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Abstract

Long Short-Term Memory (LSTM) infers the long term de-
pendency through a cell state maintained by the input and the
forget gate structures, which models a gate output as a value
in [0,1] through a sigmoid function. However, due to the grad-
uality of the sigmoid function, the sigmoid gate is not flexible
in representing multi-modality or skewness. Besides, the pre-
vious models lack modeling on the correlation between the
gates, which would be a new method to adopt inductive bias
for a relationship between previous and current input. This
paper proposes a new gate structure with the bivariate Beta
distribution. The proposed gate structure enables probabilis-
tic modeling on the gates within the LSTM cell so that the
modelers can customize the cell state flow with priors and
distributions. Moreover, we theoretically show the higher up-
per bound of the gradient compared to the sigmoid function,
and we empirically observed that the bivariate Beta distribu-
tion gate structure provides higher gradient values in training.
We demonstrate the effectiveness of the bivariate Beta gate
structure on the sentence classification, image classification,
polyphonic music modeling, and image caption generation.

Introduction

One of the most commonly used Recurrent Neural Net-
work (RNN) variants is Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997), which introduces addi-
tional gate structures for controlling cell states. LSTM con-
trols the information flow from a sequence with an input,
a forget, and an output gate. The input and the forget gates
decide the ratio of mixture between the current and the pre-
vious information at each time step. The sigmoid function
is defined to be bounded and monotonically increasing, so
the sigmoid has been a popular choice for such gate mecha-
nisms.

In spite of the prevalence of sigmoid functions, there has
been a question on the utility and the efficiency of the sig-
moid function used for the gates in LSTM. For instance, the
confined gate value range, which is narrower than the 0-1
bound, means that the majority of gate values may fall into
the narrower range, and this makes that the gate values lose
potential discrimination power (Li et al. 2018). Some tried
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Figure 1: An illustrative example of the input gate, the forget
gate, and their correlation for part of a given sentence in sen-
timent classification datasets. Blue and Red bars denote the
positive and negative correlations, respectively. (Left) The
new context starts from the word ”but”, so the negative cor-
relation imposes the large input gate value and the small for-
get gate value to focus on the current context. (Right) To in-
fer the semantic meaning between the word ”not” and ”over-
priced”, the positive correlation occurs at ”over-priced”, so
the positive correlation makes the input gate and the forget
gate have large values. The high forget gate value denotes
the importance of the previous context in our model.

to use additional hyper-parameters to sharpen the sigmoid
function, i.e., the sigmoid function with temperature param-
eter (Li et al. 2018), but these would be limited to the sup-
port for the sigmoid function without fundamental innova-
tions. From this perspective, there are few works to prob-
abilistically model the flexibility of the gate structure, i.e.,
G2-LSTM (Li et al. 2018) with the Bernoulli distribution,
but the current probabilistic model missed the graduality of
the gate value change. Moreover, it has been known that the
gates could be correlated (Greff et al. 2017), and the perfor-
mance can be improved by exploiting this covariance struc-
ture. One common conjecture is the correlation between the
input and the forget gate values in LSTM. However, the
structure of LSTM does not explicitly model such correla-
tion, so its enforcing structure was handled at the technical
implementation level. For instance, CIFG-LSTM (Greff et
al. 2017) enforces the negative correlation between the input
and the forget gate values. CIFG-LSTM shows competitive
performance with reduced parameters because of the corre-
lation modeling. However, CIFG-LSTM enforces the strict
negative correlation, -1 only; and it needs to be generalized
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(a) CIFG-LSTM (b) G2-LSTM

Figure 2: The cell structure of CIFG-LSTM and G2-LSTM

by a model. We improve the correlation structure adaptable
to datasets flexibly.

This correlation modeling is frequently included in the
data domains, such as texts and images. For text datasets,
there are the syntactic and the semantic relationships be-
tween words in a sentence (Harabagiu 2004), so the infor-
mation flow to the cell structure should reflect the semantic
relationship. Similarly, for image datasets, there is a rela-
tionship between pixels in a short-range, as well as pixels
in a long-range within a single image (Kampffmeyer et al.
2019). The relation modeling is one of the effective induc-
tive biases for deep learning models (Battaglia et al. 2018),
which can handle the property of datasets.

In a general setting, let us assume that we prefer a large
input value and a large forget gate value when both of the
current and the previous information are important. Then,
a positive correlation can be an effective inductive bias for
modeling the idiom such as rely on, to control the gate value,
efficiently. For the opposite case, A negative correlation can
be a good inductive bias to model the sentence ”...but he
loses his focus”. To reflect the change of context, the input
gate and the forget gate should have a large and small value,
respectively, at ”but” as shown in Figure 1.

We propose a bivariate Beta LSTM (bBeta-LSTM), which
improves the sigmoid function in the input gate and the for-
get by substituting the sigmoid function with a bivariate
Beta distribution. bBeta-LSTM has three advantages over
the LSTM. First, the Beta distribution can represent values
of [0,1] flexibly, since a Beta distribution is a generalized
distribution of the uniform distribution, the power function,
and the Bernoulli distribution with 0.5 probability. The Beta
distribution can represent either symmetric or skewed shape
by adjusting two shape parameters. Second, the bivariate
Beta distribution can represent the covariance structure of
the input and the forget gates because a bivariate Beta dis-
tribution shares the Gamma random variables, which make
the correlation between two sampled values. We utilized the
property of the bivariate Beta distribution for modeling the
input and the forget gates in bBeta-LSTM. The bivariate
Beta distribution could be further elaborated by expanding
the probabilistic model, i.e., adding a common prior to the
input gate and the forget gate distributions. Third, the bi-
variate Beta distribution can alleviate the gradient vanishing
problem of LSTM. Under a certain condition, we verify that
the derivative of gates in bBeta-LSTM is greater than those
of LSTM, experimentally and theoretically.

Preliminary: Stochastic Gate in RNN

Since RNN is a deterministic model, it is difficult to pre-
vent overfitting, and it is infeasible to generate diverse out-
puts. Therefore, multiple methods were explored to model
the stochasticity in sequence learning. First, dropout meth-
ods for RNN (Gal and Ghahramani 2016; Park et al. 2019)
demonstrated that stochastic masking could improve its gen-
eralization. Second, latent variables were a good combi-
nation with the RNN structure, such as Variational RNN
(VRNN) (Chung et al. 2015) and Variable Hierarchical Re-
current Encoder Decoder (VHRED) (Serban et al. 2017).
Third, the gate mechanisms, which are extensively used in
RNN variants due to the vanishing gradient, can be substi-
tuted with probabilistic models.

When we investigate further on the gate mechanism, there
have been efforts in reducing the number of gates (Lei et
al. 2018), enabling a gate structure to be a complex number
(Wolter and Yao 2018), correlating gate structures (Greff et
al. 2017). For instance, Gumbel Gate LSTM (G2-LSTM) (Li
et al. 2018) replaces the sigmoid function of the input and
the forget gates with Bernoulli distributions. The Bernoulli
gates in G2-LSTM turns the continuous gate values to be
the binary value of 0 or 1. This work can be expanded to
incorporate a continuous spectrum, a multi-modality, and
stochasticity, at the same time. Furthermore, G2-LSTM uses
a Gumbel-Softmax, which remains in the realm of sigmoid
gates, so the limitations discussed in the Introduction are still
applicable. Figure 2b and below equations enumerate the in-
formation flow in G2-LSTM, and G is the Gumbel-softmax
function with a temperature parameter of τ .

it = G(Wxixt +Whiht−1 + bi, τ) (1)
ft = G(Wxfxt +Whfht−1 + bf , τ) (2)
c̃t = tanh(Wxcxt +Whcht−1 + bc) (3)
ct = ft � ct−1 + it � c̃t (4)
ot = σ(Wxoxt +Whoht−1 + bo) (5)
ht = ot � tanh(ct) (6)

When we consider a stochastic expansion on gate mecha-
nisms, it is natural to structure the random variables with
conditional independence and priors. For example, the in-
put and the forget gates are both related to the cell state
in the LSTM cell so that we may conjecture their corre-
lations through a common cause prior. To our knowledge,
CIFG-LSTM in Figure 2a is the first model to introduce
a structured input and forget gate modeling by assuming
ft = 1 − it. This hard assignment is not a flexible corre-
lation modeling, so this can be further extended by adopting
the flexible probabilistic gate mechanism. Our source code
is available at https://github.com/gtshs2/BetaLSTM.

Methodology

First, we improve the LSTM to have more flexible gate val-
ues, which can represent skewness and multi-modality by
modeling the input and the forget gate as a Beta distribution.
Second, we extend the Beta distribution to incorporate the
correlation between the input gate and the forget gate with
the bivariate Beta distribution. Third, we introduce the prior
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distribution to the gate structure to keep the stochasticity and
handle the mutual dependency. Our probabilistic gate model
resides in a neural network cell, as Figure 3.

Beta-LSTM

We propose a Beta-LSTM that embeds independent Beta
distributions on the input and the forget gates, instead of
the sigmoid function. We construct each Beta distribution
with two Gamma distributions to apply the reparametriza-
tion technique.

U
(j)
t = gj(xt, ht−1), j = 1, ..., 4 (7)

u
(j)
t ∼ Gamma(U (j)

t , 1), j = 1, .., 4 (8)

it =
u
(1)
t

u
(1)
t + u

(2)
t

, ft =
u
(3)
t

u
(3)
t + u

(4)
t

(9)

We formulate U
(j)
t , the shape parameter of a Gamma distri-

bution; as a function, gj of the current input xt and the pre-
vious hidden state ht−1. We omit the amortized inference on
the rate parameter of a Gamma distribution by setting it as
a constant of 1. Each gj can be a multi-layered perceptron
(MLP) that combines xt and ht−1.

As we follow the reparameterization technique of optimal
mass transport (OMT) gradient estimator (Jankowiak and
Obermeyer 2018) which utilize the implicit differentiation,
we can compute the stochastic gradient of random variable
u
(j)
t with respect to U

(j)
t efficiently, without inverse CDF.

bivariate Beta-LSTM

Beta-LSTM improves LSTM to have more flexible input and
forget gate values, but these inputs and forget gates are mod-
eled independently, which is the same as LSTM. However,
as we surveyed in the above, there is a growing interest in
modeling the correlation of the gate values. To consider the
correlation efficiently, we further extended Beta-LSTM to
have a structured gate modeling. We adopt the bivariate Beta
distribution to reflect the correlation between input and for-
get gates by maintaining the flexibility of the Beta distri-
bution. We can construct a bivariate Beta distribution with
three independent random variables which follow a Gamma
distribution, independently (Olkin and Liu 2003). We name
the bivariate Beta LSTM with three Gamma distributions as
bBeta-LSTM(3G). The formulation of U (j)

t and u
(j)
t is same

within Equation 7,8 for all j.

it =
u
(1)
t

u
(1)
t + u

(3)
t

, ft =
u
(2)
t

u
(2)
t + u

(3)
t

(10)

The bivariate Beta distribution utilizes Gamma random vari-
ables to handle the correlation between the input and the for-
get gate values, but bBeta-LSTM(3G) can only model the
positive correlation between 0 and 1 (Olkin and Liu 2003).
In practice, for example, natural language processing, the
input, and the forget gates might show either a positive or
negative correlation in cases. Sequential correlated words,
i.e., idioms or phrases, would prefer a positive correlation
because the cell state should include both previous and cur-
rent information. On the contrary, if a new important context

starts, unlike the previous context, the cell state should dis-
regard the previous information and adapt the current infor-
mation. The latter case will require a negative correlation,
but bBeta-LSTM(3G) lacks this functionality.

We extend the bivariate Beta distribution in bBeta-
LSTM(3G) to be bBeta-LSTM(5G) that uses a bivariate
Beta distribution with a more flexible covariance structure.
bBeta-LSTM(5G) consists of five random variables follow-
ing a Gamma distribution, and bivariate Beta distribution
with five random variables can handle both negative and pos-
itive correlation (Arnold and Ng 2011). bBeta-LSTM(5G) is
a generalized model of CIFG-LSTM with a probabilistic co-
variance model. The formulation of U (j)

t and u
(j)
t is same

within Equation 7,8 for all j.

it =
u
(1)
t + u

(3)
t

u
(1)
t + u

(3)
t + u

(4)
t + u

(5)
t

(11)
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(4)
t

u
(2)
t + u

(3)
t + u

(4)
t + u

(5)
t

(12)

Another advantage of using a bivariate Beta distribution
as an activation function is resolving the gradient vanishing
problem of LSTM. We provide a proposition that the gradi-
ent value of a gate value in bBeta-LSTM(5G) with respect
to the gate parameter is larger than that of LSTM under a
certain condition.

Proposition 1. Let iat (Vt) and ibt(U
(1:5)
t ) be the input gate

of LSTM and bBeta-LSTM(5G) respectively, where Vt and
U

(1:5)
t are input of each gate. Suppose that u(j)

t < 0.8 or
8 < U

(j)
t which satisfy the |u(j)

t − U
(j)
t | ≤ δ · U (j)

t for all j

and δ > 0. Then, for the fixed u
(3:5)
t , ∂ibt(U

(1:5)
t )

∂U
(1)
t

|
U

(1)
t =0.5

has

greater maximum value than ∂iat (Vt)
∂Vt

.

bBeta-LSTM(5G) considers the input gate and the forget
gates as a bivariate Beta distribution, so bBeta-LSTM(5G)
represents the flexible gate structure with either positive or
negative correlation. Besides, stochasticity in bivariate Beta
distribution can alleviate the overfitting. However, the bivari-
ate Beta random variables with five Gamma (Eq.11,12), can
has a lower variance than the bivariate Beta random vari-
ables with three Gamma (Eq.10), and the variance can be
near to zero under the no regularization. The low variance
can limit the advantage of stochasticity (Dieng et al. 2018),
and we need additional prior model to regularize the gamma
random variable u

(i)
t .

Proposition 2. If all of u(j)
t have same fixed value for j =

1, ..., 5, the variance of it (ft) in bBeta-LSTM(5G) is less
than the variance of it (ft) in bBeta-LSTM(3G).

bivariate Beta-LSTM with Structured Prior Model

Hierarchical Bayesian modeling can impose uncertainty on
a model as well as a mutual dependence between variables.
bBeta-LSTM(5G) has a component of probabilistic model-
ing, and it is easy to incorporate a prior distribution to the
likelihood of the gate value. We propose bBeta-LSTM(5G)

5820



(a) Beta-LSTM (b) bBeta-LSTM(3G) (c) bBeta-LSTM(5G) (d) bBeta-LSTM(5G+p)

Figure 3: The cell structure of our proposed models. The red and yellow circle denotes a cell state and gates, respectively. The
blue circle represents random variables that follow the Gamma distribution. The input and the forget gates in bBeta-LSTM(5G)
and bBeta-LSTM(5G+p) shares random variables, u(3), u(4), u(5) and prior u(0).

with prior, denoted by bBeta-LSTM(5G+p), and we opti-
mize bBeta-LSTM(5G+p) by maximizing the log marginal
likelihood of the target sequence y1:T in Equation 13, see
Figure 3d which combines the neural network gates and the
random variables. Given the latent dimension of the prior,
we utilize the variational method, and we optimize the ev-
idence lower bound (ELBO) (Kingma and Welling 2014)
in Equation 14 with a variational distribution, q, which is
a feed-forward neural network with the current input xt and
the previous hidden ht−1.

log p(y1:T ) = log

∫ ∏
t=1

p(u
(1:5)
t )p(yt|u(1:5)

t )du
(1:5)
t (13)

LELBO =

T∑
t=1

E
q(u

(1:5)
t |xt,ht−1)

[p(yt|u(1:5)
t )]

−KL[q(u
(1:5)
t |xt, ht−1) ‖ p(u(1:5)

t )] (14)

We model a prior distribution of p(u(1:5)
t ), as a Gamma dis-

tribution which is a conjugate distribution of the Gamma
distribution of u(1:5)

t in Equation 14. A Gamma distribution
takes two parameters, which represent shape and rate, and
our framework enables learning of the two parameters with
an inference network.

Domain Customized Structured Prior The prior on the
gate in bBeta-LSTM(5G+p) is extended to incorporate other
probabilistic generative models, such as Latent Dirichlet Al-
location (LDA) (Blei, Ng, and Jordan 2003) or word vector,
i.e., Glove or Word2Vec. Considering the input and the for-
get gates reside in a LSTM cell at a certain time, t, the prior
can be better informed by a global context extracted from
x1:T . To demonstrate this capability, we adapted Equation
14 to be as below.

T∑
t=1

E
q(u

(1:5)
t |xt,ht−1)

[p(yt|u(1:5)
t )]

− λ{KL[q(u
(3:5)
t |xt, ht−1) ‖ p(u(3:5)

t )]

+ KL[q(u
(1:2)
t |xt, ht−1) ‖ p(u(1:2)

t |βt−1, βt)]}. (15)

Here, λ is the weight of the prior regularization, to balance
the likelihood and the KL regularization term, and βt is the
topic probability of a word at time t in the sequence, which

Figure 4: (Left) The sentiment classification accuracy of
bBeta-LSTM variants with or without prior learning on a
0th fold of CR dataset. (Right) The correlation of bBeta-
LSTM(5G+p) on CR dataset.

follows the definition in the original LDA. If we impose that
βt is related prior to u

(1)
t and u

(2)
t , which contribute to it and

ft, respectively; we can directly reflect the global context to
compute the input and the forget gates. To reflect the global
context adequately, we compare the similarity between the
topic proportion of the previous word and the current word
with the radial basis kernel function (RBF). Under the prior
modeling, we can also compute the input gate and the forget
gates by reflecting the similarity of global topic proportions
between sequential words. If the sequential words share a
similar topic proportion, similar semantics, the prior with
RBF kernel encourages u

(1:2)
t to have a large value. This

makes the large input and the large forget gate values, so
the gating mechanisms handle the semantic composition of
the previous input and the current input. While we used a
pre-trained LDA model, we can learn the parameters of our
proposed models and LDA parameter simultaneously. Addi-
tionally, βt can be substituted by a word vector, i.e., Glove.

Figure 4 (Left) illustrates three insights. First, the strength
of the prior should be limited by λ. Second, the prior with
LDA is generally better than the prior with a static param-
eter, bBeta-LSTM(5G+p). Third, it is important to learn the
inference model, i.e. the kernel hyperparameters used for the
parameter of p(u(1:2)

t |βt−1, βt).

Experiments

We compare our models and baselines, LSTM, CIFG-
LSTM, G2-LSTM, simple recurrent unit (SRU) (Lei et al.
2018), R-transformer (Wang et al. 2019), Batch normalized
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Models CR SUBJ MR TREC MPQA SST

LSTM 82.91±2.40 92.58±0.84 80.37±0.98 94.42±1.07 89.38±0.55 88.13±0.67
CIFG-LSTM 83.28±1.79 92.65±0.86 79.86±0.91 94.00±0.78 89.14±0.91 87.63±0.46
G2-LSTM 83.31±1.66 92.69±0.78 80.13±1.10 94.68±0.37 89.34±0.54 88.36±0.96

Beta-LSTM 84.45±1.87 93.25±0.88 81.12±0.93 94.38±0.64 89.66±0.49 88.68±0.67
bBeta-LSTM(3G) 83.63±2.14 93.23±0.78 81.47±0.92 94.28±0.48 89.41±0.91 88.23±0.67
bBeta-LSTM(5G) 84.48±1.96 92.87±0.74 81.05±1.05 94.30±0.69 89.42±0.66 88.89±0.46
bBeta-LSTM(5G+p) 84.66±2.42 93.25±0.85 81.59±0.91 94.80±0.47 89.66±0.44 88.94±0.43

SRU(8-layers) 87.00±2.24 93.76±0.61 83.14±1.53 94.52±0.34 90.39±0.55 89.58±0.46
+ bBeta-LSTM(5G+p) 87.21±0.78 93.97±0.55 83.51±1.42 94.80±0.47 90.44±0.79 89.72±0.31

Table 1: Test accuracies on sentence classification task.

(a) LSTM (b) CIFG-LSTM (c) G2-LSTM (d) bBeta-LSTM(5G+p)

Figure 5: Histogram of input gate value on CR dataset. Our proposed model bBeta-LSTM(5G+p) shows the more flexible gate
value than that of other models. CR dataset is used for the sentiment classification, and only a few words are important instead
of whole words. As a result, the input gate in all models has a relatively higher portion of 0 than the portion of value 1. The
bBeta-LSTM(5G+p) is more likely to have such a tendency, and it leads to better performance of bBeta-LSTM(5G+p) on CR
dataset.

LSTM (BN-LSTM) (Cooijmans et al. 2017), and h-detach
(Kanuparthi et al. 2019). First, we evaluate the performance
of the bBeta-LSTM variants to measure the improvements
from our structured gate modeling with the text classifica-
tions quantitatively and qualitatively on benchmark datasets.
Second, we compare the models on polyphonic music mod-
eling to check the performance of multi-label prediction
tasks. Third, we evaluate our models on a pixel-by-pixel
MNIST dataset to confirm that our model can alleviate the
gradient vanishing problems, empirically. Finally, we per-
form the image caption generation task to check the perfor-
mance on the multi-modal dataset.

Text Classification

We compare our models on six benchmark datasets, cus-
tomer reviews (CR), sentence subjectivity (SUBJ), movie
reviews (MR), question type (TREC), opinion polarity
(MPQA), and Stanford Sentiment Treebank (SST). For
LSTM models, we use a two-layer structure with 128 hid-
den dimensions for each layer, following (Lei et al. 2018).
We set the hidden dimensions of models to have the same
number of parameters across the compared models Table 1
shows the test accuracies for the model and dataset com-
binations. It should be noted that bBeta-LSTM(5G+p) per-
forms better than other models on all datasets. In particular,
bBeta-LSTM(5G) and bBeta-LSTM(5G+p), which provides
an inductive bias of either positive or negative correlation,

shows a significant improvement for CR dataset, the spars-
est dataset in the benchmarks. The performance difference
between bBeta-LSTM(5G) and bBeta-LSTM(5G+p) shows
the importance of the prior modeling to regularize the input
and the forget gates. To check the compatibility with LSTM
cell variants, we compare the performance between SRU and
SRU+bBeta-LSTM(5G+p). For SRU+bBeta-LSTM(5G+p),
we replace the gate structure in the SRU cell with our model,
and it performs better than the original SRU for all datasets.
SRU cell, which has two gate structures, is closer to GRU
than LSTM, and this result demonstrates that our proposed
gate structure can be compatible with other LSTM/GRU cell
variants. We further examine the behavior of the bBeta-
LSTM(5G+p) gate values from two perspectives of the input
gate value ranges, and the input/forget correlations. Figure 4
(Right) shows the correlation of bBeta-LSTM(5G+p), and
the correlation between gates can exhibit both negative and
positive values in bBeta-LSTM(5G+p). Figure 5 visualizes
the input gate and the forget gate values, and we observed
that the input and the forget gate outputs fully utilize the
range of [0,1] in bBeta-LSTM(5G+p).

To further understand the model structure and its as-
sumptions, we performed qualitative analysis on a sen-
tence, which has a negative sentiment in the MR dataset.
Figure 6 shows the heatmap of the input gate and the
forget gate for each model; and the correlation from our
proposed model, bBeta-LSTM(5G+p). bBeta-LSTM(5G+p)
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Figure 6: Visualization of input and forget gates for each model and the correlation for bBeta-LSTM(5G+p). The sentence
with the negative label is designed for the sentiment classification task, and the ”but he losses his focus”t = 22 ∼ 26 is
an important part. At time step 22 (”but”), the change of context occurs, and bBeta-LSTM(5G+p) has a large input gate and
relatively small forget gate to handle the context change. At time step 25 (”his”), both input gate and forget gate have high
values to propagate the information ”losses his” efficiently. This is the result of a relatively large correlation value at time step
25, and this correlation helps to propagate the information through the model.

Models JSB Muse Nottingham Piano

LSTM 8.68±0.10 7.17±0.06 3.32±0.11 9.23±1.13
CIFG-LSTM 8.69±0.06 7.18±0.01 3.28±0.10 8.99±1.57
G2-LSTM 8.70±0.04 7.14±0.01 3.23±0.04 9.00±0.84

Beta-LSTM 8.60±0.07 7.13±0.03 3.30±0.06 8.24±0.26
bBeta-LSTM(5G) 8.63±0.12 7.11±0.04 3.30±0.04 8.43±0.64
bBeta-LSTM(5G+p) 8.30±0.01 7.02±0.02 3.14±0.02 7.65±0.08

R-Transformer 8.26±0.03 7.00±0.03 2.24±0.01 7.44±0.03
+ bBeta-LSTM(5G+p) 8.24±0.01 6.19±0.02 2.13±0.08 7.32±0.03

Table 2: Negative log-likelihood on polyphonic music

Models sMNIST pMNIST

LSTM 5.08±0.01 10.76±1.34
CIFG-LSTM 1.23±0.13 8.42±0.58
G2-LSTM 3.53±1.32 9.47±0.03

Beta-LSTM 3.14±0.88 8.65±0.49
bBeta-LSTM(5G) 1.75±0.50 8.37±0.46
bBeta-LSTM(5G+p) 1.22±0.25 7.66±0.16

BN-LSTM 1.05±0.06 4.26±0.50
+ bBeta-LSTM(5G+p) 0.76±0.05 3.90±0.25

Table 3: Test error rates on MNIST

model has a large input gate value on ”but he loses his fo-
cus” (t = 22 ∼ 26) and a large forget gate value on 25 and
26 timestep to propagate the ”losses” information well. Be-
cause of the structured gate modeling, bBeta-LSTM(5G+p)
compose the meaning of ”but he loses his focus” well. This
effect originates from the structured gate modeling, which

handles the correlation while other models do not model.
There is a relatively large correlation in the ”his focus”
(t = 25, 26), and as a result, both input and forget gates
have large values to propagate the important information ef-
ficiently. The sentiment label for the sentence is negative,
and only bBeta-LSTM(5G+p) classifies it correctly.

Polyphonic Music

We use four polyphonic music modeling benchmark
datasets: JSB Chorales, Muse, Nottingham, and Piano. Ta-
ble 2 shows the test negative log-likelihood (NLL) on four
music datasets. Our proposed model, bBeta-LSTM(5G+p),
performs better than all other models. To compare with the
pre-existing state-of-the-art model, we included the perfor-
mance with R-Transformer (Wang et al. 2019) as well as
R-Transformer with our gating mechanism. We replace the
recurrent structure of R-transformer with our models, and
our model shows better performance on all datasets. The re-
sults show high compatibility between our models and the
Transformer model.
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Models B-1 B-2 B-3 B-4 METEOR CIDEr ROUGE-L SPICE

DeepVS (Karpathy and Li 2015) 62.5 45.0 32.1 23.0 19.5 66.0 — —
ATT-FCN (You et al. 2016) 70.9 53.7 40.2 30.4 24.3 — — —
Show & Tell (Vinyals et al. 2015) — — — 27.7 23.7 85.5 — —
Soft Attention (Xu et al. 2015) 70.7 49.2 34.4 24.3 23.9 — — —
Hard Attention (Xu et al. 2015) 71.8 50.4 35.7 25.0 23.0 — — —
MSM (Yao et al. 2017) 73.0 56.5 42.9 32.5 25.1 98.6 — —

Show&Tell with Resnet152 (Our implementaion) — —
LSTM 72.0 54.6 39.8 28.8 24.8 94.7 52.5 17.9
CIFG-LSTM 71.2 53.9 39.3 28.5 24.4 93.0 51.9 17.7
G2-LSTM 71.7 54.3 39.7 28.8 24.6 93.0 52.3 17.5
bBeta-LSTM(5G+p) 72.2 55.0 40.1 29.0 24.7 94.2 52.6 18.0
h-detach(0.4) (Kanuparthi et al. 2019) 72.2 55.0 40.9 30.3 25.2 97.1 53.0 18.2
+ bBeta-LSTM(5G+p) 72.3 55.5 41.5 30.8 25.2 97.3 53.2 18.1

Show Attend Tell with Resnet152 (Our implementaion)
h-detach(0.4) (Kanuparthi et al. 2019) 73.3 56.7 42.6 31.8 25.8 101.2 54.0 19.3
+ bBeta-LSTM(5G+p) 74.1 57.3 43.1 32.1 26.1 103.2 54.3 19.4

Table 4: Test performance on MS-COCO dataset for BLEU, METEOR, CIDEr, ROUGE-L and SPICE evaluation metric.

Figure 7: Average gradient norm, ‖∂LELBO

∂ct
‖ for loss

LELBO over each time step. Beta-LSTM and bBeta-
LSTM(5G+p) considers long-term dependency relatively
well because they have larger gradients for initial timesteps,
(left). bBeta-LSTM(5G+p), which incorporates the prior
distribution, shows a relatively stable validation error curve,
and shows the lowest validation error (right).

Pixel by Pixel MNIST

The pixel-by-pixel MNIST task is predicting a category for a
given 784 pixels. sMNIST task handles each pixel with a se-
quential order, and pMNIST task models each pixel in a ran-
domly permutated order. For the LSTM baseline, we use a
single-layer model with 128 hidden dimensions with Adam
optimizer. Table 3 shows the test error rates for sMNIST
and pMNIST, and bBeta-LSTM(5G+p) shows the best per-
formance. Besides, we compared the performance with the
BN-LSTM, which performs well on sMNIST and pMNIST
dataset. When we replace the recurrent part in BN-LSTM
with our model, we improve the test error rates about 27.6%
(from 1.05% to 0.76% error rate) in the pMNIST dataset.
Batch normalization and its variants are important in vari-
ous classification tasks, and the results show that our model
is well compatible with the batch normalization methodol-
ogy. Left in Figure 7 shows the gradients flow for each time
step and the validation error curve for each epoch on the pM-
NIST dataset. For the gradient flow, we calculate the Frobe-

nius norm of the gradient ∂LELBO

∂ct
, and we average the norm

over the image instance. We found that our proposed models,
Beta-LSTM, and bBeta-LSTM(5G+p), propagate the infor-
mation to the early timestep, efficiently. Right in Figure 7
shows the validation error curve, and our proposed model
bBeta-LSTM(5G+p), which incorporates the prior, shows
the relatively stable learning curve.

Image Captioning

We evaluate our model on the image captioning task with
Microsoft COCO dataset (MS-COCO) (Lin et al. 2014). For
the experiment, we split the dataset into 80,000, 5,000, 5,000
for the train, the validation, and the test dataset, respec-
tively (Karpathy and Li 2015). We use 512 hidden dimen-
sions for the conditional caption generation, and we also
used Resnet152 to retrieve image feature vectors. Table 4
shows the test performance for MS-COCO dataset based
on Show&Tell (Vinyals et al. 2015) and Show Attend Tell
(Xu et al. 2015) encoder-decoder structure. Besides, to ver-
ify compatibility with other models, we re-implemented h-
detach (Kanuparthi et al. 2019) and incorporate our mod-
els, bBeta-LSTM(5G+p). When we replace the LSTM of h-
detach with our models, we identified the improvement in
the performance of h-detach.

Conclusion

We propose a new structured gate modeling which can im-
prove the LSTM structure through the probabilistic model-
ing on gates. The gate structure in LSTM is a crucial compo-
nent, and the gate value is the main controller for the infor-
mation flow. While the current sigmoid gate would satisfy
the boundedness, we improve the sigmoid function with the
Beta distribution to add flexibility. Moreover, bBeta-LSTM
enables the detailed modeling of the covariance structure be-
tween gates, and bBeta-LSTM with prior guides the learn-
ing of the covariance structure. Also, our propositions state
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the improved characteristics of our probabilistic gate com-
pared to the sigmoid function. From the application perspec-
tive, imposing the correlation between the input gate and
the forget gate is necessary to handle the semantic infor-
mation efficiently. This work envisions how to incorporate
the neural network models with probabilistic components to
improve its flexibility and stability. We demonstrated the ne-
cessity and effectiveness of flexible and prior modeling of
gate structure on extensive experiments.
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July 10-15, 2018, 1251–1260.
Gal, Y., and Ghahramani, Z. 2016. A theoretically grounded ap-
plication of dropout in recurrent neural networks. In Advances in
neural information processing systems, 1019–1027.
Greff, K.; Srivastava, R. K.; Koutnı́k, J.; Steunebrink, B. R.; and
Schmidhuber, J. 2017. Lstm: A search space odyssey. IEEE trans-
actions on neural networks and learning systems 28(10):2222–
2232.
Harabagiu, S. 2004. Incremental topic representations. In Pro-
ceedings of the 20th international conference on Computational
Linguistics, 583. Association for Computational Linguistics.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural computation 9(8):1735–1780.
Jankowiak, M., and Obermeyer, F. 2018. Pathwise deriva-
tives beyond the reparameterization trick. arXiv preprint
arXiv:1806.01851.
Kampffmeyer, M.; Dong, N.; Liang, X.; Zhang, Y.; and Xing, E. P.
2019. Connnet: A long-range relation-aware pixel-connectivity
network for salient segmentation. IEEE Transactions on Image
Processing 28(5):2518–2529.
Kanuparthi, B.; Arpit, D.; Kerg, G.; Ke, N. R.; Mitliagkas, I.; and
Bengio, Y. 2019. h-detach: Modifying the LSTM gradient towards
better optimization. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.

Karpathy, A., and Li, F. 2015. Deep visual-semantic alignments for
generating image descriptions. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, 3128–3137.
Kingma, D. P., and Welling, M. 2014. Auto-encoding variational
bayes. In 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-
ence Track Proceedings.
Lei, T.; Zhang, Y.; Wang, S. I.; Dai, H.; and Artzi, Y. 2018. Simple
recurrent units for highly parallelizable recurrence. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing, 4470–4481. Brussels, Belgium: Association for Com-
putational Linguistics.
Li, Z.; He, D.; Tian, F.; Chen, W.; Qin, T.; Wang, L.; and Liu, T.-Y.
2018. Towards binary-valued gates for robust lstm training. arXiv
preprint arXiv:1806.02988.
Lin, T.; Maire, M.; Belongie, S. J.; Hays, J.; Perona, P.; Ramanan,
D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft COCO: com-
mon objects in context. In Computer Vision - ECCV 2014 - 13th
European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V, 740–755.
Olkin, I., and Liu, R. 2003. A bivariate beta distribution. Statistics
& Probability Letters 62(4):407–412.
Park, S.; Song, K.; Ji, M.; Lee, W.; and Moon, I. 2019. Adversarial
dropout for recurrent neural networks. CoRR abs/1904.09816.
Serban, I. V.; Sordoni, A.; Lowe, R.; Charlin, L.; Pineau, J.;
Courville, A.; and Bengio, Y. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In Thirty-First
AAAI Conference on Artificial Intelligence.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015. Show
and tell: A neural image caption generator. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, 3156–3164.
Wang, Z.; Ma, Y.; Liu, Z.; and Tang, J. 2019. R-transformer:
Recurrent neural network enhanced transformer. arXiv preprint
arXiv:1907.05572.
Wolter, M., and Yao, A. 2018. Complex gated recurrent neural
networks. In Bengio, S.; Wallach, H.; Larochelle, H.; Grauman,
K.; Cesa-Bianchi, N.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 31. Curran Associates, Inc. 10536–
10546.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A. C.; Salakhutdinov,
R.; Zemel, R. S.; and Bengio, Y. 2015. Show, attend and tell: Neu-
ral image caption generation with visual attention. In Proceedings
of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, 2048–2057.
Yao, T.; Pan, Y.; Li, Y.; Qiu, Z.; and Mei, T. 2017. Boosting image
captioning with attributes. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
4904–4912.
You, Q.; Jin, H.; Wang, Z.; Fang, C.; and Luo, J. 2016. Image
captioning with semantic attention. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, 4651–4659.

5825


