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Abstract

Deep neural networks are often ignorant about what they do
not know and overconfident when they make uninformed pre-
dictions. Some recent approaches quantify classification un-
certainty directly by training the model to output high un-
certainty for the data samples close to class boundaries or
from the outside of the training distribution. These approaches
use an auxiliary data set during training to represent out-of-
distribution samples. However, selection or creation of such
an auxiliary data set is non-trivial, especially for high dimen-
sional data such as images. In this work we develop a novel
neural network model that is able to express both aleatoric and
epistemic uncertainty to distinguish decision boundary and
out-of-distribution regions of the feature space. To this end,
variational autoencoders and generative adversarial networks
are incorporated to automatically generate out-of-distribution
exemplars for training. Through extensive analysis, we demon-
strate that the proposed approach provides better estimates
of uncertainty for in- and out-of-distribution samples, and
adversarial examples on well-known data sets against state-of-
the-art approaches including recent Bayesian approaches for
neural networks and anomaly detection methods.

Introduction

While deep learning models demonstrate remarkable gener-
alization performance in light of the large number of param-
eters they exploit, they can be misleadingly overconfident
when they do make mistakes. The false sense of trust these
models create may have serious consequences, especially
if they are used for high-risk tasks. A striking example is
the misclassification of the white side of a trailer as bright
sky: this caused a car operating with automated vehicle con-
trol systems to crash against a tractor-semitrailer truck near
Williston, Florida, USA on 7th May 2016. The car driver died
due to the sustained injury (NHTSA 2016).

There are two categories of uncertainty (Matthies 2007).
Epistemic uncertainty, or model uncertainty, results from
limited knowledge and could in principle be reduced: uncer-
tain predictions for out-of-distribution samples fall into this
category. Among other approaches, Bayesian deep learning
methods try to estimate epistemic uncertainty by modeling
the distributions for the parameters values, distributions that

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Standard Nets (b) Evidential Nets

(c) Generated Points (d) Proposed Model

Figure 1: Class boundaries for models on a simple 2D classi-
fication problem (green vs red dots): prediction confidence
depicts on a color scale from maroon (low confidence) to
blue (high confidence). The generated samples are shown as
blue dots in (c) along with the original data points.

seldom admit closed-form representations, hence requiring
expensive Monte Carlo sampling methods (Bishop 2006).

Aleatoric uncertainty, or data uncertainty, is the noise
inherent in the observations (e.g., label noise), or class over-
lap: unlike epistemic uncertainty, aleatoric uncertainty cannot
be reduced by observing more data samples. For instance,
having identical samples with different labels, e.g., on the
class boundary, is an example of aleatoric uncertainty. Ap-
proaches such as Evidential Neural Networks (EDL) and
Lightweight Probabilistic Deep Networks, are proposed re-
cently to estimate aleatoric uncertainties in deep neural net-
works by directly estimating parameters of the predictive pos-
terior as their output (Sensoy, Kaplan, and Kandemir 2018;
Gast and Roth 2018). These approaches do not require any
sampling and assume minimal changes to the architecture of
standard neural networks.

Aforementioned approaches may still make misleading
and overconfident predictions for the samples out of the train-
ing distribution. Figures 1(a), (b), and (d) demonstrate pre-
dicted class boundaries for a simple 2D classification problem
of green vs red dots. Standard deterministic neural networks
(Fig. 1(a)) do not decrease their prediction confidence when
classifying samples around the class boundary, while EDL
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(Fig. 1(b)) does. However, both models have high prediction
confidence when tested with out-of-distribution samples. To
avoid such overconfident predictions, other approaches such
as (Malinin and Gales 2018) propose to hand-pick an auxil-
iary data set as the out-of-distribution samples and explicitly
train the neural networks to give highly uncertain output for
them. This is often infeasible in high-dimensional real-life
settings, given the very large space of possibilities.

In this paper, we propose a deterministic neural network
that can effectively and efficiently estimate classification un-
certainty for both in- and out-of-distribution samples. Using
a generative model, it synthesizes out-of-distribution samples
close to the training samples, e.g., the blue dots in Fig. 1 (c).
Then, it trains a classifier using both training and the gener-
ated samples. Figure 1(d) depicts the result of our approach
on our toy example: our model shows higher prediction con-
fidence only for regions close to the training samples.

Our contribution in the paper is threefold. (1) We con-
sider the output of the neural network as the parameters of a
Dirichlet distribution with uniform prior, instead of a categor-
ical distribution over possible labels. (2) These parameters
are calculated by learning an implicit density estimation for
each category by treating each output of the network as an
output of a binary classifier, which learns to discriminate
samples of the category from the samples of other categories
and out-of-distribution samples. (3) We also propose a novel
generative adversarial network, which learns to distort the
training samples to automatically generate the most infor-
mative out-of-distribution samples during training, and so
overcoming the need to hand-pick an auxiliary data set as the
out-of-distribution samples.

Through extensive experiments, we compare our model not
only with state-of-the-art Bayesian networks and other mod-
els for uncertainty estimation, but also with recent anomaly
detection models, which are specifically designed to deter-
mine out-of-distribution samples using deep neural networks.
Our experiments on MNIST and CIFAR10 data sets and ad-
versarial examples indicate that our approach outperforms
the existing approaches significantly in these tasks.

Generative Evidential Neural Networks
Our work can be considered as an extension of approaches
for classification, which take the output of a neural network
for an input sample to estimate parameters of a Dirichlet
distribution (Sensoy, Kaplan, and Kandemir 2018; Malinin
and Gales 2018; Gast and Roth 2018) for its classification.
That is, the resulting Dirichlet distribution represents the
likelihood of each possible categorical distribution over the
labels for the classification of the sample.

More formally, the Dirichlet distribution is a probability
density function (pdf) for possible values of the probability
mass function (pmf) p. It is characterized by K parameters
α = [α1, · · · , αK ] and is given by

D(p|α) =

{
1

B(α)

∏K
i=1 p

αi−1
i for p ∈ SK ,

0 otherwise,
(1)

where SK is the K-dimensional unit simplex and B(α) is
the K-dimensional multinomial beta function (Kotz, Balakr-
ishnan, and Johnson 2000).

In classical neural networks for classification, softmax
function is used to predict class assignment probabilities.
However, it provides only a point estimate for the class prob-
abilities of a sample and does not provide the associated
uncertainty for this prediction. On the other hand, Dirichlet
distributions can be used to model a probability distribution
for the class probabilities. For instance, a Dirichlet distribu-
tion whose all parameters are one, i.e., D(p|〈1, . . . , 1〉) or
shortly D(p|1), represents the uniform distribution over all
possible assignment of class probabilities and means total
uncertainty for the classification of a sample. As the param-
eter referring to specific class increases, the likelihood of
probability assignments with higher values for this class also
increases. For instance, D(p|〈2, . . . , 1〉) indicates that prob-
ability distributions placing more mass on the first class are
slightly more likely, while their likelihood increases further
for D(p|〈10, . . . , 1〉), which indicates that 8 more pieces of
evidence is observed for the assignment of the sample to the
first class (Josang 2016).

The parameters of a Dirichlet distribution are associated
with pseudocounts representing the number of observations
or evidence in each class. Hence, the predicted Dirichlet dis-
tribution for a sample may refer to the amount of evidence
observed on the training set for the assignment of the sample
to classes. If there is no evidence for the assignment, we con-
sider a uniform prior, i.e., D(p|〈1, . . . , 1〉) and any evidence
ei for class i should add up to the relevant parameter of this
prior (i.e., αi = 1 + ei) to generate the predicted Dirich-
let distribution for the sample. The mean and the variance
of a Dirichlet distribution for the class probability pk are
computed as

p̂k =
αk

S
and V ar(pk) =

αk(S − αk)

S2(S + 1)
, (2)

where S =
∑K

i=1 αk. The Dirichlet distribution after incor-
poration of a number of evidence, p̂ represents the minimum
mean square error (mmse) estimate of the ground truth ap-
pearance probabilities given these observations.

In this paper, we consider Dirichlet distributions with uni-
form prior, which means that S ≥ K. Then, the total evidence
used to update the uniform Dirichlet to the predicted Dirichlet
distribution becomes S −K. After predicting the parameters
of the Dirichlet distribution for each sample, previous ap-
proaches have used its mean, i.e., p̂, as the class assignment
probabilities for decision making, while using K/S ∈ [0−1]
as the associated uncertainty of this assignment (Sensoy, Ka-
plan, and Kandemir 2018). As the total evidence increases,
the variance of the Dirichlet distribution decreases, and so
does the uncertainty of prediction.

In this work, we also use the mean of Dirichlet distribu-
tions as the predictive categorical distribution for classifica-
tion. However, to be consistent with literature in general and
for benchmark comparisons, we adopt the entropy of class
probabilities as a proxy for classification uncertainty (Gal
and Ghahramani 2016b; Louizos and Welling 2017).

Learning to Quantify Classification uncertainty

Recent approaches also used Dirichlet distribution to quan-
tify classification uncertainty in deep neural nets. However,
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they failed to link the calculated Dirichlet parameters to the
observations or the evidence derived from the distribution of
the training set. That is why these models could still be able
to derive large amount of evidence and become overconfident
in their predictions for out-of-distribution samples.

We use ideas from implicit density models (Mohamed and
Lakshminarayanan 2016) and noise-contrastive estimation
(NCE) (Gutmann and Hyvärinen 2012) to derive Dirichlet
parameters for samples. Let us consider a classification prob-
lem with K classes and assume Pin, Pk, and Pout represent
respectively the data distributions of the training set, class k,
and out-of-distribution samples, i.e., the samples that do not
belong to any of K classes. A convenient way to describe den-
sity of samples from a class k is to describe it relative to the
density of some other reference data. By using the same ref-
erence data for all classes in the training set, we desire to get
comparable quantities for their density estimations. In NCE,
noisy training data (Hafner et al. 2018) is usually used as
reference, here, we generalize this as the out-of-distribution
samples, which may also include the noisy data.

Using the dummy labels y, we can reformulate the ratio of
the densities Pk(x) and Pout(x) for a sample x as follows:

Pk(x)

Pout(x)
=

p(x|y = k)

p(x|y = out)
=

p(y = k|x)
p(y = out|x)

(
1− πk

πk

)
(3)

where πk is the marginal probability p(y = k) and (1 −
πk)/πk can be approximated as the ratio of sample size, i.e.,
nk/nout, which is taken as one in this work for simplicity
without loss of generality.

As shown in Eq. 3, one can approximate the log density
ratio log

(
Pk(x)/Pout(x)

)
as the logit output of a binary

classifier (Mohamed and Lakshminarayanan 2016), which
is trained to discriminate between the samples from Pk and
Pout. Let a neural network classifier f(x|θ) parameterized by
weights θ have K outputs for a given sample x, where each
output fk(x|θ) corresponds to a logit for one of K classes
and approximates log

(
Pk(x)/Pout(x)

)
. To train such a net-

work, we use the Bernoulli (logarithmic) loss as given by

L1(θ) = −
K∑

k=1

[
E

Pk(x)
[log(σ(fk(x|θ)))]+

E
Pout(x)

[log(1− σ(fk(x|θ)))]
]
.

(4)

The expectations in Eq. 4 are computed by Monte Carlo
integration using the equal number of samples from Pk and
Pout. In this work, we use samples from Pout, which are gen-
erated by perturbing training set using a novel generative ad-
versarial network. The generated samples are separable from
the training samples in high dimensional input space, so they
are out of distribution, while still having many similarities to
the training samples in a lower dimensional representation
space, which is learned to reconstruct training samples.

As a result, exp(fk(x|θ)) approximates the relative den-
sity Pk(x)/Pout(x) of class k, as it is trained using the sam-
ples from class k and the samples close to, but easily differ-
entiable from, the samples belonging to all K classes in the
training set. For each sample x in the training set, we take

e = exp(f(x|θ)) as the pseudocounts (i.e., evidence) vector,
where each element ek = exp(fk(x|θ)) is the pseudocount
for x being assigned to class k. Then, the parameters of the
Dirichlet distribution given the uniform Dirichlet prior is cal-
culated as α = e+ 1. If the sample x is more similar to the
samples from Pout, then almost zero evidence is generated
by the neural network and the predicted Dirichlet distribu-
tion becomes very close to the uniform Dirichlet distribution.
This should be the case for samples from Pout and for the
outliers in the training set. On the other hand, if the sample
is labelled as k in the training set and it is not an outlier, we
expect ek > ej ≥ 0 for any j �= k.

Uncertainty for Misclassified Samples

The computed α parameters defines a Dirichlet distribution
D(p|α), from which one can sample categorical distribu-
tions over possible classes of x. However, only one of these
classes is correct and assignment of x to any other class is
considered as a misclassification. If k is the true class of
x, then the marginal distribution for pk, i.e., the probability
of correctly classifying x, is a two-parameter Dirichlet dis-
tribution (also known as Beta distribution) with parameters
〈αk,

∑
j �=k αj〉. Let p−k refer to the vector of probabilities

pj such that j �= k. Probabilities of misclassifying x to
each class other than the true one is distributed based on the
conditional Dirichlet distribution p′

−k|pk ∼ D(p′
−k|α−k),

where p′
−k is a categorical distribution over misclassified

classes and created by normalizing p−k with (1−pk), which
is also equivalent to

∑
i �=k pi. Since we desire a classifier

to be totally uncertain in its misclassifications (except near
decision boundaries), we minimize Kullback–Leibler (KL)
divergence between D(p′

−k|α−i) and the uniform Dirichlet
distribution D(p−k|1) using the following regularizer:

L2(θ|x) = βKL[D(p−k|α−k) || D(p−k|1)], (5)

where β is the weight of the KL term. It can be set to (1−p̂k),
which is the expectation for the probability of misclassifica-
tion (i.e., 1 − pk) and its usage as a weight of the KL term
enables the learned loss attenuation; that is, it places a higher
weight on epistemic uncertainty enforcement as the aleatoric
uncertainty for misclassification decreases. Then, the gener-
ative evidential neural network learns the parameters θ by
minimizing the overall loss defined as

L(θ) = L1(θ) + E
Pin(x)

[L2(θ|x)]. (6)

Generating out-of-distribution samples

Previous approaches generate out-of-distribution samples by
perturbing training samples. However, they usually require
manual determination of how much perturbation should be
made to these samples. Too little perturbation may not set the
resulting samples apart from the actual samples, while too
much perturbation may cast them far away from the training
data and deteriorate their usefulness.

Variational Autoencoders (VAE) are probabilistic genera-
tive models that create low dimensional latent representations
for high dimensional data by maximizing
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Figure 2: Original training samples (top), samples recon-
structed by the VAE (middle), and the samples generated by
the proposed method (bottom) over a number of epochs.

max
qθ,pφ

N∑
i=1

Eqθ(z|xi)

[
log pφ(xi | z)−KL(qθ(z | xi) || p(z))

]
,

(7)
where qθ(z | xi) is the latent space distribution for each sam-
ple xi and pφ(xi | z) is the decoder likelihood distribution
that is maximized for each sample xi. The KL term enforces
qθ(z | xi) to be close to a prior distribution p(z) and have a
denser latent space.

Proximity of the encoded samples in the latent space of a
VAE is commonly used as an indication of their semantic sim-
ilarity and exploited for few-shot classification and anomaly
detection tasks. In this work, we also use the latent space of a
VAE as a proxy for semantic similarity between samples in in-
put space. Hence, we exploit it to generate out-of-distribution
samples, which are similar to, but at the same time clearly
separable from, the training examples in the input space.

For each xi in training set, we sample a latent point z from
qθ(z | xi) and perturb it by ε ∼ qγ(ε|z), which is imple-
mented as a multivariate Gaussian distribution N (0, G(z)),
where G(·) is a fully connected neural network with non-
negative output that is trained via

max
G

E qθ(z|xi),
qγ(ε|z),

pφ(x̄i|z+ε)

[
logD′(z + ε)︸ ︷︷ ︸

(a)

+ log(1−D(x̄i)︸ ︷︷ ︸
(b)

)
]
,

(8)
where x̄i ∼ pφ(x̄i | z+ε) is the decoded out-of-distribution
sample from the perturbed sample z + ε. The discriminators
D and D′ are binary classifiers with sigmoid output that try
to distinguish real samples from the generated ones. That
is, given an input, a discriminator gives as an output the
probability that the sample is from the training set distribution.
In Eq. 8, (a) forces the generated points to be similar to the
real latent points through making them indistinguishable by
D′ in the latent space of the VAE and (b) encourages the
generated samples to be distinguishable by D in the input
space. The discriminators are optimized via

max
D′

logD′(z) + log(1−D′(z + ε)),︸ ︷︷ ︸
(c)

(9)

max
D

logD(xi) + log(1−D(x̄i)). (10)

Note that (c) of Eq. 9 is also included in the objective of the
VAE (Eq. 8) to adapt the latent space during the training of
the generator. We trained the VAE, generator, and discrimi-
nators by iterating between maximizing Eq. 7 through Eq. 10
until convergence, as in the regular training of generator and

Layer Filters/Neurons Patch Size Stride Activation

C
la

ss
ifi

er

Conv1 20 5 × 5 1 relu
Max Pool - 2 × 2 2 -
Conv2 50 5 × 5 1 relu
Max Pool - 2 × 2 2 -
FC1 500 - - relu
FC2 K = 10 - - -

D

Conv1− FC1 repeat repeat repeat repeat
FC3 1 - - sigmoid

G

FC4 32 - - relu
FC5 32 - - relu
FC6 32 - - relu
FC7 code sz = 50 - - softplus

D
′ FC4− FC6 repeat repeat repeat repeat

FC8 1 - - sigmoid

Table 1: Network architectures.

Model MNIST CIFAR 5

L2 99.4 76
Dropout 99.5 84

Deep Ensemble 99.3 79
FFGU 99.1 78
FFLU 99.1 77
MNFG 99.3 84
BBH 99.1 80
EDL 99.25 82
GEN 99.3 83

Table 2: Test accuracies (%) for MNIST and CIFAR5.

discriminator in GANs. We demonstrate this approach in
Fig 1 (c) and Fig. 2, where a number of real and generated
MNIST images are shown.

Evaluation

To be able to compare our approach with the recent work, we
adopted the same strategy used for evaluation in (Louizos
and Welling 2017; Sensoy, Kaplan, and Kandemir 2018;
Pawlowski et al. 2017). That is, we use LeNet-5 (LeCun
et al. 1998) with ReLu non-linearities and max pooling as the
neural network architecture and evaluated our approach with
MNIST and CIFAR10 datasets, to be able to make a fair com-
parison with the most related recent work. We implemented
our approach 1 using Python and Tensorflow.

In this section, we compared our approach with the fol-
lowing approaches: (a) L2 corresponds to the standard neu-
ral nets with softmax probabilities and L2 regularization,
(b) Dropout refers to the Bayesian model used in (Gal
and Ghahramani 2016a), (c) Deep Ensemble refers to the
model proposed in (Lakshminarayanan, Pritzel, and Blun-
dell 2017), (d) FFG refers to the Bayesian model used
in (Kingma, Salimans, and Welling 2015) with the additive
parametrization (Molchanov, Ashukha, and Vetrov 2017),
(e) MNFG2 refers to the variational approximation based
model in (Louizos and Welling 2017), (f) EDL refers to the
model in (Sensoy, Kaplan, and Kandemir 2018), (g) BBH3

refers to the Bayesian model based on implicit weight uncer-
tainty (Pawlowski et al. 2017), and (h) GEN refers to the
proposed approach.

Predictive Uncertainty Estimation

We used the network architectures in Table 1 to train our
model for the MNIST dataset. For CIFAR10, we used the
same architectures; however, the classifier uses 192 filters for
Conv1 and Conv2, also has 1000 neurons in FC1 as described

1https://muratsensoy.github.io/gen.html
2https://github.com/AMLab-Amsterdam/MNF VBNN
3https://github.com/pawni/BayesByHypernet
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in (Louizos and Welling 2017). We used L2 regularization
with coefficient 0.005 in the fully-connected layers. Other
approaches are also trained using the same classifier archi-
tecture with the priors and posteriors described in (Louizos
and Welling 2017) and (Pawlowski et al. 2017). The classi-
fication accuracy of each model on the MNIST test set can
be seen at Table 2. While we do not explicitly aim for high
classification accuracy, our results indicate that our approach
is doing better than most of the other approaches.

We train models for MNIST using the images from 10 digit
categories from the training set as usual. However, we then
tested these models on notMNIST dataset,4 which contains
10 letters A-J instead of digits. For CIFAR10, we trained
models using the training data from the first five categories
(referred to as CIFAR5) and tested these models using the
images from the last five categories. For both MNIST and CI-
FAR10, the predicted label for any test sample is guaranteed
to be wrong, since test samples are coming from a different
distribution than the one for the training set. Hence, an ideal
classifier should report totally uncertain predictions instead
of associating a higher likelihood for a specific label for an
out-of-distribution test sample.

To be consistent with recent works, we use the entropy of
the predicted categorical distribution over labels as a proxy
to quantify prediction uncertainty. That is, a prediction gets
more uncertain as its entropy approaches the maximum en-
tropy, i.e., the entropy of the uniform categorical distribution.
As in (Louizos and Welling 2017), we used the empirical
CDF of entropy distribution for predictions to quantify how
uncertain they are. That is, as the predictions get more uncer-
tain, the area under their entropy CDF curve gets smaller.

Figure 3 shows our results for MNIST and CIFAR10
datasets. Standard neural networks (referred to as L2) is
very confident in its predictions as indicated by its entropy
CDF curves in the figure. On the other hand, Bayesian neural
network models appear to be more uncertain about their pre-
dictions with respect to the standard neural networks. The per-
formances of these models in terms of predictive uncertainty
vary for MNIST while they perform almost the same for CI-
FAR10. EDL and GEN perform much better than Bayesian
approaches in both MNIST and CIFAR10. Especially, GEN
associate very high uncertainty with its predictions for out-
of-distribution samples.

After conducting these benchmark analysis by following
the very same procedure proposed in (Louizos and Welling
2017), we also tested these models with in-distribution sam-
ples and analyzed the certainty they assign to correct and
incorrect predictions. To be more comprehensive and diverse,
we also included Bayes by Backprop (BBB) proposed in
(Blundell et al. 2015), which is frequently considered as
a baseline for Bayesian neural network research. Figure 4
shows entropy CDF curves for successful and failed pre-
dictions in MNIST test set for different models. The figure
indicates that standard networks and Bayesian neural net-
works are overconfident (i.e., have low entropy) for their
failed predictions; that is, they have large area under the
entropy CDF curve for their failed predictions (i.e., misclas-

4https://www.kaggle.com/lubaroli/notmnist

sifications). However, both EDL and GEN have significantly
higher predictive uncertainty for their failed predictions. Fur-
thermore, GEN gives a better disparity between the success-
ful and failed predictions in terms of uncertainty. We also
conducted the same analysis for the CIFAR10 dataset and
obtained similar results.

Robustness to Adversarial Examples

Robustness to adversarial examples is an important challenge
for machine learning models. While it is very hard to provide
correct predictions for carefully crafted adversarial examples,
a model should associate very high uncertainty with its pre-
diction when tested on them. Hence, in this section, we test
different models using a well-known white-box attack strat-
egy, the Fast Sign Method (FSM), proposed by (Goodfellow,
Shlens, and Szegedy 2014) and analyze how uncertain these
models are when they fail to correctly classify the generated
adversarial examples.

White-box attacks have access to model parameters and
exploit gradients of the loss with respect to an input to perturb
the input to create an adversarial example. The amount of
perturbation is defined by the ε ∈ [0, 1] parameter. Figure 5
shows our results in terms of both accuracy and uncertainty
for the MNIST test set for different ε values. The figure indi-
cates that GEN demonstrates the ideal behavior; it associates
the highest uncertainty (maximum entropy) with its predic-
tions as it starts to fail making the right predictions for high
values of ε. We observe the same behavior for CIFAR10
dataset as shown in Figure 6.

Comparisons with Anomaly Detection Methods

Our work is also related to anomaly detection approaches,
which are specifically designed to detect out-of-distribution
samples. Hence, in this section, we compare our approach
with the existing and the most recent anomaly detection meth-
ods on MNIST and CIFAR10 datasets. We compared our
approach with the following models: (a) Calibrated refers
to the calibration-based model for out-of-distribution detec-
tion in (Lee et al. 2018), (b) GEOTRANS is the anomaly
detection model in (Golan and El-Yaniv 2018), (c) SVM
refers to the one-class SVM applied to the latent space of
convolutional autoencoder as described in (Golan and El-
Yaniv 2018), (d) ADGAN is the anomaly detection method
based on generative adversarial networks in (Deecke et al.
2018), (e) DAGMM is the deep autoencoding Gaussian mix-
ture model in (Zong et al. 2018), (f) DSEBM is the deep
structured energy-based model in (Zhai et al. 2016). We use
publicly available implementations of the Calibrated5 and
GEOTRANS6 by their authors, which also contains imple-
mentations of other models above. Unlike our approach, these
models predicts a score for out-of-distribution classification.
To evaluate these approaches, the area under the ROC curve
(AUC) is used as a measure of how well the produced scores
can distinguish between in- and out-of-distribution samples.

Similarly, as before, we train models using samples only
from the first five categories of the MNIST and CIFAR10

5https://github.com/alinlab/Confident classifier
6https://github.com/izikgo/AnomalyDetectionTransformations
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Figure 3: Empirical CDF for the entropy of the predictive distributions on the notMNIST dataset (left) and samples from the last
five categories of CIFAR10 dataset (right).

Figure 4: Entropy CDF curves of different models for their successful and failed predictions on the MNIST test set.

Figure 5: Accuracy and entropy as a function of the adversarial perturbation ε on the MNIST dataset.

Figure 6: Accuracy and entropy as a function of the adversarial perturbation ε on the CIFAR dataset.

datasets. Then, we evaluate these models on the test sam-
ples half of which comes from the first five and other half
comes from the last five categories. We use the entropy of the
predictive probabilities from our model as a score to differen-
tiate between in- and out-of-distribution samples. Let us note
that, as shown before, our approach provides highly uncer-
tain predictions not only for out-of-distribution samples, but
also for the misclassified in-distribution samples. Hence, the

in-distribution samples laying on the class boundary of first
five categories may also be classified as out-of-distribution
samples based on their entropy-based score.

Figure 7 shows our results with anomaly detection moth-
ods on MNIST and CIFAR10 datasets. Both Calibrated and
GEOTRANS perform better than SVM, ADGAN, DAGMM,
and DSEBM in our experiments. For MNIST, GEN and
Calibrated achieve the best AUC values, respectively 0.965
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Figure 7: Anomaly detection results for MNIST (left) and CIFAR10 (right).

and 0.966. For CIFAR10, GEN achieves the best AUC
(0.775), and performs significantly better than state-of-the-art
anomaly detectors in recognizing out-of-distribution samples.
While our approach has higher entropy for its predictions
for both out-of-distribution samples and misclassified in-
distribution samples,7 its entropy-based score is still perform-
ing at least as good as the state-of-the-art anomaly detection
methods.

Related Work

Quantification of predictive uncertainty has always been
very important for machine learning models. Gaussian Pro-
cesses (GPs) (Rasmussen and Williams 2006) has been very
good both in making accurate predictions and estimate their
predictive uncertainties. However, these kernel-based non-
parametric models cannot easily deal with high-dimensional
data such as images due to the curse of dimensionality.

In recent years, Bayesian deep learning has emerged as a
field combining deep neural networks with Bayesian prob-
ability theory, which provides a principled way of mod-
eling uncertainty of machine learning models by employ-
ing prior distribution on their parameters and inferring the
posterior distribution for these parameters using approxi-
mations such as Variational Bayes (Blundell et al. 2015;
Gal and Ghahramani 2016b). Then, the posterior predictive
distribution is approximated with sampling methods, which
brings a significant computational overhead and leads to noise
in predictive uncertainty estimates.

In these models, predictive uncertainty is modelled by tak-
ing samples from the posterior distributions of model parame-
ters and using the sampled parameters to create a distribution
of predictions for each input of the network. However, as we
show in our experiments, modeling uncertainty of network
parameters may not necessarily lead to good estimates of the
predictive uncertainty of neural networks (Hafner et al. 2018).
This is the case especially for the misclassified in-distribution
samples, where Bayesian models associate similar levels of
uncertainties with their successful and failed predictions.

Recently, a number of approaches (Sensoy, Kaplan, and
Kandemir 2018; Malinin and Gales 2018) have been pro-
posed to use outputs of neural networks to estimate the pa-
rameters of the Dirichlet prior of the categorical distribution
for classification, instead of predicting a categorical distribu-
tion through the softmax function. Then, the resulting Dirich-

7Table 2 indicates 17% of CIFAR5 test samples are misclassified.

let distribution is used to calculate the predictive uncertainty
for classification. While similar in principle, our work distin-
guishes from this line of work in two folds: (1) it relates the
parameters (i.e., the pseudo counts) of the resulting Dirichlet
distribution to the density of the training data through noise
constructive estimation, (2) it automatically synthesizes out-
of-distribution samples sufficiently close to the training data,
instead of hand-picking an auxiliary dataset.

Previous approaches used manually-tuned noise (Hafner
et al. 2018) or GAN in the input space (Lee et al. 2018) to
create out-of-distribution samples. The approaches based on
GAN may suffer from the so-called mode collapse problem.
To avoid it in this work, we created samples by automatically
perturbing each training example in the latent space sepa-
rately. Also, to avoid generating samples too similar to or
different from training examples, we used a generator with
joint objectives defined over outputs of two discriminators.

Conclusions

In this work, we proposed to combine ideas from implicit
density models, noise constructive density estimation, and ev-
idential deep learning in a novel way to quantify classification
uncertainty in neural networks. We also proposed to gener-
ate out-of-distribution samples by combining the strengths
of VAEs and GANs. The generated examples are used for
learning an implicit density model of the training data, which
is then utilized to generate pseudocounts (i.e., evidence) for
Dirichlet parameters. Through extensive experiments with
well-studied datasets and comprehensive comparisons with
recent approaches, we show that our approach significantly
enhances the state of the art in two uncertainty estimation
benchmarks: i) detection of out-of-distribution samples, and
ii) robustness to adversarial examples.
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