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Abstract

Trust region policy optimization (TRPO) is a popular and em-
pirically successful policy search algorithm in Reinforcement
Learning (RL) in which a surrogate problem, that restricts
consecutive policies to be ‘close’ to one another, is iteratively
solved. Nevertheless, TRPO has been considered a heuristic
algorithm inspired by Conservative Policy Iteration (CPI). We
show that the adaptive scaling mechanism used in TRPO is in
fact the natural “RL version” of traditional trust-region meth-
ods from convex analysis. We first analyze TRPO in the plan-
ning setting, in which we have access to the model and the en-
tire state space. Then, we consider sample-based TRPO and
establish Õ(1/

√
N) convergence rate to the global optimum.

Importantly, the adaptive scaling mechanism allows us to an-
alyze TRPO in regularized MDPs for which we prove fast
rates of Õ(1/N), much like results in convex optimization.
This is the first result in RL of better rates when regularizing
the instantaneous cost or reward.

1 Introduction

The field of Reinforcement learning (RL) (Sutton and Barto
2018) tackles the problem of learning how to act optimally
in an unknown dynamic environment. The agent is allowed
to apply actions on the environment, and by doing so, to ma-
nipulate its state. Then, based on the rewards or costs it accu-
mulates, the agent learns how to act optimally. The founda-
tions of RL lie in the theory of Markov Decision Processes
(MDPs), where an agent has an access to the model of the
environment and can plan to act optimally.

Trust Region Policy Optimization (TRPO): Trust re-
gion methods are a popular class of techniques to solve an
RL problem and span a wide variety of algorithms including
Non-Euclidean TRPO (NE-TRPO) (Schulman et al. 2015)
and Proximal Policy Optimization (Schulman et al. 2017).
In these methods a sum of two terms is iteratively being
minimized: a linearization of the objective function and a
proximity term which restricts two consecutive updates to
be ‘close’ to each other, as in Mirror Descent (MD) (Beck
and Teboulle 2003). In spite of their popularity, much less
is understood in terms of their convergence guarantees
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and they are considered heuristics (Schulman et al. 2015;
Papini, Pirotta, and Restelli 2019) (see Figure 1).

TRPO and Regularized MDPs: Trust region methods
are often used in conjunction with regularization. This is
commonly done by adding the negative entropy to the in-
stantaneous cost (Nachum et al. 2017; Schulman et al.
2017). The intuitive justification for using entropy regular-
ization is that it induces inherent exploration (Fox, Pak-
man, and Tishby 2016), and the advantage of ‘softening’ the
Bellman equation (Chow, Nachum, and Ghavamzadeh 2018;
Dai et al. 2018). Recently, Ahmed et al. (2019) empiri-
cally observed that adding entropy regularization results in a
smoother objective which in turn leads to faster convergence
when the learning rate is chosen more aggressively. Yet, to
the best of our knowledge, there is no finite-sample analy-
sis that demonstrates faster convergence rates for regulariza-
tion in MDPs. This comes in stark contrast to well estab-
lished faster rates for strongly convex objectives w.r.t. con-
vex ones (Nesterov 1998). In this work we refer to regular-
ized MDPs as describing a more general case in which a
strongly convex function is added to the immediate cost.

The goal of this work is to bridge the gap between the
practicality of trust region methods in RL and the scarce the-
oretical guarantees for standard (unregularized) and regular-
ized MDPs. To this end, we revise a fundamental question
in this context:

What is the proper form of the proximity term in trust
region methods for RL?

In Schulman et al. (2015), two proximity terms are sug-
gested which result in two possible versions of trust re-
gion methods for RL. The first (Schulman et al. 2015, Al-
gorithm 1) is motivated by Conservative Policy Iteration
(CPI) (Kakade and others 2003) and results in an improv-
ing and thus converging algorithm in its exact error-free ver-
sion. Yet, it seems computationally infeasible to produce a
sample-based version of this algorithm. The second algo-
rithm, with an adaptive proximity term which depends on
the current policy (Schulman et al. 2015, Equation 12), is
described as a heuristic approximation of the first, with no
convergence guarantees, but leads to NE-TRPO, currently
among the most popular algorithms in RL (see Figure 1).

In this work, we focus on tabular discounted MDPs and
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Figure 1: The adaptive TRPO: a solid line implies a formal
relation; a dashed line implies a heuristic relation.

study a general TRPO method which uses the latter adap-
tive proximity term. Unlike the common belief, we show
this adaptive scaling mechanism is ‘natural’ and imposes the
structure of RL onto traditional trust region methods from
convex analysis. We refer to this method as adaptive TRPO,
and analyze two of its instances: NE-TRPO (Schulman et
al. 2015, Equation 12) and Projected Policy Gradient (PPG),
as illustrated in Figure 1. In Section 2, we review results
from convex analysis that will be used in our analysis. Then,
we start by deriving in Section 4 a closed form solution of
the linearized objective functions for RL. In Section 5, us-
ing the closed form of the linearized objective, we formulate
and analyze Uniform TRPO. This method assumes simul-
taneous access to the state space and that a model is given.
In Section 6, we relax these assumptions and study Sample-
Based TRPO, a sample-based version of Uniform TRPO,
while building on the analysis of Section 5. The main con-
tributions of this paper are:

• We establish Õ(1/
√
N) convergence rate to the global

optimum for both Uniform and Sample-Based TRPO.

• We prove a faster rate of Õ(1/N) for regularized MDPs.
To the best of our knowledge, it is the first evidence for
faster convergence rates using regularization in RL.

• The analysis of Sample-Based TRPO, unlike CPI, does
not rely on improvement arguments. This allows us to
choose a more aggressive learning rate relatively to CPI
which leads to an improved sample complexity even for
the unregularized case.

2 Mirror Descent in Convex Optimization

Mirror descent (MD) (Beck and Teboulle 2003) is a well
known first-order trust region optimization method for solv-
ing constrained convex problems, i.e, for finding

x∗ ∈ argmin
x∈C

f(x), (1)

where f is a convex function and C is a convex compact set.
In each iteration, MD minimizes a linear approximation of
the objective function, using the gradient ∇f(xk), together
with a proximity term by which the updated xk+1 is ‘close’
to xk. Thus, it is considered a trust region method, as the

iterates are ‘close’ to one another. The iterates of MD are

xk+1 ∈ argmin
x∈C

〈∇f(xk), x− xk〉+ 1

tk
Bω (x, xk) , (2)

where Bω (x, xk) := ω(x)− ω(xk)− 〈∇ω(xk), x− xk〉 is
the Bregman distance associated with a strongly convex ω
and tk is a stepsize (see Appendix A). In the general convex
case, MD converges to the optimal solution of (1) with a
rate of Õ(1/

√
N), where N is the number of MD iterations

(Beck and Teboulle 2003; Juditsky, Nemirovski, and others
2011), i.e., f(xk)− f∗ ≤ Õ(1/

√
k), where f∗ = f(x∗).

The convergence rate can be further improved when f is
a part of special classes of functions. One such class is the
set of λ-strongly convex functions w.r.t. the Bregman dis-
tance. We say that f is λ-strongly convex w.r.t. the Bregman
distance if f(y) ≥ f(x) + 〈∇f(x), y − x〉 + λBω (y, x).
For such f , improved convergence rate of Õ(1/N) can be
obtained (Juditsky, Nemirovski, and others 2011; Nedic and
Lee 2014). Thus, instead of using MD to optimize a convex
f , one can consider the following regularized problem,

x∗ = argmin
x∈C

f(x) + λg(x), (3)

where g is a strongly convex regularizer with coefficient
λ > 0. Define Fλ(x) := f(x) + λg(x), then, each iteration
of MD becomes,

xk+1 = argmin
x∈C

〈∇Fλ(xk), x− xk〉+ 1

tk
Bω (x, xk) . (4)

Solving (4) allows faster convergence, at the expense of
adding a bias to the solution of (1). Trivially, by setting
λ = 0, we go back to the unregularized convex case.

In the following, we consider two common choices of
ω which induce a proper Bregman distance: (a) The eu-

clidean case, with ω(·) = 1
2 ‖·‖22 and the resulting Breg-

man distance is the squared euclidean norm Bω (x, y) =
1
2 ‖x− y‖22. In this case, (2) becomes the Projected Gra-
dient Descent algorithm (Beck 2017, Section 9.1), where
in each iteration, the update step goes along the direction
of the gradient at xk, ∇f(xk), and then projected back to
the convex set C, xk+1 = Pc (xk − tk∇f(xk)) , where
Pc(x) = miny∈C

1
2 ‖x− y‖22 is the orthogonal projection

operator w.r.t. the euclidean norm.
(b) The non-euclidean case, where ω(·) = H(·) is the

negative entropy, and the Bregman distance then becomes
the Kullback-Leibler divergence, Bω (x, y) = dKL(x||y).
In this case, MD becomes the Exponentiated Gradient De-
scent algorithm. Unlike the euclidean case, where we need
to project back into the set, when choosing ω as the negative
entropy, (2) has a closed form solution (Beck 2017, Example
3.71), xi

k+1 =
xi
ke

−tk∇if(xk)

∑
j xj

ke
−tk∇jf(xk) , where xi

k and ∇if are the

i-th coordinates of xk and ∇f .

3 Preliminaries and Notations

We consider the infinite-horizon discounted MDP which
is defined as the 5-tuple (S,A, P, C, γ) (Sutton and Barto
2018), where S and A are finite state and action sets with
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cardinality of S = |S| and A = |A|, respectively. The
transition kernel is P ≡ P (s′|s, a), C ≡ c(s, a) is a cost
function bounded in [0,Cmax]

∗, and γ ∈ (0, 1) is a dis-
count factor. Let π : S → ΔA be a stationary policy,
where ΔA is the set probability distributions on A. Let
vπ ∈ R

S be the value of a policy π, with its s ∈ S
entry given by vπ(s) := E

π[
∑∞

t=0 γ
tr(st, π(st)) | s0 = s],

and E
π[· | s0 = s] denotes expectation w.r.t. the distribution

induced by π and conditioned on the event {s0 = s}. It is
known that vπ =

∑∞
t=0 γ

t(Pπ)tcπ = (I−γPπ)−1cπ, with
the component-wise values [Pπ]s,s′ := P (s′ | s, π(s)) and
[cπ]s := c(s, π(s)). Our goal is to find a policy π∗ yielding
the optimal value v∗ such that

v∗ = min
π

(I − γPπ)−1cπ = (I − γPπ∗
)−1cπ

∗
. (5)

This goal can be achieved using the classical operators:

∀v, π, Tπv = cπ + γPπv, and ∀v, Tv = min
π

Tπv, (6)

where Tπ is a linear operator, T is the optimal Bellman op-
erator and both Tπ and T are γ-contraction mappings w.r.t.
the max-norm. The fixed points of Tπ and T are vπ and v∗.

A large portion of this paper is devoted to analysis of
regularized MDPs: A regularized MDP is an MDP with
a shaped cost denoted by cπλ for λ ≥ 0. Specifically,
the cost of a policy π on a regularized MDP translates to
cπλ(s) := cπ(s) + λω (s;π) where ω (s;π) := ω(π(· | s))
and ω : ΔA → R is a 1-strongly convex function. We de-
note ω(π) ∈ R

S as the corresponding state-wise vector. See
that for λ = 0, the cost cπ is recovered. In this work we
consider two choices of ω: the euclidean case ω (s;π) =
1
2 ‖π(· | s)‖22 and non-euclidean case ω (s;π) = H(π(· |
s))+logA. By this choice we have that 0 ≤ cπλ(s) ≤ Cmax,λ
where Cmax,λ = Cmax +λ and Cmax,λ = Cmax +λ logA, for
the euclidean and non-euclidean cases, respectively. With
some abuse of notation we omit ω from Cmax,λ.

The value of a stationary policy π on the regularized MDP
is vπλ = (I−γPπ)−1cπλ. Furthermore, the optimal value v∗λ,
optimal policy π∗

λ and Bellman operators of the regularized
MDP are generalized as follows,

v∗λ = min
π

(I − γPπ)−1cπλ = (I − γPπ∗
λ)−1c

π∗
λ

λ , (7)

∀v, π, Tπ
λ v = cπλ + γPπv, and ∀v, Tλv = min

π
Tπ
λ v.

As Bellman operators for MDPs, both Tπ
λ , T are γ-

contractions with fixed points vπλ , v
∗
λ (Geist, Scherrer, and

Pietquin 2019). Denoting cπλ(s, a) = c(s, a)+λω (s;π), the
q-function of a policy π for a regularized MDP is defined as
qπλ(s, a) = cπλ(s, a) + γ

∑
s′ p

π(s′ | s)vπλ(s′).
When the state space is small and the dynamics of en-

vironment is known (5), (7) can be solved using DP ap-
proaches. However, in case of a large state space it is ex-
pected to be computationally infeasible to apply such algo-
rithms as they require access to the entire state space. In this

∗We work with costs instead of rewards to comply with convex
analysis. All results are valid to the case where a reward is used.

work, we construct a sample-based algorithm which mini-
mizes the following scalar objective instead of (5), (7),

min
π∈ΔS

A
Es∼μ[v

π
λ(s)] = min

π∈ΔS
A
μvπλ , (8)

where μ(·) is a probability measure over the state space. Us-
ing this objective, one wishes to find a policy π which mini-
mizes the expectation of vπλ(s) under a measure μ. This ob-
jective is widely used in the RL literature (Sutton et al. 2000;
Kakade and Langford 2002; Schulman et al. 2015).

Here, we always choose the regularization function ω to
be associated with the Bregman distance used, Bω . This sim-
plifies the analysis as cπλ is λ-strongly convex w.r.t. Bω by
definition. Given two policies π1, π2, we denote their Breg-
man distance as Bω (s;π1, π2) := Bω (π1(· | s), π2(· | s))
and Bω (π1, π2) ∈ R

S is the corresponding state-wise vec-
tor. The euclidean choice for ω leads to Bω (s;π1, π2) =
1
2 ‖π1(· | s)− π2(· | s)‖22, and the non-euclidean choice to
Bω (s;π1, π2) = dKL(π1(· | s)||π2(· | s)). In the results we
use the following ω-dependent constant, Cω,1 =

√
A in the

euclidean case, and Cω,1 = 1 in the non-euclidean case.
For brevity, we omit constant and logarithmic fac-

tors when using O(·), and omit any factors other than
non-logarithmic factors in N , when using Õ(·). For
x, y ∈ R

S×A, the state-action inner product is 〈x, y〉 =∑
s,a x(s, a)y(s, a), and the fixed-state inner product is

〈x(s, ·), y(s, ·)〉 =
∑

a x(s, a)y(s, a). Lastly, when x ∈
R

S×S×A (e.g., first claim of Proposition 1) the inner prod-
uct 〈x, y〉 is a vector in R

S where 〈x, y〉(s) := 〈x(s, ·, ·), y〉,
with some abuse of notation.

4 Linear Approximation of a Policy’s Value

As evident from the updating rule of MD (2), a crucial step
in adapting MD to solve MDPs is studying the linear approx-
imation of the objective, 〈∇f(x), x′−x〉, i.e., the directional
derivative in the direction of an element from the convex set.
The objectives considered in this work are (7), (8), and the
optimization set is the convex set of policies ΔS

A. Thus, we
study 〈∇vπλ , π′ − π〉 and 〈∇μvπλ , π′ − π〉, for which the fol-
lowing proposition gives a closed form:
Proposition 1 (Linear Approximation of a Policy’s Value).
Let π, π′ ∈ ΔS

A, and dμ,π = (1− γ)μ(I − γPπ)−1. Then,

〈∇πv
π
λ , π

′−π〉=(I−γPπ)−1
(
Tπ′
λ vπλ−vπλ−λBω (π′, π)

)
,

(9)

〈∇πμv
π
λ , π

′−π〉= 1

1−γ dμ,π
(
Tπ′
λ vπλ−vπλ−λBω (π′, π)

)
.

(10)

The proof, supplied in Appendix B, is a direct application
of a Policy Gradient Theorem (Sutton et al. 2000) derived for
regularized MDPs. Importantly, the linear approximation is
scaled by (I−γPπ)−1 or 1

1−γ dμ,π , the discounted visitation
frequency induced by the current policy. In what follows,
we use this understanding to properly choose an adaptive
scaling for the proximity term of TRPO, which allows us to
use methods from convex optimization.
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5 Uniform Trust Region Policy Optimization

In this section we formulate Uniform TRPO, a trust re-
gion planning algorithm with an adaptive proximity term by
which (7) can be solved, i.e., an optimal policy which jointly
minimizes the vector vπλ is acquired. We show that the pres-
ence of the adaptive term simplifies the update rule of Uni-
form TRPO and then analyze its performance for both the
regularized (λ > 0) and unregularized (λ = 0) cases. De-
spite the fact (7) is not a convex optimization problem, the
presence of the adaptive term allows us to use techniques ap-
plied for MD in convex analysis and establish convergence
to the global optimum with rates of Õ(1/

√
N) and Õ(1/N)

for the unregularized and regularized case, respectively.

Algorithm 1 Uniform TRPO
initialize: tk, γ, λ, π0 is the uniform policy.

for k = 0, 1, ... do
vπk = (I − γPπk)−1cπk

λ
for ∀s ∈ S do

for ∀a ∈ A do
qπk

λ (s, a)← cπk

λ (s, a) + γ
∑

s′ p(s
′|s, a)vπk

λ (s′)
end for
πk+1(·|s)← PolicyUpdate(π(·|s), qπk

λ (s, ·), tk, λ)
end for

end for

Uniform TRPO repeats the following iterates

πk+1 ∈ argmin
π∈ΔS

A

{
〈∇vπk

λ , π − πk〉

+
1

tk
(I − γPπk)−1Bω (π, πk)

}
. (11)

The update rule resembles MD’s updating-rule (2). The up-
dated policy minimizes the linear approximation while be-
ing not ‘too-far’ from the current policy due to the pres-
ence of Bω (π, πk). However, and unlike MD’s update rule,
the Bregman distance is scaled by the adaptive term (I −
γPπk)−1. Applying Proposition 1, we see why this adaptive
term is so natural for RL,

πk+1 ∈

argmin
π∈ΔS

A

(I−γPπk )−1

(∗)︷ ︸︸ ︷(
Tπ
λ v

πk
λ −v

πk
λ +

( 1

tk
−λ

)
Bω(π, πk)

)
. (12)

Since (I−γPπk)−1 ≥ 0 component-wise, minimizing (12)
is equivalent to minimizing the vector (∗). This results in a
simplified update rule: instead of minimizing over ΔS

A we
minimize over ΔA for each s ∈ S independently (see Ap-
pendix C.1). For each s ∈ S the policy is updated by

πk+1(· |s)∈argmin
π∈ΔA

tkT
π
λ v

πk

λ (s) + (1−λtk)Bω (s;π, πk) .

(13)

This is the update rule of Algorithm 1. Importantly, the up-
date rule is a direct consequence of choosing the adaptive

Algorithm 2 PolicyUpdate: PPG
input: π(· | s), q(s, ·), tk, λ
for a ∈ A do
π(a|s)← π(a | s)− tk

1−λtk
q(s, a)

end for
π(·|s)← PΔA(π(· | s))
return π(· | s)

Algorithm 3 PolicyUpdate: NE-TRPO
input: π(· | s), q(s, ·), tk, λ
for a ∈ A do
π(a | s)← π(a|s) exp(−tk(q(s,a)+λ log πk(a|s)))∑

a′∈A π(a′|s) exp(−tk(q(s,a′)+λ log πk(a′|s)))
end for
return π(· | s)

scaling for the Bregman distance in (11), and without it, the
trust region problem would involve optimizing over ΔS

A.
By instantiating the PolicyUpdate procedure with Algo-

rithms 2 and 3 we get the PPG and NE-TRPO, respec-
tively, which are instances of Uniform TRPO. Instantiat-
ing PolicyUpdate is equivalent to choosing ω and the in-
duced Bregman distance Bω . In the euclidean case, ω(·) =
1
2 ‖·‖22 (Alg. 2), and in the non-euclidean case, ω(·) = H(·)
(Alg. 3). This comes in complete analogy to the fact Pro-
jected Gradient Descent and Exponentiated Gradient De-
scent are instances of MD with similar choices of ω (Sec-
tion 2).

With the analogy to MD (2) in mind, one would ex-
pect Uniform TRPO, to converge with rates Õ(1/

√
N) and

Õ(1/N) for the unregularized and regularized cases, respec-
tively, similarly to MD. Indeed, the following theorem for-
malizes this intuition for a proper choice of learning rate.
The proof of Theorem 2 extends the techniques of Beck
(2017) from convex analysis to the non-convex optimiza-
tion problem (5), by relying on the adaptive scaling of the
Bregman distance in (11) (see Appendix C).

Theorem 2 (Convergence Rate: Uniform TRPO). Let
{πk}k≥0 be the sequence generated by Uniform TRPO.
Then, the following holds for all N ≥ 1:

1. (Unregularized) Let λ = 0, tk = (1−γ)

Cω,1Cmax
√
k+1

, then

‖vπN − v∗‖∞ ≤ O

(
Cω,1Cmax

(1− γ)2
√
N

)
.

2. (Regularized) Let λ > 0, tk = 1
λ(k+2) , then

‖vπN

λ − v∗λ‖∞ ≤ O

(
C2

ω,1 Cmax,λ
2

λ(1− γ)3N

)
.

Theorem 2 establishes that regularization allows faster
convergence of Õ(1/N ). It is important to note using
such regularization leads to a ‘biased’ solution: Generally∥∥vπ∗

λ − v∗
∥∥
∞ > 0, where we denote π∗

λ as the optimal
policy of the regularized MDP. In other words, the optimal
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policy of the regularized MDP evaluated on the unregular-
ized MDP is not necessarily the optimal one. However, when
adding such regularization to the problem, it becomes easier
to solve, in the sense Uniform TRPO converges faster (for a
proper choice of learning rate).

In the next section, we extend the analysis of Uniform
TRPO to Sample-Based TRPO, and relax the assumption of
having access to the entire state space in each iteration, while
still securing similar convergence rates in N .

6 Exact and Sample-Based TRPO

In the previous section we analyzed Uniform TRPO, which
uniformly minimizes the vector vπ . Practically, in large-
scale problems, such an objective is infeasible as one cannot
access the entire state space, and less ambitious goal is usu-
ally defined (Sutton et al. 2000; Kakade and Langford 2002;
Schulman et al. 2015). The objective usually minimized is
the scalar objective (8), the expectation of vπλ(s) under a
measure μ, minπ∈ΔS

A
Es∼μ[v

π
λ(s)] = minπ∈ΔS

A
μvπλ .

Starting from the seminal work on CPI, it is common to
assume access to the environment in the form of a ν-restart
model. Using a ν-restart model, the algorithm interacts with
an MDP in an episodic manner. In each episode k, the start-
ing state is sampled from the initial distribution s0 ∼ ν,
and the algorithm samples a trajectory (s0, r0, s1, r1, ...) by
following a policy πk. As mentioned in Kakade and others
(2003), a ν-restart model is a weaker assumption than an ac-
cess to the true model or a generative model, and a stronger
assumption than the case where no restarts are allowed.

To establish global convergence guarantees for CPI,
Kakade and Langford (2002) have made the following as-
sumption, which we also assume through the rest of this sec-
tion:
Assumption 1 (Finite Concentrability Coefficient).
Cπ∗

:=
∥∥∥dμ,π∗

ν

∥∥∥
∞

= maxs∈S
∣∣∣dμ,π∗ (s)

ν(s)

∣∣∣ <∞.

The term Cπ∗
is known as a concentrability coefficient

and appears often in the analysis of policy search algo-
rithms (Kakade and Langford 2002; Scherrer and Geist
2014; Bhandari and Russo 2019). Interestingly, Cπ∗

is
considered the ‘best’ one among all other existing con-
centrability coefficients in approximate Policy Iteration
schemes (Scherrer 2014), in the sense it can be finite when
the rest of them are infinite.

6.1 Warm Up: Exact TRPO

We split the discussion on the sample-based version of
TRPO: we first discuss Exact TRPO which minimizes the
scalar μvπλ (8) instead of minimizing the vector vπλ (7) as
Uniform TRPO, while having an exact access to the gradi-
ents. Importantly, its updating rule is the same update rule
used in NE-TRPO (Schulman et al. 2015, Equation 12),
which uses the adaptive proximity term, and is described
there as a heuristic. Specifically, there are two minor dis-
crepancies between NE-TRPO and Exact TRPO: 1) We use
a penalty formulation instead of a constrained optimization
problem. 2) The policies in the Kullback-Leibler divergence
are reversed. Exact TRPO is a straightforward adaptation of

Uniform TRPO to solve (8) instead of (7) as we establish
in Proposition 3. Then, in the next section, we extend Exact
TRPO to a sample-based version with provable guarantees.

With the goal of minimizing the objective μvπλ , Exact
TRPO repeats the following iterates

πk+1 ∈ argminπ∈ΔS
A

{〈∇νvπk

λ , π − πk〉

+
1

tk(1− γ)
dν,πk

Bω (π, πk)
}
, (14)

Its update rule resembles MD’s update rule (11), but uses
the ν-restart distribution for the linearized term. Unlike in
MD (2), the Bregman distance is scaled by an adaptive scal-
ing factor dν,πk

, using ν and the policy πk by which the
algorithm interacts with the MDP. This update rule is moti-
vated by the one of Uniform TRPO analyzed in previous sec-
tion (11) as the following straightforward proposition sug-
gests (Appendix D.2):
Proposition 3 (Uniform to Exact Updates). For any
π, πk ∈ ΔS

A

ν
(
〈∇vπk

λ , π − πk〉+ 1

tk
(I − γPπk)−1Bω (π, πk)

)
= 〈∇νvπk

λ , π − πk〉+ 1

tk(1− γ)
dν,πk

Bω (π, πk) .

Meaning, the proximal objective solved in each iteration
of Exact TRPO (14) is the expectation w.r.t. the measure ν
of the objective solved in Uniform TRPO (11).

Similarly to the simplified update rule for Uniform
TRPO (12), by using the linear approximation in Proposi-
tion 1, it can be easily shown that using the adaptive prox-
imity term allows to obtain a simpler update rule for Exact
TRPO. Unlike Uniform TRPO which updates all states, Ex-
act TRPO updates only states for which dν,πk

(s) > 0. De-
note Sdν,πk

= {s : dν,πk
(s) > 0} as the set of these states.

Then, Exact TRPO is equivalent to the following update rule
(see Appendix D.2), ∀s ∈ Sdν,πk

:

πk+1(· | s)∈argmin
π

tkT
π
λ v

πk

λ (s)+(1−λtk)Bω (s;π, πk) ,

i.e., it has the same updates as Uniform TRPO, but updates
only states in Sdν,πk

. Exact TRPO converges with similar
rates for both the regularized and unregularized cases, as
Uniform TRPO. These are formally stated in Appendix D.

6.2 Sample-Based TRPO

In this section we derive and analyze the sample-based ver-
sion of Exact TRPO, and establish high-probability conver-
gence guarantees in a batch setting. Similarly to the previous
section, we are interested in minimizing the scalar objective
μvπλ (8). Differently from Exact TRPO which requires an ac-
cess to a model and to simultaneous updates in all states in
Sdν,πk

, Sample-Based TRPO assumes access to a ν-restart
model. Meaning, it can only access sampled trajectories and
restarts according to the distribution ν.

Sample-Based TRPO samples Mk trajectories per
episode. In every trajectory of the k-th episode, it first sam-
ples sm ∼ dν,πk

and takes an action am ∼ U(A) where
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Algorithm 4 Sample-Based TRPO
initialize: tk, γ, λ, π0 is the uniform policy, ε, δ > 0

for k = 0, 1, ... do
SkM = {}, ∀s, a, q̂πk

λ (s, a) = 0, nk(s, a) = 0

Mk ≥ Õ(
A2 C2

max,λ(S log 2A+log 1/δ)

(1−γ)2ε2 ) # Appendix E.5
# Sample Trajectories
for m = 1, ..,Mk do

Sample sm ∼ dν,πk
(·), am ∼ U(A)

q̂πk

λ (sm, am,m)= Truncated rollout of qπk

λ (sm, am)
q̂πk

λ (sm, am)← q̂πk

λ (sm, am) + q̂πk

λ (sm, am,m)
nk(sm, am)← nk(sm, am) + 1
SkM = SkM ∪ {sm}

end for
# Update Next Policy
for ∀s ∈ SkM do

for ∀a ∈ A do
q̂πk

λ (s, a)← Aq̂πk

λ (s, a)/(
∑

a nk(s, a))
end for
πk+1(·|s) =PolicyUpdate(πk(·|s), q̂πk

λ (s, ·), tk, λ)
end for

end for

U(A) is the uniform distribution on the set A. Then, by fol-
lowing the current policy πk, it estimates qπk

λ (sm, am) using
a rollout (possibly truncated in the infinite horizon case).
We denote this estimate as q̂πk

λ (sm, am,m) and observe it
is (nearly) an unbiased estimator of qπk

λ (sm, am). We as-
sume that each rollout runs sufficiently long so that the bias
is small enough (the sampling process is fully described in
Appendix E.2). Based on this data, Sample-Based TRPO up-
dates the policy at the end of the k-th episode, by the follow-
ing proximal problem,

πk+1 ∈ argmin
π∈ΔS

A

{ 1

M

M∑
m=1

1

tk(1− γ)
Bω (sm;π, πk)

+ 〈∇̂νvπk

λ [m], π(· | sm)− πk(· | sm)〉
}
, (15)

where the estimation of the gradient is ∇̂νvπk

λ [m] :=
1

1−γ (Aq̂πk

λ (sm, ·,m)�{· = am}+ λ∇ω (sm;πk)).
The following proposition motivates the study of this up-

date rule and formalizes its relation to Exact TRPO:
Proposition 4 (Exact to Sample-Based Updates). Let Fk be
the σ-field containing all events until the end of the k − 1
episode. Then, for any π, πk ∈ ΔS

A and every sample m,

〈∇νvπk

λ , π − πk〉+ 1

tk(1− γ)
dν,πk

Bω (π, πk)

= E

[
〈∇̂νvπk

λ [m], π(· | sm)− πk(· | sm)〉

+
1

tk(1− γ)
Bω (sm;π, πk) | Fk

]
.

Meaning, the expectation of the proximal objective of
Sample-Based TRPO (15) is the proximal objective of Exact
TRPO (14). This fact motivates us to study this algorithm,

anticipating it inherits the convergence guarantees of its ex-
acted counterpart.

Like Uniform and Exact TRPO, Sample-Based TRPO has
a simpler update rule, in which, the optimization takes place
on every visited state at the k-th episode. This comes in con-
trast to Uniform and Exact TRPO which require access to all
states in S or Sdν,πk

, and is possible due to the sample-based
adaptive scaling of the Bregman distance. Let SkM be the set
of visited states at the k-th episode, n(s, a) the number of
times (sm, am) = (s, a) at the k-th episode, and

q̂πk

λ (s, a) =
A∑

a n(s, a)

n(s,a)∑
i=1

q̂πk

λ (s, a,mi),

is the empirical average of all rollout estimators for qπk

λ (s, a)
gathered in the k-th episode (mi is the episode in which
(sm, am) = (s, a) for the i-th time). If the state action pair
(s, a) was not visited at the k-th episode then q̂πk

λ (s, a) = 0.
Given these definitions, Sample-Based TRPO updates the
policy for all s ∈ SkM by a simplified update rule:

πk+1(· | s)
∈ argmin

π
tk〈q̂πk

λ (s, ·) + λ∇ω (s;πk) , π〉+Bω (s;π, πk),

As in previous sections, the euclidean and non-euclidean
choices of ω correspond to a PPG and NE-TRPO instances
of Sample-Based TRPO. The different choices correspond
to instantiating PolicyUpdate with the subroutines 2 or 3.
Generalizing the proof technique of Exact TRPO and us-
ing standard concentration inequalities, we derive a high-
probability convergence guarantee for Sample-Based TRPO
(see Appendix E). An additional important lemma for the
proof is Lemma 27 provided in the appendix. This lemma
bounds the change ∇ω(πk) − ∇ω(πk+1) between consec-
utive episodes by a term proportional to tk. Had this bound
been tk-independent, the final results would deteriorate sig-
nificantly.

Theorem 5 (Convergence Rate: Sample-Based TRPO).
Let {πk}k≥0 be the sequence generated by Sample-Based

TRPO, using Mk ≥ O
(

A2 C2
max,λ(S logA+log 1/δ)

(1−γ)2ε2

)
samples

in each iteration, and {μvkbest}k≥0 be the sequence of best
achieved values, μvNbest := argmink=0,...,N μvπk

λ − μv∗λ.
Then, with probability greater than 1 − δ for every ε > 0
the following holds for all N ≥ 1:

1. (Unregularized) Let λ = 0, tk = (1−γ)

Cω,1 Cmax
√
k+1

, then

μvNbest − μv∗ ≤ O

(
Cω,1 Cmax

(1− γ)2
√
N

+
Cπ∗

ε

(1− γ)2

)
.

2. (Regularized) Let λ > 0, tk = 1
λ(k+2) , then

μvNbest − μv∗λ ≤ O

(
C2

ω,1Cω,2 Cmax,λ
2

λ(1− γ)3N
+

Cπ∗
ε

(1− γ)2

)
.

Where Cω,2 = 1 for the euclidean case, and Cω,2 = A2 for
the non-euclidean case.
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Method Sample Complexity

TRPO (this work)
C2

ω,1A
2C4

max(S+log 1
δ )

(1−γ)3ε4

Regularized TRPO (this work)
C2

ω,1Cω,2A
2C4

max,λ(S+log 1
δ )

λ(1−γ)4ε3

CPI (Kakade and Langford)
A2C4

max(S+log 1
δ )

(1−γ)5ε4

Table 1: The sample complexity of Sample-Based TRPO
(TRPO) and CPI. For TRPO, the best policy so far is re-
turned, where for CPI, the last policy πN is returned.

Similarly to Uniform TRPO, the convergence rates are
Õ(1/

√
N) and Õ(1/N) for the unregularized and regular-

ized cases, respectively. However, the Sample-Based TRPO
converges to an approximate solution, similarly to CPI. The
sample complexity for a Cπ∗

ε
(1−γ)2 error, the same as the er-

ror of CPI, is given in Table 6.2. Interestingly, Sample-
Based TRPO has better polynomial sample complexity in
(1 − γ)−1 relatively to CPI. Importantly, the regularized
versions have a superior sample-complexity in ε, which
can explain the empirical success of using regularization.

Remark 1 (Optimization Perspective). From an optimiza-
tion perspective, CPI can be interpreted as a sample-based
Conditional Gradient Descent (Frank-Wolfe) for solving
MDPs (Scherrer and Geist 2014). With this in mind, the
two analyzed instances of Sample-Based TRPO establish
the convergence of sample-based projected and exponenti-
ated gradient descent methods for solving MDPs: PPG and
NE-TRPO. It is well known that a convex problem can be
solved with any one of the three aforementioned methods.
The convergence guarantees of CPI together with the ones
of Sample-Based TRPO establish the same holds for RL.

Remark 2 (Is Improvement and Early Stopping Needed?).
Unlike CPI, Sample-Based TRPO does not rely on improve-
ment arguments or early stopping. Even so, its asymptotic
performance is equivalent to CPI, and its sample complex-
ity has better polynomial dependence in (1 − γ)−1. This
questions the necessity of ensuring improvement for policy
search methods, heavily used in the analysis of these meth-
ods, yet less used in practice, and motivated by the analysis
of CPI.

7 Related Works

The empirical success of policy search and regularization
techniques in RL (Peters and Schaal 2008; Mnih et al. 2016;
Schulman et al. 2015; 2017) led to non-negligible theoreti-
cal analysis of these methods. Gradient based policy search
methods were mostly analyzed in the function approxima-
tion setting, e.g., (Sutton et al. 2000; Bhatnagar et al. 2009;
Pirotta, Restelli, and Bascetta 2013; Dai et al. 2018; Pap-
ini, Pirotta, and Restelli 2019; Bhandari and Russo 2019).
There, convergence to a local optimum was established un-
der different conditions and several aspects of policy search
methods were investigated. In this work, we study a trust-
region based, as opposed to gradient based, policy search

method in tabular RL and establish global convergence guar-
antees. Regarding regularization in TRPO, in Neu, Jonsson,
and Gómez (2017) the authors analyzed entropy regularized
MDPs from a linear programming perspective for average-
reward MDPs. Yet, convergence rates were not supplied, as
opposed to this paper.

In Geist, Scherrer, and Pietquin (2019) different aspects of
regularized MDPs were studied, especially, when combined
with MD-like updates in an approximate PI scheme (with
partial value updates). The authors focus on update rules
which require uniform access to the state space of the form
πk+1 = argminπ∈ΔS

A
〈qk, π − πk〉+Bω (π, πk), similarly

to the simplified update rule of Uniform TRPO (13) with
a fixed learning rate, tk = 1. In this paper, we argued it is
instrumental to view this update rule as an instance of the
more general update rule (11), i.e., MD with an adaptive
proximity term. This view allowed us to formulate and ana-
lyze the adaptive Sample-Based TRPO, which does not re-
quire uniform access to the state space. Moreover, we proved
Sample-Based TRPO inherits the same asymptotic perfor-
mance guarantees of CPI. Specifically, the quality of the
policy Sample-Based TRPO outputs depends on the concen-
trability coefficient Cπ∗

. The results of Geist, Scherrer, and
Pietquin (2019) in the approximate setting led to a worse
concentrability coefficient, Ci

q , which can be infinite even
when Cπ∗

is finite (Scherrer 2014) as it depends on the worst
case of all policies.

In a recent work of Agarwal et al. (2019), Section 4.2, the
authors study a variant of Projected Policy Gradient Descent
and analyze it under the assumption of exact gradients and
uniform access to the state space. The proven convergence
rate depends on both S and Cπ∗

whereas the convergence
rate of Exact TRPO (Section 6.1) does not depend on S nor
on Cπ∗

(see Appendix D.4), and is similar to the guarantees
of Uniform TRPO (Theorem 2). Furthermore, the authors
do not establish faster rates for regularized MDPs. It is im-
portant to note their projected policy gradient algorithm is
different than the one we study, which can explain the dis-
crepancy between our results. Their projected policy gradi-
ent updates by πk+1 ∈ PΔS

A
(πk − η∇μvπk), whereas, the

Projected Policy Gradient studied in this work applies a dif-
ferent update rule based on the adaptive scaling of the Breg-
man distance.

Lastly, in another recent work of Liu et al. (2019) the
authors established global convergence guarantees for a
sampled-based version of TRPO when neural networks are
used as the q-function and policy approximators. The sam-
ple complexity of their algorithm is O(ε−8) (as opposed to
O(ε−4) we obtained) neglecting other factors. It is an inter-
esting question whether their result can be improved.

8 Conclusions and Future Work
We analyzed the Uniform and Sample-Based TRPO meth-
ods. The first is a planning, trust region method with an
adaptive proximity term, and the latter is an RL sample-
based version of the first. Different choices of the proxim-
ity term led to two instances of the TRPO method: PPG and
NE-TRPO. For both, we proved Õ(1/

√
N) convergence rate
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to the global optimum, and a faster Õ(1/N) rate for regular-
ized MDPs. Although Sample-Based TRPO does not nec-
essarily output an improving sequence of policies, as CPI,
its best policy in hindsight does improve. Furthermore, the
asymptotic performance of Sample-Based TRPO is equiva-
lent to that of CPI, and its sample complexity exhibits better
dependence in (1−γ)−1. These results establish the popular
NE-TRPO (Schulman et al. 2015) should not be interpreted
as an approximate heuristic to CPI but as a viable alternative.

In terms of future work, an important extension of this
study is deriving algorithms with linear convergence, or, al-
ternatively, establish impossibility results for such rates in
RL problems. Moreover, while we proved positive results
on regularization in RL, we solely focused on the question
of optimization. We believe that establishing more positive
as well as negative results on regularization in RL is of value.
Lastly, studying further the implication of the adaptive prox-
imity term in RL is of importance due to the empirical suc-
cess of NE-TRPO and its now established convergence guar-
antees.
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