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Abstract

Click-through rate (CTR) prediction is an essential task in
industrial applications such as video recommendation. Re-
cently, deep learning models have been proposed to learn the
representation of users’ overall interests, while ignoring the
fact that interests may dynamically change over time. We ar-
gue that it is necessary to consider the continuous-time infor-
mation in CTR models to track user interest trend from rich
historical behaviors. In this paper, we propose a novel Deep
Time-Stream framework (DTS) which introduces the time in-
formation by an ordinary differential equations (ODE). DTS
continuously models the evolution of interests using a neural
network, and thus is able to tackle the challenge of dynami-
cally representing users’ interests based on their historical be-
haviors. In addition, our framework can be seamlessly applied
to any existing deep CTR models by leveraging the additional
Time-Stream Module, while no changes are made to the orig-
inal CTR models. Experiments on public dataset as well as
real industry dataset with billions of samples demonstrate the
effectiveness of proposed approaches, which achieve superior
performance compared with existing methods.

Introduction

Click-through rate (CTR) prediction aims to estimate the
probability of a user clicking on a given item, which has
drawn increasing attention in the communities of academia
and industry. In the example of a video website, a CTR al-
gorithm is deployed to provide users with videos from thou-
sands of different categories, and thus it is crucial to pre-
cisely capture users’ interests so that they will keep using
the website longer and bring more revenue to the website.
To accomplish this goal, the key problem is how to model
user interest based on user historical clicks which reflects
user preference. To extract representation of user’s interests,
many models have been proposed from traditional method-
ologies (Friedman 2001; Rendle 2010) to deep CTR models
(Guo et al. 2017; Qu et al. 2016; Lian et al. 2018). Although
these models achieve great success in modeling users’ over-
all interests, they are ignorant of the dynamic changes in
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Figure 1: The user interests evolve on the time-stream. Only
when considering intervals among user behaviors could the
sequential pattern be captured.

users’ preferences. To pursue a more precise result, RNN-
based methods (Wu et al. 2017; Hidasi and Tikk 2016;
Zhou et al. 2019) have been proposed to capture the depen-
dencies in user-item interaction sequences. However, these
methods only consider the order of users’ behaviors and ig-
nore the time interval between behaviors which is the im-
portant information on predicting users’ behaviors. As an
example, in Figure 1, Mike usually watches videos about
Donald Trump during the day while enjoys music videos
of Taylor Swift at night, according to his behaviors’ times-
tamps. Thus, regarding Mike’s playlog only as a sequence of
clicked videos would neglect changes of his latent interests
over time. Unfortunately, existing CTR models do not have
the capability to model the pattern on the continuous-time,
since most of them are unaware to the time interval.

Besides, at the inference phase, it is problematic that only
predicting the next click without considering when the ac-
tion will be performed. Incorporating the time of users’ be-
haviors, i.e. modeling the effects of elapsed time interval be-
tween behaviors, is important in accurately modeling users’
interest. For example, in Figure 1, if Mike watches a video
of Taylor at 9 p.m., it more likely that he will watch another
video of Taylor than Donald in a few hours, while the prob-
ability of watching videos of Donald should be significantly
higher after half a day. However, traditional methods always



get the exactly same prediction at any time.

Based on the aforementioned observations, we argue
that it is crucial to consider time-stream information, i.e.
continuous-time information, in CTR models. Therefore,
we propose a novel Deep Time-Stream framework (DTS),
which introduces the time-stream information into CTR
model. Time-stream information could be formulated by or-
dinary differential equations (ODE), which refers to a func-
tion that describes the relationship between a dependent
variable’s derivative and the independent variable. Specifi-
cally, DTS leverages ODE to model the evolution of users’
latent interests, by parameterizing the derivative of users’ la-
tent interests states with respect to time, such that the solu-
tion of ODE describes the dynamic evolution of users’ inter-
ests. Moreover, DTS is equipped with the ability to unify
users’ historical behaviors (what have clicked) and target
items (what will click) on the time-stream by clicks’ times-
tamp, thus would make inference corresponding to the given
next time and provide a more precises CTR prediction. To
archieve the minimum model-altering cost, the ODE is pack-
aged as a Time-Stream Module which can be applied in any
deep CTR models. The contributions of this paper are sum-
marized as follows:

e We propose a novel DTS framework that models users’
latent interests evolution as an ODE, which significantly
improves the expressive ability of models and can better
capture the evolving characteristics of users’ interests.

e DTS can generate users’ feature at an arbitrary time and
thus allows flexible as well as adaptive evaluations.

e The Time-Stream Module can be easily transplanted into
existing CTR models without changing the original struc-
ture.

Background

In machine learning, it is a crucial task to efficiently conduct
a class of hypothesis, linear or nonlinear, that can represent
the data patterns. Ordinary Differential Equations (ODEs)
can also be used as a hypothesis. Considering the differential
equation in R%: % = f(z,t), 2(0) = 2, the solution of z
at time ¢ is denoted as z(t). The basic idea behind the ODE
approaches to supervised learning is to tune f so that the
map z(t) can produce nonlinear function needed to fit the
data.

In fact, (Chen et al. 2018) reveals that deep neural net-
works can be considered as discrete ODE, and their itera-
tive updates can be regarded as an Euler discretization of a
continuous transformation. On the other hand, neural ODEs
are a family of deep neural network models that can be in-
terpreted as a continuous equivalent of Residual Networks
(ResNets) or Recurrent Neural Networks (RNNs). To see
this, consider the transformation of a hidden state from a
layer ¢ to ¢t + 1 in ResNets or RNNss:

hiv1 = hy + fi(hy). (D

In ResNets, h; € R? is the hidden state at layer ¢ and f; :
R? — R is some differentiable function which preserves
the dimension of ;. In RNNSs, h; € R? is the hidden state at
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t-th RNN cell which update throw a function f; : R? — RY.
The difference h; 1 — h can be interpreted as a discretiza-
tion of the derivative h'(t) with timestep At = 1. Letting
At — 0, we see that the dynamically hidden state can be
parameterized by an ODE: lima ;¢ W = f(h,t).

This solution of z(t) or h(t) can be solved using an
ODE solver with many sophisticated numerical methods to
choose, e.g. linear multi-step methods, Runge-Kutta meth-
ods (Runge 1895; Kutta 1901) and adaptive time-stepping.
Above methods could be helpful on deep learning, since they
could adaptively choose the layers of network. It should be
noted that here our concern is not the solver itself, but rather
the representation of the data. So we refered to the solver as
a black-box differential equation solver:

2ty = ODEsolve(zy,, f, 07, t1, -+ ,tn)  (2)

Ztla"'

where ¢ is the parameters of f.

In next section, we show how the ODEs are utilized to
model the dynamics of users’ interest evolution, and how to
make ODE:s stable while training.

The Deep Time-Stream Framework

In this section, we describe the details of our proposed
model. We firstly formalize CTR as a binary classification
problem. Given a sample of data z = (2Y,2",27) €
X, where (Y, 2", 2¥) denotes the collection of the con-
catenate of different fields’ one-hot vectors from User be-
havior, target Video and user Profiles, respectively. More-
over, each field contains a list of click behaviors, 2
[(v1,¢1); (v2,c2); -5 (v, en)], in which 2V = (v;, ¢;) de-
notes the video v; and corresponding category c; at the i-th
behaviors that happens at time ¢;, N is the number of user’s
history behaviors; 2V denotes the target video and its cat-
egory V¥ = (vni1,cn+1), and the equation is established
because the target video should happen as the (N+1)-th user
click, the predicting time of this potential click is refers to as
next time t 1. Thus, we unify the user historical behaviors
and target video on the time-stream by the their timestamps
denoted as t, t = [ti,ta, - ,tn,tn11). User Profiles z¥
contains useful profile information such as gender, age and
so on. Label y € Y indicates whether the user click the spe-
cific video, ¥y = 1 means click while y = 0 means not.
The goal of CTR is to learn a mapping h € H from X to
Y, where H denotes the hypothesis space, h : X — Y to
predict whether the user will click the video. The prediction
function /h can be learned by minimizing the following ob-
jective function:

min

S Llh(ait),y)

(z,y)€XXY

3)

where L is the empirical loss which will be introduced in
detail in following subsections.

General Framework

Our proposed framework DTS could be regarded as Base-
Model plus Time-Stream Module, as shown in Figure 2.
BaseModel is referred to an existing deep CTR model such
as DNN (Covington, Adams, and Sargin 2016), PNN (Qu et
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Figure 2: DTS = BaseModel + Time-Stream Module. The
Time-Stream Module introduces continuous-time informa-
tion and by a fuse operation the base inputs are enhanced
that can be feed into basemodel to get a more precise result.

al. 2016) and DIN (Zhou et al. 2018b). Aside from the base-
model, Time-Stream Module collects the timestamps of all
the events, including a user’s historical click time in the past
and the user’s potential click time in the predicting moment.
Note that the latter part are ignored in existing CTR models.
Moreover, Time-Stream Module tracks the latent interest
evolution by an ODE to calculate an enhanced input which
introduces the continuous-time information while preserves
the dimensions of base inputs. Thus, any deep CTR model
can be used as the BaseModel in our DTS framework with-
out changes made. Compared with the BaseModel that out-
put an click probability on the event of user click item, DTS
can improve the output by predicting the click probability on
the event of user click item at given time.

In the following subsections, we would explain the struc-
ture of BaseModel, and introduce the Time-Stream Module
that are used for capturing interests and then modeling inter-
est evolution.

BaseModel

Most deep CTR models are built on the basic structure of
Embedding-Pooling-MLP. The basic structure is composed
of several parts:

o Embedding Embedding layer is the common operation
that transforms the sparse feature into low-dimensional
dense feature. zU, 2YV and 2" are embedded as
(e1,...,en), ent1 and ef’, respectively. In the field of
User Profiles, the sparse features embedded as eV

e Pooling The embedding vectors are fed into pooling op-
eration. eV = Pooling(eq, ...,en) where eV refers to
as user vector. The pooling can be sum pooling, average
pooling, or specially designed attentive pooling(Zhou et
al. 2018b).

e Multilayer Perceptron (MLP) All these pooled vectors
from different categories are concatenated. Then, the con-
catenated vector is fed into a following MLP for final pre-
diction.

Target Loss A widely used loss function in deep CTR
models is negative log-likelihood function, which uses the
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label of target item to supervise overall prediction:

Liarger = Z yilog p(w;) + (1 — i) log(1 — p(x1))
“4)
where z; = (2¥,2),2F) € D, D is the training set of

size N. y; € {0,1} represents whether user clicks target
item. p(x) is the output of network, which is the predicted
probability that the user clicks target item.

Time-Stream Module

Users’ interests are dynamic over time rather than static.
BaseModel obtains a representation vector of user interest
by a pooling operation over the clicked item feature but ig-
nores the time information. The absence of dynamic pattern
restricts the power of user behavior feature, which plays a
key role in modeling user interests since the user clicked
items are the expression of a user’s interest at the corre-
sponding time. For BaseModel, the lack of ability for mod-
eling continuous pattern leads to the inaccuracy to model the
dynamic user interest.

Is there an elegant way to represent a user’s real-time in-
terests and model the dynamic interest evolution pattern?
The nature of continuous-time evolving inspires us to design
a novel method named Time-Stream Framework that lever-
aging ODE to model the dynamic interest trace. ODE have
been applied to a wide variety of fields such as physics, biol-
ogy, chemistry, engineering and economics and if the ODE
can be solved, given an initial point it is possible to deter-
mine all its future positions, a collection of points known as
a trajectory or orbit. In this paper we novelly using ODEs as
hypothesis class that the trajectory denotes a latent interest
evolution trace. As mentioned in Eq 1, ODE can be a general
form of RNNs and RNNs can be thought of as a discretiza-
tion of the continuous ODE. There are several advantages
with continuous ODE approach such as the flexible evalua-
tions, which corresponds to choosing the RNN lengths adap-
tively. Moreover, we can also use advanced numerical meth-
ods for training, such as the multi-grid method or the parallel
shooting method. Figure 3 illustrates the architecture of the
Time-Stream Module.

In details, to represent the interest evolution by a la-
tent trajectory of ODE, a differentiable function f is used,

dz t) =f (2(t),t;0;) denotes the interest evolution rate,
Where 0 is the parameters of f. Thus, given a initial state
zt, the trajectory of ODE can be solved using a solver men-
tioned in Equation 2:

Rty RNy RNy

5
= ODZEsolve(zy,, f,07,t1,- - o

NS EN+1),

in which, where zy,, -+, 24y, 245, 18 the solution of ODE
which describes the latent state of dynamics f at each obser-
vation time ¢, - - - , tx, tx41. Since similar people are more
likely to have similar interest evolution pattern, we construct
a mapping ¢ that transforms the user profile embedding e’
to the latent time-stream space to obtain the initial value:
21, = g(ef’;0,), the mapping g is a linear transformations
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with parameter ¢, and serves as an encoder from profile em-
bedding space to the latent time-stream space.

On the other hand, ¢ is the decoder that transform la-
tent time-stream feature z;, to the video embedding-spaned
space. ¢(z,;0) is the adjustment or supplementary of be-
havior feature which carries additional behavioral evolving
patterns. For the adjustment of user behavior feature, we
have: &; = e; + ¢(z,;04). where i = 1,2, ..., N. The fuse
operation can be set as other operation such as concatena-
tion, but in this work the add operation are used which keeps
the adjustment and original feature equally contribute. For
the target video feature, we have € = eny14+@(zy 3 05).

The enriched behavior feature ¢V = (€,¢é,...,en),
video vector ¢V and profile feature e’ was then send into
the rest part of Base CTR model.

Using ODEs as a generative model allows us to make pre-
dictions for arbitrary time, whether in the past or in the fu-
ture since the on timeline are continuous. The output of ODE
can be computed by a black-box differential equation solver,
which evaluates the hidden unit dynamics wherever neces-
sary to determine the solution with the desired accuracy.

The choice of function f The latent function f needs to
be specified and different types of functions can be used to
meet different requirements. Next, we will introduce several
approaches that leverage different type of ODE function f
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to model the process of interest evolution.

e Simple form. This is the simplest form of function f un-
der the assumption that f is the function of independent
variable t:

dz

ﬁ—mmdw:/Amw+a ©6)

to

fzt) =

where A is a control function, and C' is a constant that
can be solved given a initial state. This type of prob-
lem may have an analytical solution that by computing
z(t) directly. If so, there is no extra cost needed to solve
the ODE numerically. A special case is linear differential
equation with constant coefficients f(z,t) = A(t) = «
which means the latent state discount at rate «. Thus
zi, = a(t; — to) + 2, holds for all ¢. The insight is that
the monotonous trajectory of f mimic the characteristic of
user interest: is mainly influenced by recent interests, so
one should reduce the impact of early interest and increase
the impact of the user’s recent behavior. This special case
is extremely simple but achieves surprising performance
shown in experiment.

Complex form. The aforementioned simple form of f
cannot express user’s diverse time-series pattern. To over-
come this limitation, another choice is to parameterize the
derivative of the dynamics f using a neural network which



improves the expressive ability of model greatly. In this
paper, a two layer neural network with sigmoid activation
unit is used: f (z) = o(ws - o(wy - 2+ by) + ba),

where w1, wa, by, ba are the linear parameters and o (.) is
the activate unit. It is hard to obtain an analytical solution
in this form of f. The solution on z,, -, zyy, 2y, 18
computed using a numerical ODE solver mentioned in the
Background.

Guide Loss The aforementioned functions can be solved
on a single call to ODE toolbox and modern ODE solvers
provide guarantees on the growth of approximation error.
However, we have several concerns: 1) When the form of
function becoming complicated, the behavior of ODE may
encounter situations of explodes, converges to stationary
states or exhibits chaotic behavior. This may explain some
of the difficulties, e.g., the vanishing and explosion of gra-
dients encountered in the training of deep neural networks.
2) On the other hand, since the click behavior of target item
is triggered by users’ interest evolution, the label only indi-
cates the last of click behavior 2, ,, while history state 2;
can not obtain proper supervision.

To alleviate these problems, we propose guide loss,
which uses behavior embedding e; to supervise the learn-
ing of latent functions. To do this, inspired by the loss of
Word2Vec (Mikolov et al. 2013), we build a small network
that push the decoded hidden state ¢(z;,) more close to the
next behavior e;  than a random negative sampled instance
e"®d_Guide loss can be formulated as:

1 i pi
Eguide(pvvvn) = _N Z(Uz “pi v ong — IOg(#))v
i

Vi - Ny
pi = FC(ei+1), vi = FC(P(2t;)), ni = FC(emend)y.

where F'C'(z) is a fully connected layer with PRelu as acti-
vation. The overall loss in our model is:

L= ['target + A‘C'guide (7)

where L is the overall loss function, L4 gt is introduced in
Eqution 4 and A is the hyper-parameter which balances the
interest representation and CTR prediction.

Overall, the introduction of guide loss has several advan-
tages: 1) from the aspect of interest learning, the introduc-
tion of guide loss helps each hidden state of ODE represent
interest expressively. 2) As for the optimization of ODE,
guide loss reduces the difficulty of backpropagation when
ODE models long history behavior sequence. 3) Guide loss
gives more semantic information for the learning of the em-
bedding layer, which leads to a better embedding matrix.

Training and inference At the training phase, our model
is equipped with the ability to reload the parameters of the
BaseModel. Then all the weights are finetuned to get a quick
convergence. We would achieve a safe-start by initializing
the parameters of f and initial value to zeros, such that the
trajectory of ODE is a constant of zero. Thus, at the start of
training, the overall model stay the same as the original CTR
base model.

At the inference phase, we could predict the user interest
evolution at the arbitrary recommendation time £, since
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we leverage ODE solver to integrate the function f at next
time ¢ 1. In industrial, DTS would be efficient: When pre-
dicting multiple CTR at ¢y 41,¢tNy42 and x4, there is no
need to compute the hidden trajectory from scratch. It is easy
to integrate the function f from ¢y to ¢y, that is cheap for
computation.

Experiments

To evaluate the effectiveness of the Deep Time-Stream
framework, we conduct experiments on public datasets and
industrial dataset. In these experiments, the proposed Time-
Stream Module is applied on multiple BaseModels. Note
that DTS is a framwork that inheriting the base CTR model
then extending the time-stream module. Therefore the ef-
fectiveness of DTS should be reflected in the improvement
compared with BaseModel. The comparison metrics will be
introduced below.

Datasets and Experimental Settings

We use both public and industrial datasets to verify the effect
of the Time-Stream Module.

Public Dataset Amazon Dataset contains product reviews
and metadata from Amazon, which is used as benchmark
dataset in many works (He and McAuley 2016; McAuley
et al. 2015). We conduct experiments on a subset named
Electronic, which contains 192,403 users, 63,001 goods, 801
categories and 1,689,188 samples. For User Behavior, fea-
tures include user-reviewed goods_id list, category_id list,
and corresponding timestamp list. For Target Item, features
include target goods_id, category_id and the next time that
denote when this click prediction is made. Dataset collects
user behaviors that happens at time ¢1,t2, - - - , x5, where IV
is the number of users history behaviors. DTS can naturally
handle different N, which corresponds to choosing the RNN
lengths adaptively. Since some baselines contain RNN, for
all dataset, the max N is set as 100 to keep the comparison
fair. The task is to predict the (k + 1)-th reviewed goods by
making use of the first k reviewed goods. Training dataset is
generated with k = 1,2, --- | N — 2 for each user. In the test
set, we predict the N-th good given the first N — 1 reviewed
goods.

Industrial Dataset The industrial dataset is constructed
by user playlog and profile information from a video plat-
form. Similar to the public dataset, we collect features in-
cluding video_id, cate_id, user-watched video_id list and
cate_id list. Overall, 1.7 billion samples has been collect in-
cluding 1.4 million users, 6.3 million videos, 278604 cate-
gories. For Profile features, user profiles such as gender, age,
activity score are used. Training dataset is generated with
k=1,2,--- N —2foreach user. In the test set, we predict
the N-th video given the first NV — 1 watched videos.

Compared Methods We set BaseModels as some main-
stream CTR prediction methods to evaluate the effectiveness
of the Time-Stream framework. The BaseModels are used
as:



e DNN (Covington, Adams, and Sargin 2016) DNN takes
the setting of Embedding&Pooling&MLP and sum pool-
ing operation was used to integrate behavior embeddings.

e Wide&Deep (Cheng et al. 2016) Wide&Deep consists of
two parts: its deep model is the same as DNN, and its wide
model is a linear model.

e PNN (Quetal. 2016) PNN uses a product layer to capture
interactive patterns between interfield categories.

e DIN (Zhou et al. 2018b) DIN uses the mechanism of at-
tention to activate related user behaviors, which can be
regarded as an attentive Pooling.

e DIEN (Zhou et al. 2019) DIEN uses GRU with attentional
update gate to model the user interest pattern.

Metrics In CTR prediction field, AUC is a widely used
metric (Fawcett 2006). It measures the items of order by
ranking all these with predicted CTR, including intra-user
and inter-user orders. A variation of user weighted AUC
is introduced in (Zhu et al. 2017; He and McAuley 2016)
which measures the items of intra-user order by averaging
AUC over users and is shown to be more relevant to online
performance on CTR prediction. We adopt this metric in our
experiments. For simplicity, we still refer to it as AUC. Al-
though there are other metrics are widely used in recom-
mender system such as MRR @k or Recall @k, but CTR task
with AUC metrics is our prior concern, i.e., & = 1. Since
in industrial video recommendation, there are some key po-
sitions that requires high CTR, for example, the first rec-
ommended video take over most of the user attention and
straight directly impact user retention. The metric is calcu-
lated as follows:

o #impression; x AUC;

i #impression;
where n is the number of users, #impression; and AUC;
are the number of impressions and AUC corresponding to
the i-th user. Besides, Relalmpr metric is used to mea-

sure relative improvement over models, and Relalmpr is
defined as below:

AUC =

AUC(measured model)
AUC (base model)

Experiment Settings The embedding size of video and
category are both 18, which then been concated as an em-
bedding of 36. The dimension of user profile embedding is
36. Mapping ¢ is a linear transformation with transparent
matrix of size 36 x 36, and mapping ¢ is a two fully connect
layers with size 72 and 36. The dimension of FC in guide
loss is set to 18. A is set to 0.5. The Runge-Kutta methods is
used as ODE solver. We follow the setting of BaseModels as
their suggest. We train DTS on a GTX 1080ti for 5 epochs,
with batch size set to 128.

RelaImpr = ( —1) x 100%

Results on Public Dataset

Remind that Deep Time-Stream framwork = BaseModel +
Time-Stream Module. Thus, the effectiveness of the im-
provement brought by the Time-Stream Module should be
verified.
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Table 1: Model Comparison with AUC on Amazon Dataset.

BaseModel DTS  Relalmpr
DNN 0.7686 0.7789 1.34%
PNN 0.7799 0.8304  6.48%
Wide&Deep 0.7735 0.8390  8.47%
DIN 0.7880 0.8508  7.97%
DIEN 0.8453 0.8981 6.25%

As shown in Table 1, there exists some facts that: (1) our
proposed DTS clearly outperforms all the raw model on five
BaseModel, which confirms the capacity of our model in
learning impact of time. (2) for the BaseModels, PNN could
capture interactive patterns between inter-field categories,
which beats DNN and Wide&Deep. However, above three
BaseModels use average pooling to compress user features
into a fixed-length vector, which brings a difficulty to cap-
ture user’s diverse interests effectively from rich historical
behaviors. Moreover, DTS could generate the better repre-
sentation of user behaviors by considering time-stream in-
formation, and achieves improvements up to 8.47%, which
beats the performance of raw DIN. (3) DIN with Time-
Stream Module outperforms DIEN. DIN leverages attention
mechanism and improves the expressive ability of the model
greatly. The follow-up work DIEN based on DIN further
tries to capture the interest evolving process. Compared with
DIEN, DIN with Time-Stream Module considers continu-
ous time-stream information, and it could help CTR model
to learn more powerful user representation compared with
previous works.

Results on Industrial Dataset
We further conduct experiments on the dataset of the real

short video platform. In practice, the max length of history
behaviors is set as 100.

Table 2: Model Comparison with AUC on Industrial Dataset.

BaseModel DTS  Relalmpr
DNN 0.6385 0.6628 3.81%
PNN 0.6601 0.6763 2.45%
Wide&Deep 0.6478 0.7010 8.21%
DIN 0.7008 0.7268 3.72%
DIEN 0.7023 0.7412  5.54%

As shown in Table 2, our Time-Stream framework could
improve all of the BasedModels. The BaseModels of DNN,
PNN, and Wide&Deep are widely used in industry and build
on large scale distributed system, and the change of model
would make a great effort. Our DTS could easily apply on
these model with no changes made to the original architec-
ture, and it brings at least 3% improvement. It suggests that
our DTS has great value of practical application. Similar
to Amazon Dataset, DIN with Time-Stream Module outper-
forms raw DIEN, which confirms the capacity of our model.



Table 3: Ablation studies with AUC on the industrial dataset. ‘““‘w” is the short for “with” and “w/0” is the short for “without”.

BaseModel w/o adaptive step (RNN) w simple form  w/o guide loss DTS
DNN 0.6385 0.6532 0.6389 0.6441 0.6628
PNN 0.6601 0.6703 0.6721 0.7095 0.6763
Wide&Deep 0.6478 0.6948 0.6802 0.7007 0.701
DIN 0.7008 0.7002 0.7012 0.7096 0.7268
DIEN 0.7023 0.7021 0.7045 0.7116 0.7412
Model analysis instead isolated. The dynamic information also could be re-

In this subsection, we will show the effect of adaptive step,
function form and guide loss, respectively.

Effect of adaptive step To verify whether adaptive step
helps to construct better representation, we conduct abla-
tion study on fixing the step of hidden dynamics to demon-
strate the effectiveness of adaptive step. From Table 3, with-
out adaptive step would perform worse than origin. The
DTS with fixed step is equivalent with RNNs, when At; =
tiv1 —t;, ¢ = 1,2,..., N are all constants. The time interval
are not considered by RNN. Thus, compared with fixed step,
adaptive step could evaluate the step of f whenever necces-
sary. Besides, it could handle incorporate data which arrives
at arbitrary time. Hence, our DTS could learn more accuracy
users’ interests, such that achieving better performance.

Effect of function form When we use simple form of
function f discussed in General Framework, the perfor-
mance is better than BaseModel as shown in Table 3. How-
ever, the improvement is still limited compares with the
complex form that has more powerful expression.

Effect of guide loss Moreover, we further explore the ef-
fect of guide loss. It uses non-click items as negative in-
stances for enhancing discrimination. As shown in Table 3,
guide loss brings great improvements most of all BaseMod-
els, which reflects the importance of supervision information
when learning the representation of latent user interest.

Related Work

By virtue of the strong ability of deep learning on feature
presentation and combination recent CTR models transform
from traditional linear or nonlinear models(Friedman 2001;
Rendle 2010) to deep models. Most deep models follow
the basic paradigm of Embedding, Pooling and Multi-layer
Perceptron (MLP) (Covington, Adams, and Sargin 2016).
Based on this paradigm, many models pay attention to
the interaction between features: Wide&Deep (Cheng et al.
2016) combines low-order and high-order features to im-
prove the power of expression; PNN (Qu et al. 2016) pro-
poses a product layer to capture interactive patterns between
interfiled categories. DIN (Zhou et al. 2018b) introduces the
mechanism of attention to activate the user historical behav-
iors w.r.t. given target item locally, and captures the diversity
characteristic of user interests successfully.

Beyond that, several methods (Wu et al. 2017; Hidasi et
al. 2015; Yuan et al. 2019) are proposed for capturing dy-
namic information, since user behaviors are usually dynamic
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garded as a kind of context information in recommendation
system, which is distinguishable from features describing
the underlying activity undertaken by the user within the
context (Dourish 2004). Moreover, the sequential models
usually get the better performance on capturing dynamic in-
formation. These works regard user-item interactions as a
sequence and try to represent sequential user behaviors. (Yu
et al. 2016) uses the structure of the recurrent neural net-
work (RNN) to investigate the dynamic representation of
each user and the global sequential behaviors of item pur-
chase history. Some methods use RNNs to capture dynamic
information in recommendation system, e.g. RRN (Wu et
al. 2017), GRU4REC (Hidasi et al. 2015), NextItNet (Yuan
et al. 2019). (Zhou et al. 2018a) uses an attention-based
sequential framework to model heterogeneous behaviors.
DIEN (Zhou et al. 2019) leverages GRU and designs an at-
tentional update gate (AUGRU) to model the dependency
between behaviors . Although improving the performance
compared to non-sequential approaches, these RNN based
methods still are no enough to represent the user interest
evolution without considering time-stream information.

Recent years, some studies (Chen et al. 2018; Weinan,
Han, and Li 2019) go further to explore the possibility
of producing nonlinear functions using continuous ODEs,
pushing the discrete approach to an infinitesimal limit. They
introduce the numerical differential equations to the design
of deep neural network. (Weinan, Han, and Li 2019) shows
many effective networks, such as ResNet, PolyNet, Frac-
talNet and RevNet, can be interpreted as different numeri-
cal discretizations of differential equations. Compared with
deep neural networks, there are several advantages with a
continuous approach, including to flexible choose the num-
ber of evaluations on recurrent networks, well-studied and
computationally-cheap numerical ODE solvers. However, to
the best of our knowledge, there not exists previous works
that leveraging ODE:s to represent user interest evolution on
CTR model.

Conclusions

In this paper we propose a novel Time-Stream framework,
that adaptively mines the users’ continuously evolving in-
terests from rich historical behavior, by leveraging neural
ODE that parameterizes the derivative of the hidden state
using a neural network. Unlike recurrent neural networks,
which require discretizing observation and emission inter-
vals, continuously-defined dynamics can naturally incorpo-
rate data which arrives at arbitrary time. We also propose
guide loss to control the error of ODE solver. Extensive ex-



periments show that our model can generate a more precise
user feature at an arbitrary time.
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