
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Learning Efficient Representations for Fake Speech Detection

Nishant Subramani, Delip Rao∗
AI Foundation

San Francisco, California
{nishant, delip}@aifoundation.com

Abstract

Synthetic speech or “fake speech” which matches personal
vocal traits has become better and cheaper due to advances in
deep learning-based speech synthesis and voice conversion
approaches. This increased accessibility of synthetic speech
systems and the growing misuse of them highlights the crit-
ical need to build countermeasures. Furthermore, new syn-
thesis models evolve all the time and the efficacy of previ-
ously trained detection models on these unseen attack vec-
tors is poor. In this paper, we focus on: 1) How can we build
highly accurate, yet parameter and sample-efficient mod-
els for fake speech detection? 2) How can we rapidly adapt
detection models to new sources of fake speech? We present
four parameter-efficient convolutional architectures for fake
speech detection with best detection F1 scores of around 97
points on a large dataset of fake and bonafide speech. We
show how the fake speech detection task naturally lends itself
to a novel multi-task problem further improving F1 scores for
a mere 0.5% increase in model parameters. Our multi-task
setting also helps in data-sparse situations, commonplace in
adversarial settings. We investigate an alternative approach to
the data-sparsity problem using transfer learning and show
that it is possible to meet purely supervised detection perfor-
mance for unseen attack vectors with as little as 6.25% of the
training data. This is the first known application of transfer
learning in adversarial settings for speech. Finally, we show
how well our transfer learning approach adapts in an instance-
efficient way to new attack vectors using the Real-Time Voice
Cloning toolkit. We exceed the purely supervised detection
performance (99.18 F1) with as little as 6.25% of the data.

Introduction

Our ability to synthesize human voice with the likeness of
a subject, referred to as “synthetic audio” or “fake speech,”
has dramatically improved in the last 3 years with progress
in speech synthesis (SS), voice conversion (VC), and gen-
eral deep learning technology. Neural text to speech mod-
els such as WaveNet (Oord et al., 2016), Tacotron (Wang et
al., 2017), and DeepVoice (Gibiansky et al., 2017; Ping et
al., 2017) have been extended to incorporate speaker iden-
tity Arik et al. (2018); Nachmani et al. (2018). Other la-

∗Corresponding Author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tent attributes such as prosody have also been successfully
used for conditioning the speech synthesis — Wang et al.
(2018); Skerry-Ryan et al. (2018); Akuzawa, Iwasawa, and
Matsuo (2018) — resulting in realistic personalized speech
that is becoming harder for humans to distinguish. Such
high-quality and personalized synthetic speech has many
positive applications such as building natural conversational
assistants1, creating personalized answering machines, and
restoring the voice of people with speech pathologies, to
mention a few.

However, this technology has also been used for malicious
purposes such as spreading misinformation and disinforma-
tion, using a person’s voice without consent2, creating fal-
sified material (evidence tampering), and committing vari-
ous cybercrimes including harassment and intimidation. In
multiple recent incidents, perpetrators used synthetic speech
technology to impersonate CEOs and other leaders to com-
mit fraudulent wire-transfer thefts3. According to a 2018
survey, the rate of voice fraud increased over 350 percent
from 2013 to 2017. It is estimated that voice fraud costs
U.S. organizations $14 billion each year within call centers
alone4. Improvements in speech synthesis and voice conver-
sion research, and the availability of easy to use toolkits,
such as Project VoCo by Jin et al. (2017), which calls itself
the “photoshop of voice” and the Real-Time Voice Cloning
Toolkit5, which promises to “clone a voice in 5 seconds to
generate arbitrary speech in real-time,” only exacerbate the
problems with synthetic voices.

In this work, we examine synthetic voice from an adver-
sarial lens, where each synthesis model is viewed as an “at-
tack vector.” Our goal is to build highly accurate, parameter
efficient fake speech detection models that can be deployed

1See Google Duplex: https://ai.googleblog.com/2018/05/
duplex-ai-system-for-natural-conversation.html

2See this example where Prof. Jordan Peterson’s voice is cloned
without consent: https://www.vice.com/en us/article/43kwgb/not-
jordan-peterson-voice-generator-shut-down-deepfakes

3See for example: https://www.wsj.com/articles/fraudsters-use-
ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402

4https://www.securitymagazine.com/articles/89432-voice-
fraud-climbs-350

5https://github.com/CorentinJ/Real-Time-Voice-Cloning

5859

widely across devices of different memory and compute ca-
pabilities. In this setting, the threat landscape continuously
shifts with the daily emergence of new synthesis models. As
a result, we also want to react quickly to this “shifting ad-
versary” by adapting existing pretrained detection models to
new attack vectors (synthesis models). Our key contributions
in this paper are:
• We present two lightweight convolutional network mod-

els (EfficientCNN and RES-EfficientCNN) for synthetic
speech detection that achieve over 97 macro-F1 with
fewer than 50,000 parameters and less than a 100 KB
memory footprint. Further, this model takes less than a
third of the MFLOPS that resnet18 takes.

• For a marginal increase in number of parameters, we
present a novel multi-task setting that improves detection
performance without using any new labeling information
(source of the attack vector is implicit supervision). We
believe this is the first paper to jointly model the veracity
(bonafide vs. fake) and the source of the fakes.

• We present the first-ever study of transfer learning in ad-
versarial settings for speech and apply it to the growing
problem of audio fakes. In resource-poor conditions that
are typical of adversarial situations (adapting to new at-
tack vectors), we demonstrate how transfer learning not
only drastically cuts down the amount of training data
needed, but also, in many cases, exceeds purely super-
vised performance. Further, we show the robustness of our
transfer learning approach under a variety of settings:
1. neural-to-neural speech synthesis
2. neural-to-non-neural voice conversion
3. neural-to-non-neural speech synthesis to unit selection
4. neural-to-neural speech synthesis to voice conversion
Across the board we see that our transfer learning ap-
proach is able to match fully-supervised performance with
as little as 6.25% of training data.

• We present a new attack vector, the Real Time Voice
Cloning Toolkit, and show how existing fake speech de-
tection models can be fine-tuned to surpass purely super-
vised detection performance (99.12 F1) with as little as
6.25% of the data.

Datasets

We present results on two sets of fake speech datasets, one
from the ASVSpoof2019 challenge and another from a new
dataset we introduce in this paper called RTVCSpoof.

ASVSpoof2019

We use datasets from Todisco et al. (2019), originally cre-
ated for the ASVSpoof 2019 challenge. We only use the
logical access (LA) portion of the dataset, i.e. we do not use
any knowledge of the channel and ambient parameters of
the recording. The data has two sets of labels – one binary
(BONAFIDE vs. FAKE) and a “source” label which can take
1 of 6 values for spoofed audio (FAKE). The source labels
include, SS1, SS2, SS4 for three different neural network-
based speech synthesis systems, US1 for a unit-selection

based speech synthesis system, and VC1, VC4 for a neural-
network based and a transform-function based voice conver-
sion system respectively. We exploit both sets of labels for
our multi-task setup as described later. Table 1 summarizes
the data used in our experiments. The ratio of male and fe-
male speakers in the training and validation sets are identical
(40% male and 60% female). The length of the audio sam-
ples in the training and validation sets are also near identi-
cal, with a minimum, median, and maximum lengths around
650, 3300, and 12000 milliseconds respectively.

Table 1: Summary of ASVSpoof2019 data used here
Training Validation

#speakers (disjoint) 20 10
#samples 25,380 5,438
Dataset prior, P (FAKE) .898 .897

For our models, we use the full training set, and report
results on the validation set. We did not have access to the
official ASVSpoof2019 test set.

RTVCSpoof

We develop a speaker-specific synthetic speech synthesis
(5S) recipe to generate this dataset. Our recipe uses a set
of utterances of a speaker, a set of text sequences, and a pre-
trained speech synthesis model to generate synthetic wave-
forms for each text sequence in the speaker’s voice.

As our speech synthesis model, we choose the Real Time
Voice Cloning Toolkit (RTVC) (Jemine, 2019). Note that
this recipe can use any speech synthesis model. RTVC al-
lows users to clone voices with as little as a single 5-second
sample. To clone a voice using this model, we feed a short
reference utterance of the target speaker into a speaker en-
coder, which results in a speaker embedding used to con-
dition a synthesizer. We take the mean of all speaker utter-
ances for an individual speaker as our speaker embedding.
Then, we input a sequence of text processed as a sequence
of phonemes as well as the speaker embedding into the syn-
thesizer, resulting in a log mel spectrogram. To generate the
spoofed speech waveform, we pass the spectrogram into a

Figure 1: 5S recipe to generate RTVCSpoof: we take K
speaker waveforms as input and compute a speaker embed-
ding. This speaker embedding is used to generate a synthetic
waveform that corresponds to an input transcript. Here boxes
in bold refer to components of the pretrained RTVC model.

5860

vocoder. Since any text sequence can be input into our 5S
recipe and the RTVC model, we can quickly generate as
many utterances for a single speaker as needed. Refer to Fig-
ure 1 for details.

Using our 5S recipe with RTVC as our synthesis model,
we construct a synthetic dataset called RTVCSpoof. RTVC-
Spoof has 3284 bonafide utterances and 4843 spoofed utter-
ances from 369 distinct speakers of various genders. These
speakers have rich demographic information varying in age
from teens to eighties and varying in accents ranging from
Indian to English to African to Malaysian among others.

Choosing Bonafide Examples

We select 226 speakers from the Mozilla Common Voice
project on the English side which have 3 or more contributed
utterances and have demographic information6. For each
speaker with 3 to 19 utterances, we select all of their ut-
terances. For those with more than 19 utterances, we ran-
domly sample 19 utterances to include in our dataset. These
become our BONAFIDE examples in our training set.

For the validation set, we select 143 distinct speakers with
the same qualification from the preset validation portion of
the dataset. Each speaker has 3 to 11 contributed utterances.
All of these become the BONAFIDE examples in our valida-
tion set.

Generating Spoofed Examples

We generate each FAKE example using a speaker utterance
as a template. For a target speaker, we take all of their ut-
terances that were chosen above and compute speaker em-
beddings for each. Next, we compute the mean speaker em-
bedding over all these selected utterances. We condition the
RTVC pretrained synthesizer with this mean speaker embed-
ding. To construct the training set, we randomly choose 17
sentences from the English side of the IWSLT167 English
to German translation training set. We make sure that the
sentence lengths for the chosen sentences are approximately
between 10 and 25 words. To construct the validation set,
we follow the same procedure as above, but select 7 sen-
tences at random from the validation set of the English side
of the IWSLT16 English to German translation dataset. See
Figure 1 for more details.

Demographic Information & Dataset Splits

Our 5S recipe produces a set of 2624 BONAFIDE and 3842
FAKE utterances for training as well as 660 BONAFIDE
and 1001 FAKE examples for validation. We chose these
sizes to mimic the class distribution for an attack vector
in ASVSpoof2019 and ensure that no speakers overlap be-
tween the training (226 speakers) and validation (143 speak-
ers) sets. Our speakers belong to a wide range of demograph-
ics summarized in Table 2 for training and Table 3 for vali-
dation.

6The Common Voice Project has a CC0 license, allowing us to
do this

7https://workshop2016.iwslt.org/

Table 2: Demographic information (age, gender, and accent)
for RTVCSpoof (training).

Age # Gender # Accent #

Twenties 91 Male 199 US 131
Thirties 58 Female 26 England 36
Fourties 34 ——– — Indian 12
Others 43 Others 1 Others 47

Table 3: Demographic information (age, gender, and accent)
for RTVCSpoof (validation).

Age # Gender # Accent #

Twenties 58 Male 130 US 67
Thirties 42 Female 12 England 21
Fourties 16 ——– — Indian 25
Others 27 Others 1 Others 30

Preprocessing and Feature Extraction

We truncate long audio samples to 4 seconds by selecting
the first 4 seconds of audio. For audio shorter than 4 sec-
onds, we loop the samples to 4 seconds length. This length
normalization makes sure all samples in a batch are of the
same length. The four second limit is simply the ceiling of
the median of all audio lengths in the training set.

For feature extraction, we convert each audio file into a
spectrogram using a sampling rate of 16 GHz, 1728 FFTs,
and a hamming window with a length of 108ms and a 10ms
window shift to return a spectrogram of short-term Fourier
transform magnitudes similar to Chettri et al. (2018). Lastly,
we take the log of the spectrogram values and Z-normalize
to generate our input representation for each audio file. All
our experiments use this standard input representation. We
leave exploring other input representations to future work.

Models

In this paper, we study four different convolutional models
for fake speech detection: EfficientCNN, its residual form,
RES-EfficientCNN, and the multi-task variants of those two.

EfficientCNN

Our convolutional network model for synthetic speech de-
tection is a variant of the model used by Wu et al. (2018),
which we call EfficientCNN. The input to the EfficientCNN
model is the normalized log-spectrogram as described in the
previous section, which is processed through an input pro-
cessing block and four convolution blocks. The output of the
pooling layer after the final convolution block is passed to a
classification block for obtaining the classifier predictions.
We now describe each of these blocks in detail; see Figure 2
for a summary.

Input Processing Block The input processing block takes
the normalized log-spectrogram input and passes it through
a 2d convolution layer with a 5x5 kernel, a ReLU activation
layer, a batch normalization layer, and a max-pooling layer.

5861

Figure 2: EfficientCNN – A model consisting of an input processing block, 4 convolution blocks, and a classification block.

Figure 3: The RES-EfficientCNN is a residual version of the EfficientCNN model described in Figure 1.

Convolution Block Each convolution block consists of a
1x1 convolution, ReLU, batch normalization, a 3x3 convo-
lution, another ReLU, and another batch normalization. The
output of this block is passed through a 2x2 max-pooling
layer before becoming the input to another convolutional or
classification block.

Classification Block The classification block consists of
a linear layer, a ReLU, a batch normalization layer, and an-
other linear layer with dropout included before each linear
layer. The output of the final linear layer is passed to a soft-
max layer to produce model predictions.

RES-EfficientCNN

We also experiment with a residual version of EfficientCNN,
that we call RES-EfficientCNN. Residual connections in
convolutional networks have been used with great success
in computer vision – see He et al. (2016) – to improve train-
ing stability and accuracy. The RES-EfficientCNN is similar
to EfficientCNN, in that they have identical input process-
ing, convolution, and classification blocks, but with one dif-
ference: each convolution block has corresponding residual
block, and the output of a convolution block is added to the
output of its corresponding residual block. This combined
output becomes the input to the next convolution block as
illustrated in Figure 3.

Residual Block Typical residual connections simply com-
bine the input x with the output of a layer F(x) as x+F(x).
We designed the residual block to do this in spirit, but we
massage the input x to match the dimension of F(x) by per-

forming a 1x1-convolution – see Lin, Chen, and Yan (2013)
– followed by a ReLU and batchnorm.

Multi-Task Variants

Finally, we introduce multi-task variants of EfficientCNN
and RES-EfficientCNN, called Multi-EfficientCNN and
Multi-RES-EfficientCNN respectively, by noting that any
good learned convolution representation should not only be
able to predict if the input audio was BONAFIDE or FAKE,
but also predict the source where it came from. From the
ASVSpoof 2019 data, we have 7 possible values for source:
SS1, SS2, SS4, US1, VC1, VC4, and NONE, where
NONE labels bonafide speech. Please refer to the Datasets
section for additional details about these sources. To incor-
porate these two tasks, we modify the EfficientCNN and
RES-EfficientCNN architectures to include two classifica-
tion blocks. The cross entropy losses from each classifica-
tion block are summed up and this joint loss is minimized
during training via backpropagation. During inference, we
discard the source prediction head and the corresponding
classification block and use the rest of the model exactly like
the single task setup. We illustrate this in Figure 4.

Hyperparameters and Training Details

To train our models, we use mini-batch stochastic gradient
descent (SGD) to minimize weighted cross-entropy loss or
the cumulative weighted cross-entropy loss in case of the
multi-task variants. These weights are computed by taking
the inverse class abundance, i.e., if the class distribution is
99% and 1%, the class with 1% will have a weight of 99 and

5862

Figure 4: Multi-task training setup: we have two classification blocks, one for each task – fake speech detection and speech
source detection. The fake speech detection task is our task of interest (FAKE vs. BONAFIDE), while the Speech Source detection
task classifies the attack vector (synthesis/voice conversion model used for fake speech or NONE for bonafide speech).

the class with 99% will have a weight of 1. This handles the
massive class imbalance we observe in the data. We choose
the model with the lowest weighted cross entropy loss dur-
ing training and use that for evaluation on held-out data. For
our experiments, we use a single NVIDIA V100 GPU unless
otherwise specified.

Model Hyperparameters Our 5x5 convolutional layer
has a stride length of 2 and padding size of 2. All of our
3x3 convolutional layers, network-in-network 1x1 layers,
and residual 1x1 convolutional layers have a stride length
of 1 and no padding. All of our max-pooling layers use a
stride length of 2. We initialize all weight matrices using
Xavier normal initialization and use dropout of 0.2 on the
input to the linear layers of both our models. For optimiza-
tion, we use mini-batch SGD with a batch size of 128 and
an Adam optimizer with default parameters (α = 10−3, β =
[0.9, 0.999]) (Kingma and Ba, 2014). We halve the learning
rate, α, during training whenever there is no improvement in
validation set loss: completely stopping when the learning
rate drops below 10−5. Note: we did not excessively tune or
optimize hyperparameters, so there could be better perform-
ing hyperparameter configurations.

Experiments and Results
We experiment with EfficientCNN and RES-EfficientCNN
models of different capacities – SMALL, MEDIUM, LARGE.
The differences between these variants is summarized in Ta-
ble 4. We vary the capacity of the models by setting the
number of filters in the input processing block to 2, 4, and
8 for SMALL, MEDIUM, and LARGE respectively. For the
largest model (LARGE) each successive convolutional block
has number of input filters equal to 12, 16, 12, and 8. This
scales down by a factor of 2 and 4 for the MEDIUM (6, 8,
6, and 4) and SMALL (3, 4, 3, and 2) models respectively.
Note that our small model takes only 9 MFLOPs and largest
model takes just 256 MFLOPs, which are 100x and 3x less
compute respectively than resnet18.

In our experiments, as summarized in Table 5, we find
that: 1) increasing number of paramaters helps with this
dataset, 2) the residual versions of the models, RES-
EfficientCNN and Multi-RES-EfficientCNN, consistently

Table 4: Number of parameters for the three variants of the
four different models we experiment. Notice the multi-task
versions have fixed parameter cost of 231 additional param-
eters over the single-task ones.

SMALL MEDIUM LARGE
EfficientCNN 7654 15690 34114
+RES 10580 21794 46610
+Multi 7885 15921 34345
+Multi & RES 10811 22025 46841

perform better than their non-residual counterparts and, 3)
the multi-task learning setup performs better than the sin-
gle task setup for the SMALL and MEDIUM models, where
macro F1 gains of around 7% and 11% are observed for a
fixed cost of adding 231 parameters in training for the multi-
task setup. These results are significant with standard devi-
ations of less than 1.0 F1 points for all models considered.
Further, when doing difference of means hypothesis tests be-
tween Multi-RES-EfficientCNN and Multi-EfficientCNN as
well as RES-EfficientCNN and EfficientCNN on the large
setting, we find p-values less than 0.00001 in both cases, in-
dicating that the residual variants are significantly better.

During inference, there is no additional parameter cost in-
curred because of multi-task learning as the classification
block unrelated to the FAKE vs. BONAFIDE prediction can
be discarded. This has important consequences in improv-
ing accuracies of low footprint detection models on mobile
devices. Our best performing model, multi-task variant of
RES-EfficientCNN, achieves a macro F1 score of 97.61 on
the validation set.

Multi-task Learning and Data Sparsity

In adversarial settings, it is common to not have sufficient
data to train models from scratch. To study the efficacy of
our multi-task training setup, we performed dataset abla-
tion experiments with our best performing multi-task model,
Multi-RES-EfficientCNN and compared with its non-multi-
task variant, RES-EfficientCNN. The results are summa-
rized in Figure 5.

Again, we notice that the multi-task setup consistently

5863

Table 5: Results (Macro-F1 on validation set) of the four
different model variants under three different parameteriza-
tions. As observed elsewhere, the residual versions perform
better than the non-residual ones, and the multi-task variants
perform better than the non-multi-task ones.

SMALL MEDIUM LARGE
EfficientCNN 88.44 85.36 94.14
+RES 86.91 86.05 97.22
+Multi 88.44 93.41 86.00
+Multi & RES 92.91 95.91 97.61

Figure 5: Comparison between Multi-RES-EfficientCNN
and RES-EfficientCNN models for varying amounts of data:
for small data sizes, the multi-task setup produces better re-
sults than the single-task setup.

performed significantly better than the single-task setup.
This is remarkable because for a nominal increase in training
cost, by adding the 231 parameters needed for the multi-task
setup, we see a consistent gain of 10 F1 points for situations
with less data.

Adversarial Detection Performance

We consider 4 different adversarial situations where the
models are exposed to attack vectors (synthesis / voice con-
version models) they have not observed before in training.
For each situation, we report the macro F1 scores on the new
attack vector.

• Condition A: Neural to Neural Synthesis. In this condi-
tion, we assume the pretrained model in deployment was
trained on data from neural speech synthesis models and
was exposed to an unseen and different neural speech syn-
thesis model. To study this condition, we train our best
RES-EfficientCNN model on the SS1 and SS2 portion of
the data, and evaluate it on the SS4 portion of the data.

• Condition B: Neural to Non-Neural Voice Conversion.
Here we assume the model deployed in production is
trained on data from a neural voice conversion system and
evaluated on data from a non-neural voice conversion sys-
tem. To study this, we train our best RES-EfficientCNN

model on the VC1 portion of the data, and evaluate it on
the VC4 portion of the data.

• Condition C: Neural to Unit Selection Synthesis. Here
we assume the model deployed in production is trained on
data from neural speech synthesis systems and the attack
vector is from a unit selection speech synthesis system.
For this condition, we train our best RES-EfficientCNN
model on the SS1, SS2, and SS4 portions of the data, and
evaluate it on the US1 portion of the data.

• Condition D: Neural Synthesis to Neural Voice Con-
version. In this condition, we assume the pretrained
model in deployment was trained on data from neural
speech synthesis models and were exposed to data from
a neural voice conversion system. To study this condition,
we train our best RES-EfficientCNN model on the SS1,
SS2, and SS4 portions of the data, and evaluate it on the
VC1 portion of the data.

These four conditions and their results are summarized in
Figure 6. It is clear that models deployed in production per-
form poorly not only when the attack vector belongs to a
different class (speech synthesis vs. voice conversion), but
also within the same class (different kinds of speech synthe-
sis / voice conversion). Adversarial conditions B and D have
especially low adversarial detection performance. The poor
performance in condition B stems from two facts: (1) gen-
eralization from a neural to a non-neural voice conversion
system is difficult and (2) the VC4 attack vector is more dif-
ficult to detect than others even with many examples of the
attack vector as seen in Figure 6. We attribute the poor ad-
versarial detection performance for adversarial condition D
to the difference in distributions between the speech synthe-
sis systems and voice conversion systems. In the next sec-
tion, we show how transfer learning can be used effectively
to deal with these adversarial attacks with very little data.

Adapting to New Adversaries with Transfer

Learning

We wanted to study how well transfer learning techniques
are suited for handling changing adversaries. We consider
the same four adversarial conditions (A, B, C, and D) de-
tailed in the previous section, except we assume we have ac-
cess to a small portion of the data corresponding to the new
attack vector (target) to fine-tune the classifier in produc-
tion. We perform dataset ablation experiments where we in-
crease the availability of the target data ranging from 6.25%
to 100%, doubling at each interval. The results for the four
conditions are summarized in Figure 6. The dotted blue line
in the charts refers to a purely supervised macro F1 score as
evaluated on the validation set, i.e. trained on 100% of the
target data without any pretrained model initialization. Two
important observations arise:
• In all situations only a small portion of target data (be-

tween 6.25% to 25%) is needed to meet or exceed super-
vised performance.

• We can exceed purely supervised performance for many
situations by training with a pretrained initialization,
demonstrating the value of transfer learning in building

5864

Figure 6: Adapting to new adversaries using transfer learning: The dotted red line indicates purely supervised performance.
Note that we are able to meet or exceed the purely supervised performance for less than 25% of the training data with transfer
learning.

detection models even in situations where data sparsity is
not an issue. Training by fine-tuning a pretrained model
seems to be a general good practice for building any de-
tection model.

Results on RTVCSpoof Dataset

We repeat our experiments on the new RTVCSpoof dataset
with the largest RES-EfficientCNN model. For this experi-
ment, we treat the RTVCSpoof dataset as an unseen attack
vector and use a model trained on the neural speech syn-
thesis portion of ASVSpoof (i.e. the SS1, SS2, and SS4
portions) dataset. With this setup, we achieve an adversar-
ial detection performance (i.e. without fine-tuning) of 91.35
macro-F1 on the validation portion of RTVCSpoof dataset.
With transfer learning, we are able to achieve near purely
supervised performance with around 6.25% of the data. Fig-
ure 7 summarizes the results.

Figure 7: Results for adapting to RTVCSpoof dataset. We
are able to achieve 99.12 F1 with as little as 6.25% of the
data using transfer learning.

Related Work

Audio Classification: Convolutional networks have become
popular for audio classification tasks starting from Piczak

(2015) and Salamon and Bello (2017). Our work focuses
on a parameter efficient CNN model inspired by Wu et al.
(2018) that we call EfficientCNN. Motivated by the mas-
sive improvements in computer vision by residual archi-
tectures – first proposed by He et al. (2016) – we further
propose a residual version of EfficientCNN, called RES-
EfficientCNN, that improves detection significantly.

Speaker Verification: The first applications of synthetic
speech detection was in speaker verification, where the goal
is to identify a bonafide utterance from a speaker vs. utter-
ances derived via synthesis models8. For our experiments,
we use the ASVSpoof2019 dataset and focus on the situa-
tion where the room and ambient parameters are unknown.

Multimedia Forensics: Convolutional network models
were successfully used by Rössler et al. (2018) to detect ma-
nipulated images. Most audio forensics work comes from
the speaker verification spoofing community as discussed
earlier. Given the wide ranging impact of the adversarial
uses of speech synthesis, broader studies outside of the
speaker verification context is warranted. That is the goal
of our current work.

Multi-task Learning: This paper also presents a pre-
viously unexplored multi-task learning setup, where the
learner is jointly optimized on multiple related tasks, to im-
prove detection accuracies. We refer the readers to Zhang
and Yang (2017) for a general review of multi-task learning.

Transfer Learning: Transfer learning has been used suc-
cessfully for a variety of tasks in computer vision and nat-
ural language processing (Pan and Yang, 2009; Yosinski et
al., 2014). In Cozzolino et al. (2018) the authors use transfer
learning for image forensics. To our knowledge, this paper
is the first to show efficacy of transfer learning techniques to
detecting synthetic/fake speech from novel sources.

Conclusion

In an effort to combat the rising abuse of synthetic speech
systems, we have presented parameter efficient models for
fake speech detection and demonstrated how to make them
instance-efficient using transfer learning. Our models, Ef-
ficientCNN and RES-EfficientCNN, achieve better than 97

8asvspoof.org

5865

macro F1 points on a large fake speech dataset. These mod-
els need fewer than 50,000 parameters and have around
100 KB memory footprint. We proposed a novel multi-
task learning formulation for the fake speech detection
task, which improves detection performance without need-
ing to use any additional data or excessive computational re-
sources. We also showed the multi-task setup enables better
generalization for our leaner versions of the EfficientCNN
and RES-EfficientCNN models.

Since new attack vectors (speech synthesis and voice con-
version systems) are being developed to fool state-of-the-
art detectors, adaptation these new attack vectors is critical.
We presented a transfer-learning based approach to adapt to
unseen attack vectors and evaluated our transfer-learning in
four different adversarial settings: neural-to-neural speech
synthesis, neural-to-non-neural voice conversion, neural-to-
non-neural speech synthesis to unit selection, and neural-to-
neural speech synthesis to voice conversion. Our method
matches purely-supervised performance with as little as
6.25% of the training data in most of these settings. Finally,
we showed how the transfer learning approach is broadly-
applicable by considering a new attack vector, the Real Time
Voice Cloning Toolkit and fine-tuned an existing detection
model to it. With this, we were able to surpass the purely
supervised performance (99.12 F1) using as little as 240 ex-
amples (around 6% of the entire dataset).

Acknowledgements

We would like to thank Intel Corporation for their gracious
donation of Google Cloud Credits that made some of the
experimentation possible and Gaurav Bharaj, Jesse Berman,
Jonathan Chu, and Eric Yang for helpful comments on ver-
sions of this draft.

References

Akuzawa, K.; Iwasawa, Y.; and Matsuo, Y. 2018. Expressive
speech synthesis via modeling expressions with variational autoen-
coder. arXiv preprint arXiv:1804.02135.

Arik, S.; Chen, J.; Peng, K.; Ping, W.; and Zhou, Y. 2018. Neural
voice cloning with a few samples. In Advances in Neural Informa-
tion Processing Systems, 10019–10029.

Chettri, B.; Mishra, S.; Sturm, B. L.; and Benetos, E. 2018.
Analysing the predictions of a cnn-based replay spoofing detection
system. In 2018 IEEE Spoken Language Technology Workshop
(SLT), 92–97. IEEE.

Cozzolino, D.; Thies, J.; Rössler, A.; Riess, C.; Nießner, M.; and
Verdoliva, L. 2018. Forensictransfer: Weakly-supervised domain
adaptation for forgery detection. arXiv preprint arXiv:1812.02510.

Gibiansky, A.; Arik, S.; Diamos, G.; Miller, J.; Peng, K.; Ping, W.;
Raiman, J.; and Zhou, Y. 2017. Deep voice 2: Multi-speaker neu-
ral text-to-speech. In Advances in neural information processing
systems, 2962–2970.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778.

Jemine, C. 2019. Master thesis: Automatic multispeaker voice
cloning.

Jin, Z.; Mysore, G. J.; Diverdi, S.; Lu, J.; and Finkelstein, A. 2017.
Voco: Text-based insertion and replacement in audio narration.
ACM Transactions on Graphics (TOG) 36(4):96.

Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Lin, M.; Chen, Q.; and Yan, S. 2013. Network in network. arXiv
preprint arXiv:1312.4400.

Nachmani, E.; Polyak, A.; Taigman, Y.; and Wolf, L. 2018. Fitting
new speakers based on a short untranscribed sample. arXiv preprint
arXiv:1802.06984.

Oord, A. v. d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.;
Graves, A.; Kalchbrenner, N.; Senior, A.; and Kavukcuoglu, K.
2016. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499.

Pan, S. J., and Yang, Q. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22(10):1345–
1359.

Piczak, K. J. 2015. Environmental sound classification with convo-
lutional neural networks. In 2015 IEEE 25th International Work-
shop on Machine Learning for Signal Processing (MLSP), 1–6.
IEEE.

Ping, W.; Peng, K.; Gibiansky, A.; Arik, S. O.; Kannan, A.; Narang,
S.; Raiman, J.; and Miller, J. 2017. Deep voice 3: Scaling text-
to-speech with convolutional sequence learning. arXiv preprint
arXiv:1710.07654.

Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.;
and Nießner, M. 2018. Faceforensics: A large-scale video
dataset for forgery detection in human faces. arXiv preprint
arXiv:1803.09179.

Salamon, J., and Bello, J. P. 2017. Deep convolutional neural
networks and data augmentation for environmental sound classifi-
cation. IEEE Signal Processing Letters 24(3):279–283.

Skerry-Ryan, R.; Battenberg, E.; Xiao, Y.; Wang, Y.; Stanton, D.;
Shor, J.; Weiss, R. J.; Clark, R.; and Saurous, R. A. 2018. Towards
end-to-end prosody transfer for expressive speech synthesis with
tacotron. arXiv preprint arXiv:1803.09047.

Todisco, M.; Wang, X.; Vestman, V.; Sahidullah, M.; Delgado, H.;
Nautsch, A.; Yamagishi, J.; Evans, N.; Kinnunen, T.; and Lee, K. A.
2019. Asvspoof 2019: Future horizons in spoofed and fake audio
detection. arXiv preprint arXiv:1904.05441.

Wang, Y.; Skerry-Ryan, R.; Stanton, D.; Wu, Y.; Weiss, R. J.;
Jaitly, N.; Yang, Z.; Xiao, Y.; Chen, Z.; Bengio, S.; et al. 2017.
Tacotron: Towards end-to-end speech synthesis. arXiv preprint
arXiv:1703.10135.

Wang, Y.; Stanton, D.; Zhang, Y.; Skerry-Ryan, R.; Battenberg, E.;
Shor, J.; Xiao, Y.; Ren, F.; Jia, Y.; and Saurous, R. A. 2018. Style
tokens: Unsupervised style modeling, control and transfer in end-
to-end speech synthesis. arXiv preprint arXiv:1803.09017.

Wu, X.; He, R.; Sun, Z.; and Tan, T. 2018. A light cnn for deep
face representation with noisy labels. IEEE Transactions on Infor-
mation Forensics and Security 13(11):2884–2896.

Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014. How
transferable are features in deep neural networks? In Advances in
neural information processing systems, 3320–3328.

Zhang, Y., and Yang, Q. 2017. A survey on multi-task learning.
arXiv preprint arXiv:1707.08114.

5866

