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Abstract

Temporal abstraction is a key requirement for agents making
decisions over long time horizons—a fundamental challenge
in reinforcement learning. There are many reasons why value
estimates at multiple timescales might be useful; recent work
has shown that value estimates at different time scales can be
the basis for creating more advanced discounting functions
and for driving representation learning. Further, predictions at
many different timescales serve to broaden an agent’s model
of its environment. One predictive approach of interest within
an online learning setting is general value function (GVFs),
which represent models of an agent’s world as a collection of
predictive questions each defined by a policy, a signal to be
predicted, and a prediction timescale. In this paper we present
Γ-nets, a method for generalizing value function estimation
over timescale, allowing a given GVF to be trained and queried
for arbitrary timescales so as to greatly increase the predictive
ability and scalability of a GVF-based model. The key to our
approach is to use timescale as one of the value estimator’s
inputs. As a result, the prediction target for any timescale is
available at every timestep and we are free to train on any
number of timescales. We first provide two demonstrations
by 1) predicting a square wave and 2) predicting sensorimotor
signals on a robot arm using a linear function approximator.
Next, we empirically evaluate Γ-nets in the deep reinforce-
ment learning setting using policy evaluation on a set of Atari
video games. Our results show that Γ-nets can be effective for
predicting arbitrary timescales, with only a small cost in accu-
racy as compared to learning estimators for fixed timescales.
Γ-nets provide a method for accurately and compactly mak-
ing predictions at many timescales without requiring a priori
knowledge of the task, making it a valuable contribution to on-
going work on model-based planning, representation learning,
and lifelong learning algorithms.

Value Functions and Timescale

Reinforcement learning (RL) studies algorithms in which an
agent learns to maximize the amount of reward it receives
over its lifetime. A key method in RL is the estimation of
value—the expected cumulative sum of discounted future
rewards (called the return). In loose terms this tells an agent
how good it is to be in a particular state. The agent can then
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Figure 1: Training γ-nets. Values are estimated by provid-
ing state and timescale, γ, as inputs to the network param-
eterized by weights w. An agent in state S takes action A
and transitions to state S′ receiving the new target signal C.
The agent selects a set of timescales Γt on which to train
and for each γk ∈ Γt computes values V (S, γk;w) and
V (S′, γk;w). For each γk, the TD error is calculated accord-
ing to δk = C + γkV (S′, γk;w) − V (S, γk;w). The TD
errors are then collected and used to update w using a chosen
TD learning algorithm, such as TD(λ) or GTD.

use value estimates to learn a policy—a way of behaving—
which maximizes the amount of reward received.

Sutton et al. (2011) broadened the use of value estimation
by introducing general value functions (GVFs), in which
value estimates are made of other sensorimotor signals, not
just reward. GVFs can be thought of as representing an
agent’s model of itself and its environment as a collection
of questions about future sensorimotor returns; a predictive
representation of state (Dayan 1993). A GVF is defined by
three elements: 1) the policy, 2) the cumulant (the sensorimo-
tor signal to be predicted), and 3) the prediction timescale, γ.
Considering a simple mobile robot, examples of GVF ques-
tions include “How much current will my motors consume
over the next 3 seconds if I spin clockwise?” or “How long
until my bump sensor goes high if I drive forward?”

Modeling the world at many timescales is seen as a key
problem in artificial intelligence (Sutton 1995; Sutton, Pre-
cup, and Singh 1999). Further, there is evidence that humans
and other animals make estimates of reward and other sig-
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nals at numerous timescales (Tanaka et al. 2016). This paper
focuses on generalizing value estimation over timescale. Our
work can be seen as directly connected to the concept of
nexting, in which animals and people make large numbers of
predictions of sensory input at many, short-term, timescales
(Gilbert 2006). Modayil, White, and Sutton (2014) demon-
strated the concept of nexting using GVFs on a mobile robot.
Until now, value estimation has generally been limited to a
single fixed timescale. That is, for each desired timescale, a
discrete and unique predictor was learned. However, there are
situations where we may desire to have value estimates of the
same cumulant over many different timescales. For example,
consider an agent driving a car. Such an agent may make
numerous predictions about the likelihood of colliding with
various objects in its vicinity. The agent needs to consider the
risk of collisions in both the near term and far term and the
relevance of each may change with the speed of the car. If
the engineer knew which timescales would be needed ahead
of time they could design them into the system, but this is
not the case for complex settings.

Here we present a class of algorithms which enables the ex-
plicit learning and inference of value estimates for any valid
fixed discount. The key insights to our approach are: 1) the
timescale can be treated as an input parameter for inference
and learning and 2) the estimated bootstrapped prediction
target for any fixed timescale is available at every timestep.
We demonstrate Γ-nets in the policy evaluation setting: 1)
predicting a square wave, 2) predicting sensorimotor signals
on a robot arm, 3) predicting reward in Atari video games.

The ideas behind our approach are based on work by
Schaul et al. (2015) which generalized value estimation
across goals by providing a goal embedding vector as in-
put to the value network. In contrast, our approach provides
the discount, γ as input. Xu, van Hasselt, and Silver (2018)
also provide γ as input to their value and policy networks.
They present a meta-learning approach which learns the best
γ to provide to an inner policy. Here we focus on determining
what is necessary to effectively train a value network to train
over timescale. Additionally, our algorithm trains on multiple
timescales simultaneously.

Background
We model the environment as a Markov Decision Process. At
each timestep t the agent, in state St ∈ S , takes action At ∈
A according to policy π : S × A → [0, 1] and transitions
to state St+1 ∈ S according to the transition probability
p(·|St, At). In the traditional RL setting the agent receives
a reward Rt+1 ≡ R(St, At, St+1) ∈ IR. The agent tries to
learn a policy which maximizes the cumulative reward it
receives in the future, which is defined as the return: Gt =
Rt+1 + γRt+2 + γ2Rt+3 + . . .. In the case of GVFs we
simply substitute our signal of interest, the cumulant, C for
reward, R. The term γ ∈ [0, 1) is referred to by several names
including the timescale, the continuation function and the
discount; it represents the amount of emphasis applied to
future rewards and is the focus of this paper.

A value estimate is simply the expectation of the return:
Vπ(s) = Eπ

[
Gt|St = s

]
. Temporal difference (TD) learning

is a common class of algorithms used in RL for learning an

approximation of value (Sutton and Barto 1998). Estimation
weights are typically trained by semi-gradient descent using
the TD error: δt = Ct+1 + γV (St+1)− V (St).

While simple domains can be represented using tabular
lookup, complex settings in which the state space is very large
or infinite must use function approximation (FA) methods to
estimate the value as V (s;w), where w is a set of weights
parameterizing the network. Function approximation has the
advantage that states are not treated independently, but rather,
a learning step updates related states as well, allowing for
generalization across state-space.

Generalizing over Timescale

Our goal is to predict the value function for any discount
factor γ. While the GVF specification allows for γ that are a
function of the transition, here we focus solely on the case
of fixed timescale. To achieve that goal, we propose Γ-nets:
an architecture for value functions that operates not only on
the state, but also the desired target discount factor γk (see
Figure 1). On each transition the network is trained on many
γk ∈ Γt values. Thus, the Γ-net learns to generalize over
arbitrary γk values. Generating the error function for a γ-net
is straightforward. For any single γk ∈ Γt, the TD error is:

δt;γk
= Ct+1 + γkV (St+1, γk)− V (St, γk). (1)

The total gradient can then be summed over all γk ∈ Γ and
applied to update the network.

Choosing Γt must be done with care. A naive approach
might uniformly sample γk ∈ [0, 1). However, value func-
tions change non-linearly with γ. To illustrate this property,
consider that γ can be viewed as the probability of continua-
tion, allowing us to derive the expected number of timesteps
(ts) until termination of the return as:

τ =
1

1− γ
. (2)

This relationship is non-linear for large values of γ. Thus,
naively drawing γk from a uniform distribution would tend to
favor very short timescales. Conversely, drawing uniformly
from τ would put little emphasis on short timescales. While
the best method for selecting γk for training is outside the
scope of this paper, we provide some comparisons in our
experiments. Note that throughout this paper we will refer
broadly to the word timescale for which we will use the
parameters γ or τ as appropriate. It should be assumed that
these terms can be used interchangeably using Eq. (2).

The representation of timescale used for input to the net-
work may affect the network’s ability to represent differ-
ent timescales. The γ scale compresses long timescales but
spreads short ones and in the τ scale we have the opposite
effect. Thus, providing both γ and τ as input may allow for
good discrimination at all timescales.

Finally, the magnitude of returns at different timescales
can be very different. To prevent large magnitude returns
from dominating the network weights we need to scale
the returns in some way. A general approach is given by
van Hasselt et al. (2016), in which they continually nor-
malize the target to have a mean of 0 and variance of
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1. This allows them to handle rewards of varying magni-
tude. Here, we instead focus on keeping the magnitude of
the returns, as a function of timescale, in the same ball-
park. To do this we learn the value of the scaled cumulant,
f(s, γk;w) = Eπ[

∑
t=0 γ

t
k(1 − γk)Ct+1|S0 = s] and then

define the unscaled value as V (s, γk;w) = f(s,γk;w)
(1−γk)

. With
these definitions we can then simply scale the TD error as:
δt;γk

= (1− γk)(Ct+1 + γkV (St+1, γk)− V (St, γk)).

Experiments
We first provide two demonstrations using linear function
approximation (LFA): 1) predicting a square wave signal, 2)
predicting joint current on a robot arm. Finally, we empiri-
cally evaluate Γ-nets in a deep learning setting by looking at
performance on Atari games. Additional results and experi-
mental details are available from Sherstan et al. (2019).

Square Wave

Our target signal was a repeating square wave 100 timesteps
in length with a magnitude of {−1, 1} (Figure 2). Inputs
were normalized and then tilecoded (Sutton and Barto 1998)
with 20 tilings of width 1.0, 20 tilings of width 0.5 and 30
tilings of width 0.1. Tiling positions were randomly shifted
by small amounts at the time of initialization for each run.
Value estimates were computed using LFA on the output of
the tilecoding and the final layer of weights was updated
using TD(0) (Sutton and Barto 1998). We also evaluated the
impact of loss scaling. Results are shown in Figure 3. Unless
otherwise stated: 1) timescale inputs were given on both the γ
and τ scales simultaneously, 2) Γt was 6 elements long, with
τ ∈ {1, 100} always included and two additional timescales
drawn uniformly from each of the γ and τ timescales, 3) loss
scaling was used.

Predictions on a Robot Arm

In this experiment a human operated the shoulder rotation and
elbow flexion joints of a robot arm by joystick. The task was
to maintain contact between a rod held by the robot and the
inside of a wire maze while moving in a counter-clockwise di-
rection (Figure 4a). Fifty circuits of the maze were completed
in approximately 12 minutes. Network inputs were the nor-
malized positions of the shoulder and elbow servos as well as
both γ and normalized τ . Inputs were tilecoded (Sutton and
Barto 1998) with 100 tilings of width 1.0 into a space of 2048
bits and a bias unit was added giving a feature vector of 2049
bits. Value estimates were computed by LFA and trained by
TD(0). On each timestep Γt was generated from τ ∈ [1, 100]
ts. The upper and lower bounds were included in the set and
one γ and 29 τ were sampled uniformly from their respective
scales for a total of 32 timescales. We receive updates from
the robot at 30 Hz (1 ts ∼ 0.03), because of this we expect
longer timescales to be more important, thus we focus sam-
pling on the τ scale. Loss prescaling was used. A baseline
predictor was also trained on a fixed timescale using the same
configuration excepting the inclusion of timescale input. Fig-
ure 4b shows predictions for shoulder joint speed. The Γ-net
matches the true return well. In general, we found the Γ-net
performed better than the baseline using this configuration.

Figure 2: Square-wave Predictions. Predictions (solid) against
the true return (dashed) after 50k ts of training using both
γ and τ as input, scaling the loss and drawing two γk each
from γ and τ scales plus τ = 1, 100 . For display purposes all
predictions are normalized by (1− γ). We see good accuracy
across all timescales.

Atari Environment

We examined the performance of Γ-nets under policy eval-
uation in the Arcade Learning Environment (ALE) (Belle-
mare et al. 2015). The agent’s policy was trained using the
Dopamine project’s (Castro et al. 2018) implementation of
the Rainbow agent (Hessel et al. 2018), which uses the same
network architecture as the DQN agent (Mnih et al. 2015),
but adds prioritized replay (Schaul et al. 2016), n-step re-
turns, and distributional representation of the value estimates
(Bellemare, Dabney, and Munos 2017). The results presented
in the main body of the paper are for the game Centipede
with a Rainbow agent trained for 25 million frames, which
we will refer to as Centipede@25M. Additional Atari games
can be found in Sherstan et al. (2019).

Figure 5 shows predictions on the early transitions of a
single episode. For this episode the expected return was es-
timated by running 2000 Monte Carlo rollouts from each
state visited along the way. The solid lines indicate the Γ-net
predictions after training for 20 M frames (using the direct
configuration which will be described in following sections).

Training The prediction networks were trained using tran-
sitions generated by pretrained policies. Agents select actions
using ε-greedy over their Q-values. During policy training
ε = 0.001, but for generating the samples used for training
the Γ-nets we use an evaluation mode where ε = 0.0001.
Transitions were generated sequentially and the environ-
ment was reset at the end of each episode or 27,000 steps,
whichever came first. Transitions were saved to file in se-
quence and for each experiment they were reloaded in the
same order. For each transition, we saved the reward and the
activation of the final core layer of the agent’s network φ,
which serves as the input to the Γ-nets. The Γ-net network
consisted of five fully-connected layers of sizes [512, 256,
128, 16, 1], with all but the final layer using ReLU activation.
Training of the Γ-nets proceeded as if the data was generated
in an online fashion. That is, the agent would read in transi-
tion samples from the file, add them to a prioritized replay
buffer, and then train by sampling from the replay buffer.
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(a) MSE (b) Average Norm MSE

Figure 3: Square Wave. Each training run lasted for 50k timesteps and for each series 100 different runs were made. We show
the normalized errors as a function of the prediction timescale, given on the τ -scale. Results are averaged over the last 5k
timesteps. For each τ we normalize by the maximum mean error across the series in the plot. Inputs) Comparing the effect of
using different timescale representations as input. As expected, providing timescale as γ did better than τ on the short timescales,
but worse on the longer timescales, although this cross over occurred at a much longer timescale than expected. Providing both
γ and τ did the best of all, producing the lowest errors across all probe timescales as well as providing the lowest variability.
Distribution) Here we compare the effects of drawing γk from different distributions. Γt was 6 elements long, always including
τ ∈ {0, 100}, and sampling the 4 additional timescales. Excluding τ ∈ {0, 100} we see that drawing all γk from the γ scale
performs better than drawing all from τ scale at shorter time scales, but does worse at longer timescales. Drawing half from each
tends to follow the lower errors at all the timescales. Scaling) We compare the effects of scaling the cumulant. Here we see that
scaling does improve performance on the shorter timescales, but causes worse performance on the longer ones.

Newly added samples were given the highest level of priority
so that its probability of being sampled was high. Like the
policy training we train on a batch of sampled transitions, us-
ing n-step returns. To update the priorities for a given sample
in the batch we use the maximum squared loss across Γt.

A Γt of size 8 was used, which always included lower and
upper bounds of τ = [1, 100]. An additional 6 γk were drawn
on each timestep. Unless otherwise stated the sampling was

done by drawing 3 timescales uniformly each from the γ
scale on [0, 0.99) and the τ scale on [1, 100) (for τ we drew
from the integer scales). Each network was trained for 20
M frames with network weights saved every 500k frames.
Additional details can be found in Sherstan et al. (2019).

Evaluation To evaluate predictive accuracy we created a
set of evaluation points for each game. These were gener-
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(a) (b)

Figure 4: Robot Arm. a) A user controls the shoulder and elbow joints of a robot arm via joystick to move a rod counter-clockwise
around a wire maze. b) Predictions of the speed of the shoulder joint. In this snapshot the Γ-net (orange) matches the true return
(dashed blue) very well, surprisingly better than a baseline predictor (green) trained just for this timescale. Predictions and
returns are scaled by (1− γ) for display purposes.

Figure 5: Predictions on Centipede@25M for different γ from
the start of a single episode. Γ-net predictions are shown in
solid lines and the expected return, produced by Monte Carlo
rollout, is shown by the dashed lines.

ated by running the agent in evaluation mode over multi-
ple episodes. At the start of each episode an offset was ran-
domly chosen between [10, 100) steps. Then, starting at the
offset, the state of the environment and agent were saved
every 30 steps. For Centipede@25M a total of 269 evalu-
ation points were created including the episode start state.
From each evaluation points we ran 1000 episodes till ter-
mination and then computed the average return. These were
used as the baseline against which we computed our pre-
diction error. To compute the prediction error for a given
evaluation point we restored the agent’s and environment’s
state and recorded the network’s predictions for the probe
timescales [1, 2, 5, 10, 20, 40, 60, 80, 100] ts. For comparison,
we trained fixed timescale networks for each probe timescale
(plotted in fuschia). These networks used the same architec-
ture as the Γ-net, but did not provide timescale as input to
the network and only trained on the single fixed timescale.
These probe networks also used loss scaling.

We use a reference configuration of the Γ-net across the
different plots. We plot this series in black and refer to it as

direct although the legends may give it a different label to
call out the significance of its configuration for a given com-
parison. For this configuration both γ and τ were provided
as inputs to the network. Additionally, Γt was populated by
drawing samples from both γ and τ scales and loss scaling
was used. For each of the other configurations only a single
setting was modified from this reference.

Plotting We focus our evaluation on the steady-state perfor-
mance of the network, computing averages over the last 5 M
frames of the 20 M frame runs (with evaluation at every 500k
frames). Mean-squared error (MSE) for each experiment is
presented as a function of the evaluation probe timescale
given in τ (Ex. Figure 6a). For each τ we normalize across
the different series by the largest mean error. Thus, the largest
mean error for each τ is shown as 1.0. We do this to be able
to clearly show results for all the different timescales in a
single plot despite the large differences in magnitude. As a
result, series can only be directly compared within a plot, not
across plots. To rank each for comparison we provide a bar
chart (Ex. Figure 6b) which averages the normalized means
and normalized variances of the MSE. That is, we take the
normalized mean MSE for each τ and average across all τ .
Likewise we take the variance at each τ , normalize it by the
maximum variance for each τ and take the average across all
τ . Note that averaging this way is a biased approach in that it
is dependent on what probe τ are used. For example, if we
took many large τ and few small ones then our results would
give more weight to the large τ . In practice, the weighting of
errors for different timescales will be task dependent.

While conducting parameter sweeps it was observed that
a particular network configuration might produce the lowest
value of MSE but not actually be predictive. In this case the
network would learn to always output a fixed value which
captured the mean of the expected returns. Thus, we adopted
a two step evaluation process. First, we took the evaluation
points and concatenated them in sequence. We then com-
puted the correlation between their expected returns and the
predicted returns made by the network. If a configuration
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had a positive correlation then it would be considered for
comparison with other architectures. We have also included
the plots of correlation by probe timescale (Ex. Figure 6c).
Correlation values are easily interpreted with the maximum
(best) value of 1. This tells us how closely the shapes of the
target sequence and the prediction sequence match.

All series are an average over 6 seeds and the shading indi-
cates max and min values. Note, that due to the high degree
of overlap in many of the figures, color printing is required
to discern individual series. Plots taken with respect to τ are
produced by combining two different x-axes, allowing us to
make both short and long timescales discernible. This split
occurs at τ = 10 and is indicated by the vertical black line.

While our evaluation method seeks to discern differences
in performance due to the various configuration, in reality
most configurations perform similarly. In order to rank con-
figurations we first considered the MSE and then variance.

Embedding Comparison. We compare methods for com-
bining the timescale inputs with the agent’s features, φ, using
an embedding vector ν = ν(φ, γ) (Figure 6). The direct
embedding performs a concatenation, ν = [φ, γ]. Xu, van
Hasselt, and Silver (2018) learned a vector, ξ(γ), of size
16 which was concatenated with φ, which we refer to as
l embed. We also considered a Hadamard embedding in
which a learned vector, ξ(γ), the same length as φ, was
combined using element-wise multiplication with φ, that
is ν = φ � ξ (h l embed). Finally, we considered a matrix
multiplication approach in which the timescales were given
as inputs to a fully connected layer whose output was a square
matrix, Ξ(γ), with dimensions the same size as φ. The em-
bedding was then formed by matrix multiplication: ν = φ�Ξ.
We found little difference between the approaches in terms
of their MSE or correlation. Overall the linear embedding ap-
pears the best choice based on its lower variance, but this did
not hold universally for all games evaluated. Learning and
computation were both slower with the matrix multiplication
approach and linear activations were generally slightly better
than ReLU. See Sherstan et al. (2019) for additional results.

Timescale Input Comparison We examine how the input
timescale representation affects prediction performance (Fig-
ure 7). We consider whether to use γ or τ inputs or both. The
γ input values are naturally scaled between [0, 1) and the
τ input values were normalized by dividing by the max τ ,
which in these experiments was 100. We consistently see that
using only γ produced the worst performance (Asteroids, is
an exception (Sherstan et al. 2019)). Providing τ or both τ
and γ performed very similarly, but we consistently observed
that providing both representations performed best for very
short timescales and had lower variance.

Distribution Comparison We look at the effect of draw-
ing Γt from different distributions (Figure 8). We use a Γt of
size 8, two of which are always the lower and upper bounds
τ = [1, 100]. Six additional γk are drawn from a given distri-
bution. We either draw all six uniformly from the γ or τ scale
or draw half from each. We see that drawing solely from γ
performs worst overall, particularly at longer timescales, as is
expected. Surprisingly, γ did not consistently outperform τ at

very short timescales. If we consider all timescales and games
evaluated there is no clear winner between drawing solely
from τ or from τ and γ. However, at very short timescales
drawing from both tended to produce better results. Thus, we
recommend drawing from both scales as a default.

Loss Scaling We examined the effect of loss scaling. Fig-
ure 9 shows that on Centipede@25M there is a clear benefit,
with clearly lower MSE and variance. Scaling the loss was
expected to improve short timescale performance. Surpris-
ingly, in terms of MSE, the greatest impact was on longer
timescales. However, such a pronounced difference was not
seen in other Atari games (Sherstan et al. 2019). Instead
we saw a general trend in which scaling did improve per-
formance at short scales at the cost of performance at mid
and long timescales, which was in line with our expectations
(again, Asteroids was an exception).

Estimation by Interpolation An alternative approach to
estimating value at arbitrary timescales is to have multiple
prediction heads, each at a fixed timescale, and then linearly
interpolate between the nearest bracketing timescales. In Fig-
ure 10 we show results for such an interpolation. Here we
took the previously trained probe networks (with scaled loss
and the taper network architecture) and performed linear in-
terpolation for τ = [1.5, 3.5, 7.5, 15, 30, 50, 70, 90]. Because
of the non-linear relationship between τ and γ the linear in-
terpolation gives different weighting depending on whether
the interpolation is done on the τ or γ scale. Interpolating in
these spaces is also compared. Results show that performance
was fairly similar between the interpolation scales, but that
the Γ-net did not perform as well. While it might have been
expected that the ability of the neural network used by Γ-net
to capture the non-linearity of the timescales would give it
an advantage, this was not shown in this experiment. Rather,
we suspect that the increased accuracy of the probe networks
allowed the interpolation approach to win out.

Discussion

We have empirically evaluated various approaches to con-
structing Γ-nets and compared their predictive accuracy to
baseline predictors. While we sought to separate the impacts
of the various approaches, in reality all of the variants we
explored performed similarly. We have considered several
different Atari games with deep learning architectures as well
as a simulation signal and robotics demonstration using a
shallow architecture. Overall we found that Γ-nets worked
reliably both for reward and sensorimotor prediction.

Despite the relatively minor differences in performance
across the variants we do make some recommendations for
implementation. Since there was no universal difference be-
tween the direct or l embed embedding approaches we recom-
mend just using the simplest, direct. If looking for a general
approach that is not specifically adapted to the task then we
recommend using both γ and τ as inputs to the network as
well as drawing samples from both scales in order to populate
Γt. On the other hand if longer timescales are preferred then
it seems sufficient to use only τ for both input and sampling
distribution. With regards to scaling the loss a clear universal
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(a) MSE (b) Average Norm MSE (c) Correlation

Figure 6: Embedding Comparison. Several approaches for adding the timescale dependency to the network were investigated.
direct) Concatenates the timescale with φ. l embed) Timescale is input to a fully connected layer of length 16 with linear
activation whose output is concatenated with φ. h l embed) Timescale is input to a fully connected layer the same length as φ
with linear activation and then combined with φ by element-wise multiplication. The l embed approach appears to be slightly
better due to its lower variance.

(a) MSE (b) Average Norm MSE (c) Correlation

Figure 7: Input Comparison. We compare performance of the network when providing γ, τ or both to the network inputs. We see
that providing only γ as the input timescale does the worst. Providing both γ and τ or just τ perform similarly, but providing
both does better at very short timescales.

(a) MSE (b) Average Norm MSE (c) Correlation

Figure 8: Distribution Comparison. We compare different distributions used to generate Γt. At lower timescales sampling from
the γ scale does better than sampling from the τ scale and the opposite holds at longer timescales. Sampling from both provides
a compromise in performance.

benefit has not been observed and we suggest that further
investigation is required to determine the best way to bal-
ance the losses resulting from different timescales. Such an
investigation is a clear opportunity for future work.

Our method is thus far limited to the fixed discounting
case. However, one of the key generalizations of GVFs is to
support transition-dependent discounting functions: γt+1 ≡
γ(St, At, St+1) (White 2017). This allows GVFs to be more
expressive in terms of what the types of returns they can

estimate. Extending our method to support such discounting
is clearly an important next-step in this work.

There are several ways in which our work and that of Fedus
et al. (2019) are complementary. First, they demonstrated
that using value predictions at many different timescales
could serve as useful auxiliary tasks for driving representation
learning. A clear next step is to investigate whether or not Γ-
nets could also serve as a useful auxiliary task. Additionally,
they demonstrated that alternative returns, such as hyperbolic
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(a) MSE (b) Average Norm MSE (c) Correlation

Figure 9: Scaling Comparison. We examined the effects that scaling the loss by (1 − γk) has. We see that scaling results in
lower overall error and variance. Note that such a clear separation was not observed over other games tested.

(a) MSE (b) Average Norm MSE (c) Correlation

Figure 10: Interpolated. Predictions are made between the probe timescales by taking the weighted average of the predictions
made by the bracketing probe networks. Due to the non-linear relationships of γ and τ different weightings are produced if the
weighting is done in either scale. We see that either interpolation produces better results than the Γ-nets.

discounting, could be formed by using value estimates at
multiple timescales as a basis function; Γ-nets could provide
such a basis function using a single network.

Long timescale predictions can be difficult to learn due
to the higher variance of the returns. Romoff et al. (2019)
presented an algorithm which computes values for an ordered
set of timescales by predicting the differences between the
values using separate network heads. Value estimates are con-
structed in a cascade where each timescale prediction adds to
the one that came before it. They showed their method could
improve estimation accuracy for longer timescales by lever-
aging the accuracy of the easier to learn shorter timescales.
We might expect a similar effect using Γ-nets where long
timescale predictions could benefit from the short timescales
being learned directly in the network. Our current evaluation
approach is not fine grained enough to discern such a benefit.
Thus, this area warrants further exploration.

Γ-nets is related to other works which seek to learn many
different predictions simultaneously and tractably. The UVFA
(Schaul et al. 2015), on which this work is based, generalizes
over goals. The successor representation (SR) (Dayan 1993)
separates environment dynamics from reward, providing a
way to transfer learning across tasks (Barreto et al. 2017;
Sherstan, Machado, and Pilarski 2018). These ideas have
been combined (Mankowitz et al. 2018; Ma, Wen, and Bengio
2018) to enable transfer learning over multiple goals using
off-policy learning. However, these methods still use fixed
timescales, thus, a natural extension of Γ-nets is to combine

them with these approaches.
The original motivation for this work was to use Γ-nets

to create GVFs which form a predictive representations of
state for use by the agent’s policy. It now seems that the best
approach would be to use multiple heads with predictions
at fixed timescales and let the policy network learn to gener-
alize over those predictions as it needed. Such an approach
could be costly in terms of network weights and Γ-nets might
accomplish the same thing with a smaller network.

Conclusion

We presented Γ-nets, a simple technique for generalizing
value estimation across timescale. This technique allows a
system to make predictions for values of any timescale within
the training regime of the network. We expect that this ability
will be useful in areas such as predictive representations of
state—i.e., modeling the world as a collection of predictions
about future sensorimotor signals. In complex environments
complete models are not feasible, thus, being able to query
for predicted outcomes at any timescale makes a model po-
tentially more compact and expressive. An investigation of
Γ-nets in different control learning scenarios is an important
area for future work, and we believe they may be of benefit
to ongoing research in planning and lifelong learning. In par-
ticular Γ-nets are complementary to approaches which seek
to learn many things about the world simultaneously such as
the successor representation and universal value functions,
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suggesting that Γ-nets may provide us with a functional new
tool for the pursuit of knowledgeable intelligent systems.
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