed model outperforms competitive baselines
by a large margin on three multi-label classification bench-
mark datasets, including two text classification and one
sound event classification datasets.

The contributions of this paper are as follows:

• We propose a novel training algorithm for multi-label
classification which predicts labels autoregressively but
does not require a predefined label order for training.

• We compare our methods with competitive baseline mod-
els on three multi-label classification datasets and demon-
strate the effectiveness of the proposed models.

• We systematically analyze the problem of exposure bias
and the effectiveness of scheduled sampling (Bengio et al.
2015) in multi-label classification.

Related work

RNN-based multi-label classification

To free the RNN-based MLC classifier from a predefined la-
bel order, Chen et al. (2017) proposes the order-free RNN to
dynamically decide a target label at each time during train-
ing by choosing the label in the target label set with the high-
est predicted probability; hence, the model learns a label
order by itself. Although the order can be modified during
training, this approach still needs an initialized label order
to start the training process. We find order-free RNN shows
poor generalization ability to unseen label combinations in
the experiments. Also, as the model is always supplied with
the correct labels, it suffers from exposure bias.

To handle both exposure bias and label order, other stud-
ies apply a reinforcement learning (RL) algorithm to MLC.
He et al. (2018) apply an off-policy Q learning algorithm to
multi-label image classification. Yang et al. (2018a) uses
two decoders to solve multi-label text classification, one of
which is trained with MLE and the other is trained with
a self-critical policy gradient training algorithm. However,
Q learning and policy gradients cannot easily incorporate
ground truth sequence information, except via the reward
function, as the model is rewarded only at the end of each
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Figure 1: Overview of proposed model. The model is com-
posed of three components: encoder E , RNN decoder Drnn,
and binary relevance decoder Dbr. ỹ = {ỹ1, ỹ2, ..., ỹT } rep-
resents the sampled sequence from Drnn , while ŷ is a vector
representing the predicted probabilities of labels by Dbr.

episode. Indeed, He et al. (2018) does not work without
pretraining on the target dataset. By contrast, we use optimal
completion distillation (OCD) (Sabour, Chan, and Norouzi
2018) for MLC, which optimizes token-level log-loss, where
the training is stabilized and requires neither initialization
nor joint optimization with MLE.

Optimal Completion Distillation (OCD)

Our work is inspired by OCD (Sabour, Chan, and Norouzi
2018), which was first used in the context of end-to-end
speech recognition in which it achieved state-of-the-art per-
formance. In contrast to MLE, OCD algorithms encourage
the model to extend all possible tokens that lead to the op-
timal edit distance by assigning equal probabilities to the
target policy that the model learns from. We use OCD to
train the RNN decoder in MLC. The OCD training details
for MLC are in section Learning for RNN decoder Drnn.
In contrast to the original OCD (Sabour, Chan, and Norouzi
2018) which optimizes the edit distance, in the proposed ap-
proach we optimize the numbers of missing and false alarm
labels.

Model architecture
An overview of the proposed model is shown in Fig. 1. The
model is composed of three components: encoder E , RNN
decoder Drnn, and binary relevance decoder Dbr. Here,
multi-label text classification is considered an instance of
MLC. For other types of MLC other than text classification
(e.g. sound event classification), the architecture of the en-
coder can be changed.

Encoder E
We employ a bidirectional LSTM as an encoder E . The en-
coder reads the input text sequence x = x1, x2, ..., xm of
m words in both forward and backward directions and com-
putes the hidden states he

1, h
e
2, ...h

e
m for each word.

he
1, h

e
2, ...h

e
m = BiLSTM(x1, x2, ..., xm) (1)
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RNN decoder Drnn

The RNN decoder seeks to predict labels sequentially. It is
potentially more powerful than the binary relevance decoder
because each prediction is determined based on the previ-
ous prediction: thus it implicitly learns label dependencies.
We implement it using LSTMs with an attention mechanism.
Hence, the encoder and RNN decoder form a seq2seq model.
In particular, we set the initial hidden state of the decoder
hd
0 = he

m and calculate the hidden state hd
t and output ot at

time t as

hd
t , ot = LSTM(hd

t−1, ỹt−1) (2)
where ỹt−1 is the predicting label at previous timestep. ỹt is
estimated with prnn(ỹt|ỹ<t,x) by the following equations:

prnn(ỹt|ỹ<t,x) = softmax(ot) (3)

ỹt ∼ softmax(ot +Mt), (4)
During sampling, we add a mask vector Mt ∈ RL (Yang
et al. 2018b) to prevent the model from predicting repeated
labels, where L is the number of labels in the dataset:

(Mt)j =

⎧⎨
⎩
−∞ if the j-th label has been predicted

before step t.
0 otherwise.

(5)

Binary relevance decoder Dbr

The binary relevance (BR) decoder Dbr here is an auxiliary
decoder to train the encoder within the multitask learning
(MTL) framework. The BR decoder predicts each label sep-
arately as a binary classifier for each label, helping the model
to learn better. Another advantage of using the BR decoder
is that we can consider the predictions of both the RNN and
BR decoders to further improve performance.

In particular, we feed the final hidden state of encoder he
m

to a DNN with a final prediction layer of size L with sig-
moid activation functions to predict the probabilities of each
label. To take into account vanishing gradients for long input
sequences, we add another attention module. In particular,
we calculated the context vector cbr in the attention mech-
anism with the output of fully-connected layers MLP(he

m)
and then compute probabilities pbr(ỹ|x) as

pbr(ŷ|x) = sigmoid(Wbr[MLP(he
m); cbr]), (6)

where Wbr is the matrix of weight parameters and
[MLP(he

m); cbr] indicates the concatenation of MLP(he
m)

and cbr.

Order-Free Training

In this section, we derive the training objective for the RNN
decoder , the BR decoder , and the multitask learning objec-
tive.

Learning for RNN decoder Drnn

RNN decoder learning as RL To reduce exposure bias
and free the model from relying on a predefined label order,
we never train on ground truth target sequences. Instead, we
approach the MLC problem from an RL perspective. The

model here plays the role of an agent whose action at is
the current generated label at time t and whose state st is
the output labels ỹ<t before time t. The policy π(s) is a
probability distribution over actions a given states s. Once
the process is ended with an end-of-sentence token, the agent
is given a reward R.

In our approach, reward R is defined as

R(y∗, ỹ) = −|{y∗} \ {ỹ}| − |{ỹ} \ {y∗}|, (7)

where y∗ and ỹ are the ground truth labels and the sequence
of labels generated by the RNN decoder, and B \ A is the
relative complement of set A in set B.

The first and second term of reward R(y∗, ỹ) are the num-
ber of labels that were not predicted and the number of mis-
classified labels, respectively.

Optimal completion distillation However, typical RL al-
gorithms, such as Q learning and policy gradients, cannot
easily incorporate ground truth sequence information ex-
cept via the reward function. Here we introduce optimal Q-
values, which evaluates each action at at each time t.

Optimal Q-values Q∗(s, a) represents the maximum total
reward the agent can acquire after taking action a at state
s via subsequently conducting the optimal action sequence.
Optimal Q-values at time t can be expressed as

Q∗(ỹ<t, a) = max
yopt∈Y

R(y∗, [ỹ<t, a,yopt]). (8)

where [ỹ<t, a,yopt] is a complete sequence, which is the
concatenation of token sequence generated before time t, ac-
tion at time t and optimal subsequent action sequence yopt.

Optimal policy at time t can be calculated by taking a
softmax over optimal Q-values of all the possible actions.
Formally,

π∗(a|ỹ<t) =
exp(Q∗(ỹ<t, a)/τ)∑
a′ exp(Q∗(ỹ<t, a′)/τ)

, (9)

where τ ≥ 0 is a temperature parameter. If τ is close to 0,
π∗ is a hard target. Table 1 shows an example illustrating the
optimal policy in OCD training procedure.

Given a dataset {x,y∗}, we first draw generated se-
quences from the RNN decoder ỹ ∼ prnn(·|x) by sampling.
The loss function LOCD can be obtained via calculating KL
divergence between the optimal policy and the model’s gen-
erated distribution over labels at every time step t,

LOCD = E(x,y∗)∼dataEỹ∼prnn(·|x)[
|ỹ|∑
t=1

KL(π∗(·|ỹ<t)||prnn(·|ỹ<t,x))].
(10)

The above equation means we “distill” knowledge from op-
timal policies obtained by completing with optimal action
sequences to RNN decoder prnn, so RNN decoder can have
similar behaviour as optimal policy π∗.

In contrast to MLE, OCD encourages the model to extend
all the possible targets resulting in the same evaluation met-
ric score. Therefore, the OCD objective focuses on all labels
that were not predicted and assigns them equal probabilities.
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Once all the target labels are successfully generated, the ob-
jective guides the model to produce the end-of-sentence to-
ken with probability 1.

Since the OCD targets depend only on the tokens gener-
ated previously, we do not need a human-defined label order
to train the RNN decoder. The label order is instead automat-
ically determined at each time step. In addition, we always
train on sequences generated from the current model, thus
alleviating exposure bias.

Note that we can substitute the reward function (Eq. 7)
with other example-based test metrics such as the example-
based F1 score, but these lead to the same OCD targets as
the rewards of all the target labels are the same.

Time OCD Optimal policy Prediction
t targets π∗ (τ → 0) ỹt
0 A, B, D [ 13 ,

1
3 , 0,

1
3 , 0] B

1 A, D [ 12 , 0, 0,
1
2 , 0] C

2 A, D [ 12 , 0, 0,
1
2 , 0] A

3 D [0, 0, 0, 1, 0] D
4 <eos> [0, 0, 0, 0, 1] <eos>

Table 1: A training example of optimal completion distilla-
tion, where there are 4 kinds of labels (A, B, C, D) and an
end-of-sentence token (<eos>). Labels A, B, and D are the
targets of this instance and the vectors of π∗ represent prob-
abilities for labels A, B, C, D and <eos>, respectively. We
set τ → 0 here, so the optimal policy only encourages labels
with the highest optimal Q values. For example, at time 1,
since the model has predicted correct token B at time 0, there
are two optimal extended tokens {A, D}, which result in a
total reward of 0 (Eq. 7) when combined with proper suf-
fixes. Then we sample from the current policy and predict
the incorrect token C, which leads to a decreased optimal
possible reward of −1 (Eq. 7) at time 2.

Learning for binary relevance decoder Dbr

For the binary relevance decoder, given the ground truth
y∗
vec = [y∗vec,1, y

∗
vec,2..., y

∗
vec,L]

T ∈ {0, 1}L in binary for-
mat, we use binary cross-entropy loss as the objective:

Llogistic = E(x,y∗
vec)∼data [

L∑
i=1

y∗vec,ilog ŷi+

(1− y∗vec,i)log(1− ŷi)],

(11)

where ŷ = [ŷ1, ŷ2..., ŷL]
T , which is a vector of length L

representing the predicted probability of each label.

Multitask Learning (MTL)

The objective of MTL is

LMTL = LOCD + λLlogistic , (12)

where λ is a weight.

Decoder Integration

In this section, we seek to utilize both the RNN and BR de-
coders to find the optimal hypothesis H = {l1, l2, ..., lT },
which consists of T − 1 predicted labels {l1, l2, ..., lT−1},
where lT is the end-of-sentence token indicating that the de-
coding process of the RNN decoder has ended.

For the BR decoder, the outputs after a sigmoid activa-
tion pbr(yl = 1|x) = ŷl are designed to estimate the poste-
rior probabilities of each label l. Therefore, the theoretically
optimal threshold for converting the probability to a binary
value should be 0.5, which is equivalent to finding the opti-
mal hypothesis H that maximizes the Eq. 13 below, which
is the product of the probabilities of all the labels.

Pbr(H) =
∏
l∈H

pbr(yl = 1|x)×
∏
l/∈H

pbr(yl = 0|x) (13)

For the RNN decoder, a typical inference step is per-
formed with a beam search to solve Eq. 14 (Yang et al.
2018b; Chen et al. 2017). Given input x, the probability of
the predicted hypothesis path H is

Ppath(H) =
i=T∏
i=1

prnn(li|x, l1, ...li−1). (14)

To combine the predictions of the RNN and BR decoders,
we simply take the product of Eq. 13 and Eq. 14 to yield the
final objective function Eq. 15:

Ĥ = argmax
H

{Ppath(H)× Pbr(H)}. (15)

Nonetheless, the equation is not easy to solve because the
RNN decoder outputs the probability of selecting a partic-
ular label at each time step while the BR decoder produces
the unconditional probabilities of all the labels at once. To
incorporate the BR probabilities of labels in the score, we
provide two different decoding strategies to find the best hy-
pothesis Ĥ .

Logistic Rescoring

In this method, we first obtain a set of complete hypotheses
using beam search only with the RNN decoder, and rescore
each hypothesis H using the probabilities produced by the
BR decoder with Eq. 13. Finally, we select as the final pre-
diction the hypothesis H with the highest Pbr(Hbest).

Logistic Joint Decoding

This method is one-pass decoding. We conduct a beam
search according to the following equation (see the deriva-
tion in Appendix).

Pjoint(H) =

i=T∏
i=1

prnn(li|x, l1, ...li−1)
pbr(yli = 1|x)
pbr(yli = 0|x)

(16)
Note that we manually set the probability of the end-of-

sentence token lT for binary relevance pbr(ylT = 0|x) =
pbr(ylT = 1|x) = 0.5, since it does not exist in the outputs
of the BR decoder.
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Models maF1 miF1 ebF1 ACC HA Average
(a) Seq2set (simp.)
(Yang et al. 2018a) - 0.705 - - 0.9753 -

(b) Seq2set
(Yang et al. 2018a) - 0.698 - - 0.9751 -

(c) SGM+GE
(Yang et al. 2018b) - 0.710 - - 0.9755 -

Baselines
(d) BR 0.523 0.694 0.695 0.368 0.9741 0.651
(e) BR++ 0.521 0.700 0.703 0.390 0.9750 0.658
(f) Seq2seq 0.511 0.695 0.707 0.421 0.9743 0.662
(g) Seq2seq + SS 0.541 0.703 0.713 0.406 0.9742 0.667
(h) Order-free RNN 0.539 0.696 0.708 0.413 0.9742 0.666
(i) Order-free RNN + SS 0.548 0.699 0.709 0.416 0.9743 0.669

Proposed methods
(j) OCD 0.541 0.707 0.723 0.403 0.9740 0.670

OCD
+

MTL

(k) RNN dec. 0.578 0.711 0.727 0.391 0.9742 0.676
(l) BR dec. 0.562 0.711 0.718 0.382 0.9760 0.670
(m) Logistic rescore 0.585 0.720 0.736 0.395 0.9749 0.682
(n) Logistic joint dec. 0.580 0.719 0.731 0.399 0.9753 0.681

Table 2: Performance on AAPD

Experimental Setup

We validate our proposed model on two multi-label text clas-
sification datasets, which are AAPD (Yang et al. 2018b)
and Reuters-21758, and a sound event classification dataset,
which is Audio set (Gemmeke et al. 2017) proposed by
Google. They span a wide variety in terms of the number
of samples, the number of labels, and the number of words
per sample. Due to space limit, we put an extra experiment
in text classification on RCV1-V2 (Lewis et al. 2004), data
statistics, experimental settings and the descriptions of five
evaluation metrics in Appendix.

Evaluation Metrics

Multi-label classification can be evaluated with multiple
metrics, which capture different aspects of the problem. We
follow Nam et al. (2017) in using five different metrics:
subset accuracy (ACC), Hamming accuracy (HA), example-
based F1 (ebF1), macro-averaged F1 (maF1), and micro-
averaged F1 (miF1).

Baselines

We compare our methods with the following baselines. For
a fair comparison, the architecture of all the encoders are
the same except for BR++: the RNN decoders for Seq2seq,
Order-free RNN, and the proposed approaches are the same.

• Binary Relevance (BR) is the model trained with logis-
tic loss (Eq. 11), and consists of an encoder and a BR
decoder.

• Binary Relevance++ (BR++) is a model with a larger
encoder but with the same training algorithm as BR. Be-
cause the MTL model has more parameters than BR, for
fair comparison, we increase the number of layers in the
encoder RNN so that the number of parameters is approx-
imately equal to the MTL model. 1

• Seq2seq (Nam et al. 2017) is composed of an RNN en-
coder and an RNN decoder with an attention mechanism.

1Since Yu et al. (2018) have tested different architectures of
BR models on Audio set, we do not use BR++ as a baseline.

Figure 2: Performance of BR, OCD and MTL models on
AAPD validation set with different decoding strategies dur-
ing training. The x-axis denotes the number of updates; we
use different scales on the y-axis for each measure.

Models maF1 miF1 ebF1 ACC HA Average
SVM

(Debole et al. 2005) 0.468 0.787 - - - -

EncDec
(Nam et al. 2017) 0.457 0.855 0.891 0.828 0.996 0.805

Baselines
BR 0.442 0.861 0.878 0.817 0.9964 0.799

BR++ 0.407 0.852 0.861 0.812 0.9962 0.786
Seq2seq 0.465 0.862 0.895 0.834 0.9965 0.811

Seq2seq+SS 0.464 0.856 0.895 0.834 0.9965 0.809
Order-free RNN 0.445 0.862 0.901 0.835 0.9963 0.806

Order-free RNN + SS 0.452 0.859 0.896 0.836 0.9962 0.808
Proposed methods

OCD 0.458 0.872 0.903 0.839 0.9966 0.814

OCD
+

MTL

RNN dec. 0.475 0.874 0.905 0.844 0.9966 0.819
BR dec. 0.459 0.877 0.898 0.835 0.9966 0.813

Logistic rescore 0.477 0.875 0.903 0.842 0.9967 0.819
Logistic joint dec. 0.490 0.874 0.904 0.843 0.9967 0.822

Table 3: Performance comparisons on Reuters-21578

The model is trained with MLE. The target label se-
quences are ordered from frequent to rare, which yields
better performance (Nam et al. 2017; Yang et al. 2018b).
2

• Order-free RNN (Chen et al. 2017) uses an algorithm for
multi-label image classification to train the RNN decoder
without predefined orders but suffers from exposure bias.

Since scheduled sampling also tackles the problem of ex-
posure bias, we also compare the performance of seq2seq
and order-free RNN with scheduled sampling (SS), which
are Seq2seq + SS and Order-free RNN + SS. The detailed
discussion of the effectiveness of scheduled sampling is in
section Disussion.

Results and Discussion

In the following, we show results of the baseline models and
the proposed method on three text datasets. For MTL mod-
els, we show the results of the four kinds of different de-
coding strategies described in section Decoder Integration.
For a simple comparison, we also compute averages of the

2For Audio set, the architecture of the encoder is described in
Appendix and is not based on RNN. For consistency, we denoted it
as Seq2seq.
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Models maF1 miF1 ebF1 ACC HA Average
Baselines

BR 0.349 0.480 0.416 0.086 0.9957 0.465
Seq2seq 0.345 0.448 0.421 0.140 0.9942 0.470

Seq2seq + SS 0.340 0.448 0.419 0.137 0.9943 0.468
Order-free RNN 0.310 0.438 0.410 0.096 0.9940 0.450

Order-free RNN + SS 0.310 0.437 0.408 0.095 0.9947 0.449
Proposed methods

OCD 0.353 0.465 0.435 0.117 0.9941 0.473

OCD
+

MTL

RNN dec. 0.359 0.466 0.438 0.115 0.9940 0.474
BR dec. 0.353 0.485 0.420 0.075 0.9950 0.466

Logistic rescore 0.378 0.487 0.456 0.096 0.9940 0.482
Logistic joint dec. 0.377 0.488 0.454 0.119 0.9945 0.487

Table 4: Performance comparisons on Audio set.

Figure 3: Position-wise accuracy of different models at each
time step on Audio set. OCD+MTL was decoded by logistic
joint decoding. Note that the length of the longest gener-
ated(reference) label sequence is 12.

five metrics as a reference. Note that bold texts in Table 2-4
mean that the highest performance in each measure.

Experiments on AAPD

The experimental results on the AAPD dataset are shown in
Table 2. We see that different models are skilled at differ-
ent metrics. For example, RNN decoder based models, i.e.
Seq2seq in row (f) and Order-free RNN in row (h), perform
well on ACC, whereas BR and BR++ have better results in
terms of HA but show clear weaknesses in predicting rare
labels (cf. especially maF1). However, OCD in row (j) per-
forms better than all the baselines (row (d)–(i)) (0.672 on av-
erage),3 especially in miF1 (0.707) and ebF1 (0.737), which
verifies the power of the proposed training algorithm.

For MTL, we report the performance for the decoding
strategies from section Decoder Integration. The first two
decoding methods (rows (k),(l)) consider only the predic-
tions of one decoder, while the other two (rows (m),(n))
combine the predictions using different decoding strategies.

3Except for ACC: the reason is given in the following discus-
sion.

Seen test set Unseen test set
Models miF1 ebF1 miF1 ebF1
Seq2seq 0.730 0.749 0.508 0.503

Seq2seq + SS 0.736 0.754 0.517 0.515
Order-free RNN 0.732 0.746 0.496 0.494

Order-free RNN + SS 0.724 0.740 0.520 0.517
OCD (correct prefix) 0.726 0.741 0.513 0.515

OCD 0.746 0.771 0.521 0.530

Table 5: Performance comparison on resplited AAPD,
whose test set contains 2000 samples whose label sets oc-
cur in the training set (Seen test set) and 2000 samples are
not (Unseen test set). OCD (correct prefix) means we only
sample correct labels in the training phase.

With MTL, we see the performance is improved across all
the metrics except for ACC (row (j) v.s. row (k)). In addition,
joint decoding methods (row(m),(n)) achieve the best per-
formance, and outperform previous works (row(a),(b),(c)).
Interestingly, BR is also improved significantly with MTL
(row (d) v.s. row(l)), the encoder of which may implic-
itly learn the label dependencies through the RNN decoder,
which the original BR (row (d)) ignores.

Fig. 2 shows the validation ACC and miF1 curves for
OCD, BR, and MTL with three decoding methods. BR per-
forms the worst and converges the slowest. Nonetheless,
with the help of MTL, BR converges much faster and better.
Also, MTL helps to improve the performance of the OCD
model.

Experiments on Reuters-21758

In comparison with AAPD, Reuters-21758 is a relatively
small dataset. The average number of labels per sample is
only 1.24 and over 80% of the samples have only one label,
making for a relative simple dataset.

Table 3 shows the results of the methods. These results
demonstrate again the superiority of OCD and the perfor-
mance gains afforded by the MTL framework. Since there
are over 80% of test samples only have one label in this
corpus, to truly know the effect of proposed approaches to
multi-label classification, we also provide results only on
test samples with more than one label in the Section Analysis
of Reuters-21758 in Appendix.

Experiments on Audio set

Table 4 shows the performance of each model. In this ex-
periment, all models have similar performance in HA. Sur-
prisingly, BR is a competitive baseline model and performs
especially well in miF1. Seq2seq achieves the best perfor-
mance in terms of ACC, which is the same as the observation
on AAPD. Overall, OCD performs better than all the base-
line and MTL indeed improves the performance. OCD out-
performs other RNN decoder-based models in maF1, miF1
and ebF1 and performs worse than BR only in terms of
miF1.
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Models Case 1 Case 2 Case 3
Ground truth cs.it, math.it, cs.ds cs.lg, stat.ml, math.st, stat.th cs.it, math.it, cs.ds, cs.dc

Seq2seq cs.it, math.it, cs.ni cs.it, math.it, math.st, stat.th cs.it, math.it, cs.ni
Order-free RNN math.it, cs.it math.it, cs.it, stat.th, math.st math.it, cs.it, cs.ni

OCD math.it, cs.it, cs.ds stat.ml, stat.th, cs.lg, math.st cs.it, math.it

OCD + MTL + joint dec. cs.it, math.it math.st, stat.th, stat.ml, cs.lg, cs.it, math.it math.it, cs.it

Table 6: Examples of generated label sequences on AAPD from different models

Ref- Seq2seq OfRNN
erence OCD Seq2seq + SS OfRNN + SS

AAPD
Stest 392 302 214 293 251 259

Stest−train 43 30 1 3 1 4
Reuters-21758

Stest 210 159 135 140 139 144
Stest−train 94 37 15 16 23 26

Audio set
Stest 6300 4787 1974 1781 1806 1789

Stest−train 2445 1943 4 8 263 237

Table 7: Number of different generated (or reference) label
combinations (Stest), and the number of generated (or ref-
erence) label combinations that do not occur in the training
label sets (Stest−train) on three datasets.

Discussion

Propagation of errors Fig. 3 shows position-wise accu-
racy of different models at each time step of RNN de-
coder on Audio set. The accuracy is calculated by checking
whether or not model’s generated labels are in reference la-
bel sets and then averaging the errors at each time step. If a
generated label sequence is less than the corresponding tar-
get label sequence, the unpredicted part of the sequence is
considered wrong.

We can see that accuracy of all models decreases dramati-
cally along x-axis. Because the labels are generated sequen-
tially, the models would condition on wrong generated pre-
fix label sequence in the test stage. This problem may be
amplified when the generated sequence is longer because of
accumulation of errors. Compared with the baseline models,
OCD+MTL and OCD perform better after position 2, which
demonstrates that they are more robust against error propa-
gation, or exposure bias.

Effectiveness of scheduled sampling and OCD To
demonstrate the effectiveness of scheduled sampling and
OCD when dealing with exposure bias, we evaluate the per-
formance of models when tackling with unseen label combi-
nations, where models encounter unseen situations and the
problem of exposure bias may be more severe.

In this experiment, since there are only 43 samples with
unseen label combinations in original test set of AAPD, we
resplited the AAPD dataset: 47840 samples in training set,
4000 samples for validation set and test set, respectively.
Both validation set and test set contain 2000 samples whose
label sets occur in the training set and 2000 samples are not.

Table 5 shows the results on resplited AAPD. OCD (cor-
rect prefix) means we only sample correct labels in the train-
ing phase, so this model has not encountered wrong prefix

during training. Clearly, all models perform worse on un-
seen test set. We can see that SS improves the performance
significantly on the unseen test set for both seq2seq and or-
der free RNN. Additionally, OCD with correct prefix, which
suffers from the exposure bias, performs worse in both case
than OCD. They all demonstrate that sampling wrong labels
from predicted distribution helps models become more ro-
bust when encountering rare situation.

SS for MLC has a potential drawback. The input labels of
RNN decoders obtained by sampling could be labels which
do not conform to the predefined order. This may mislead
the model. However, there is no label ordering in OCD, so
this problem does not exist.

On both seen and unseen test set, OCD performs the best
since OCD not only alleviates exposure bias but also does
not need predefined order.

Problem of overfitting Table 7 shows number of differ-
ent generated label combinations (Stest), and the number
of generated label combinations that do not occur in the
training label sets (Stest−train) on three datasets. Seq2seq
and OfRNN produce fewer kinds of label combinations on
AAPD and Reuters-21758. As they tend to “remember” la-
bel combinations, the generated label sets are most alike, in-
dicating a poor generalization ability to unseen label combi-
nations. Because seq2seq is conservative and only generates
label combinations it has seen in the training set, it achieves
the highest ACC in Tables 2 and 4. For models with SS, they
produce more kinds of label combinations, except for Au-
dio set. OCD produces the most unseen label combinations
on three datasets, since it encounters different label permu-
tations during training.

Case study Table 6 shows examples of generated label se-
quences using different models on AAPD. Note labels cs.it
and math.it in the three cases: Seq2seq produces label se-
quences only from frequent to rare, which is the same as the
ground truth order, while order-free RNN learns the order
implicitly. In contrast, OCD generates label sequences with
flexible orders because it encounters different label permu-
tations in the sampling process during training.

Conclusion

In this paper, we propose a new framework for multi-label
classification based on optimal completion distillation and
multitask learning. Extensive experimental results show that
our method outperforms competitive baselines by a large
margin. Furthermore, we systematically analyze exposure
bias and the effectiveness of scheduled sampling.

6044



References

Bengio, S.; Vinyals, O.; Jaitly, N.; and Shazeer, N. 2015.
Scheduled sampling for sequence prediction with recurrent
neural networks. In Advances in Neural Information Pro-
cessing Systems, 1171–1179.
Chen, S.-F.; Chen, Y.-C.; Yeh, C.-K.; and Wang, Y.-C. F.
2017. Order-free rnn with visual attention for multi-label
classification. arXiv preprint arXiv:1707.05495.
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