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Abstract

Prior work inspired by compression algorithms has described
how the Burrows Wheeler Transform can be used to create a
distance measure for bioinformatics problems. We describe
issues with this approach that were not widely known, and in-
troduce our new Burrows Wheeler Markov Distance (BWMD)
as an alternative. The BWMD avoids the shortcomings of ear-
lier efforts, and allows us to tackle problems in variable length
DNA sequence clustering. BWMD is also more adaptable to
other domains, which we demonstrate on malware classifica-
tion tasks. Unlike other compression-based distance metrics
known to us, BWMD works by embedding sequences into a
fixed-length feature vector. This allows us to provide signif-
icantly improved clustering performance on larger malware
corpora, a weakness of prior methods.

1 Introduction

Compression algorithms can be used to measure the similar-
ity between arbitrary sequences with little required domain
knowledge or expertise. They have been used in bioinfor-
matics(Mantaci, Restivo, and Sciortino 2008), time series
classification and clustering(Keogh, Lonardi, and Ratanama-
hatana 2004), and malware analysis (Borbely 2015). The
bioinformatics and malware analysis domains can be partic-
ularly attractive for compression-based similarity measures.
Both of these domains involve “short” sequences of tens of
thousands of steps, and can often reach 10® steps in length.
Other machine learning techniques often fail to work when
dealing with sequences of such variety and length.

In this work, we note that the Extended Burrows Wheeler
Transform (EBWT) (Mantaci et al. 2005) is a compression-
based distance metric designed explicitly around the Burrows
Wheeler Transform (BWT) (Burrows and Wheeler 1994) al-
gorithm for use in bioinformatics. While EBWT has been
useful in that domain, we have discovered a number of weak-
nesses in this method that reduce its effectiveness and prevent
it from being useful in other domains, such as malware de-
tection.

To remedy these issues, we develop a new BWT-inspired
distance measure that we refer to as the Burrows Wheeler
Markov Distance (BWMD). Unlike EBWT, BWMD is a
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valid' distance metric, and can scale to far larger problems
that EBWT cannot tackle due to computational limits. Com-
pared to other compression-based distances, our BWMD is
the first to work by embedding a sequence into a Euclidean
vector space. This gives a significant advantage to our ap-
proach in terms of clustering and query speed. This advan-
tage is achieved by using algorithms that are designed around
Euclidean distance, like k-means, that other methods cannot
leverage.

We will begin by reviewing related work in the compres-
sion distance space, and the needed details of the BWT, the
prior method EBWT, and a related method known as LZJD,
in Section 2. Next we will begin with a description of the new
BWMD in Section 3. In Section 4 we will develop a number
of new theoretical insights, proving 1) how EBWT has dra-
matic failure cases that violate our intuition of how a distance
measure should work, 2) that BWMD does not have these
failure cases, and 3) comparing how EBWT, BWMD, and
LZJD handle randomness, and 4) that BWMD has unique
properties in this regard. We will then move into empirical
results in Section 5 by comparing BWMD with EBWT on
DNA sequence clustering, where we show that BWMD is
able to cluster DNA sequences of varying lengths that EBWT
fails to cluster in a meaningful way. In Section 6 we will
show how BWMD is able to scale to malware classification
and clustering tasks that are beyond EBWT’s computational
ability. Though LZJD provides better classification accuracy
at this task, BWMD provides superior clustering results. Fi-
nally we will conclude in Section 7

2 Compression Distances

Compression in general can be seen as one way of performing
many machine learning tasks, and has deep connections to
statistical methods. Following this intuition, Li et al. (2004)
introduced the Normalized Information Distance (NID) as
a method of measuring similarity using compression. Given
a function K (x) that computes the Kolmogorov complexity
(i.e., return the length of the shortest computer program that
produces x as output), and the associated conditional Kol-
mogorov complexity K (x|y) (i.e., the length of the shortest
computer program that produces = as output given y as in-

'A distance metric is considered true, or valid, if it adheres to
the properties of reflexivity, symmetry, and triangularity.



put), the NID is a metric as defined in (1). The Kolmogorov
complexities are uncomputable functions, making NID of no
practical use.

max (K (zly), K(y|z)) 0

max (K (z), K(y))

To remedy this situation, Li et al. (2004) went on to
present the Normalized Compression Distance (NCD), which
replaces the uncomputable K (x) with C'(z), which returns
the length of x in bytes after running a compression algo-
rithm. To approximate K (z|y), the concatenation of 2 and y
(denoted by x||y) is used, giving the final form of NCD in (2).
The compression algorithm chosen impacts the quality of the
results. The bzip and LZMA algorithms have been popular
due to a combination of reasonable run time performance and
generally satisfactory compression ratios.

C(z[ly) — min (C(x), C(y))
max (C(z), C(y))

Where C'(x) is the (integer) length of object  when com-
pressed. NCD, and compression-based distances in general,
do not require significant feature engineering to be applied in
practice. This has made them popular for genomic phylogeny
(Li et al. 2004; Cilibrasi and Vitanyi 2005) and malware anal-
ysis (Bayer et al. 2009; Apel, Bockermann, and Meier 2009;
Bailey et al. 2007; Karim et al. 2005), where sequences
are longer than what most other techniques can handle
(10* — 108 steps in length), and it can be difficult to ex-
tract more sophisticated features manually. However, us-
ing compression algorithms naively in NCD leads to dif-
ficulties with computational scalability and reduced accu-
racy/failure cases due to the fact that compression algorithms
were not designed for similarity analysis (Borbely 2015;
Cebrian et al. 2005). For these reasons, some have looked
at converting known clustering algorithms into explicit dis-
tance measures. For example, the Lempel Ziv Jaccard Dis-
tance (LZJD) (Raff and Nicholas 2017a) converts the LZMA
algorithm into a true distance measure, and for malware clas-
sification tasks has superior accuracy and runtime compared
to NCD?.

NID(z, y) =

NCD(z, y) =

@

2.1 Extended Burrows Wheeler Transform

The Burrows Wheeler Transform (BWT) (Burrows and
Wheeler 1994) is a core component of the bzip compression
algorithm, and has been widely used in information retrieval
applications due to its ability to accelerate search queries(Fer-
ragina and Manzini 2005). The BWT takes an input string u
of length n = |u|, over an alphabet ¥, and produces a new
string u’ = bwt(u). Through the use of an end-of-file (EoF)
marker, the BWT is invertible, so u can be recovered from '
without loss.

BWT’s utility in compression is best understood through
example. Consider Table 1, where the BWT transform of the
string “easypeasy” is shown. BWT adds a special EoF marker
”$”, and lexicographically sorts every single-character rota-
tion of the string (observe column First, which is in sorted

%A Java (Raff and Nicholas 2018b) and Python (Raff, Aurelio,
and Nicholas 2019) implementations of LZJD are available.
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Table 1: BWT transform of the string “easypeasy”. Column
First shows the first letter that rotations are sorted by, with
the next Rotation column showing the rotated string, and the
Last column showing the tail character of each rotation. The
Last column is from top-down is the BWT encoding order.

Last

First Rotation

U

Seasypeasy
asyS$easype
asypeasySe
easyS$easyp
easypeasy$
peasySeasy
sySeasypea
sypeasySea
ySeasypeas
ypeasys$eas

KK o0 0o
n n o0 oK ®NT O DK

order). The BWT output is then the last column of each string,
shown in column Last. By computing the BWT version of
the string, we can see how runs of the same character (“ee”,
”aa”, ’ss”) have been created that previously did not exist.
Simple run-length encoding can then be applied to produce a
compressed version of the string.

These sorted rotations can be computed in O(n) time, and
provide a simple method of compression. To turn this into
a distance measure, Mantaci et al. (2005) developed the
Extended Burrows Wheeler Transform (EBWT). The EBWT
works by defining the BWT over a pair of inputs « and v, and
computing the sorted order of both sequences. An example
of this is shown in Table 2.

Table 2: EBWT computation example

bwt (u=bcaa) bwt (v=ccbab) EBWT Merge Source
aabc abcchb aabec u
abca babcc abca u
b caa bccba abcchb v
caab c babc babcec v
——= ccbab bcaa u
——= - bccba v
——= - caab u
——= - c babc v
——= - ccbab v

The distance between the two sequences u and v is defined
by (3), where rep(#) returns how many times the ¢’th source
occurred in a row, and that only ¢ source transitions occurred.

t
ebwt(u,v) = Z max(rep(i) — 1,0) (3)
i=1

Again, this concept is easier understood through example.
Considering Table 2, we can see that the source string se-
quence is uuvvuvuvv. If we group this by transitions, we
get u?v2uvuv?. Thus the distance ebwt(u,v) =1+ 1+ 0+
0+0+1=3.

Mantaci et al. (2005) developed the EBWT for applica-

tions in bioinformatics, and developed theory to show a num-



ber of situations under which the EBWT will perform well
or have desirable properties. However, it is still expensive to
compute, requiring O(|u| + |v|) time for every distance com-
putation. This makes EBWT less attractive as bioinformatic
sequences become longer, and reduces its utility in other do-
mains in which compression distances have found use, such
as malware classification. While it was known that EBWT
did not satisfy the triangle inequality, preventing it from be-
ing a true distance metric, previously unreported theoretical
issues also exist. We will discuss these issues in 4.

3 Burrows Wheeler Markov Distance

Inspired by the prior work we have just discussed, we now
develop a new distance measure based on the Burrows
Wheeler Transform. We will refer to our method as the Bur-
rows Wheeler Markov Distance (BWMD), and it is sim-
ple to implement. To begin, consider again Table 1, where
BWT(’easypeasy”) is shown. The BWT’s effectiveness as a
compression algorithm comes explicitly from its ability to
re-order the content such that repetitions are reduced to a
first-order occurrence. This is why run-length encoding is
effective. Because first-order compression is independently
effective after the BWT, we do not need to consider more
complex interactions over the extent of a file.

We also do not care about the invertibility of any trans-
form. Our goal is to define a new feature space where we
can perform effective machine learning and information re-
trieval. So we seek to build a small statistical summary of the
data, rather than build an object from which we can recreate
the original data. By measuring the similarity of these small
summaries, we measure the similarity of the underlying se-
quences. Given that first-order compression is effective with
the BWT, we chose to select a first-order statistical model. In
particular, we can use a Markov model of the probability of
observing token w/, given the previous token w_,. The tran-
sition matrix 7 € RII*I®I can then be used as a statistical
summary of the entire sequence BWT(u).

This is all that is needed to describe BWMD, and a succinct
description is given below. Each step takes O(n) time for
an input sequence of n bytes. 1[z] is the indicator function,
which returns 1 if z is true, and 0 otherwise, and «, 3 are the
rows and columns of the transition matrix.

1. For each sequence w in a corpus of size NV
2. Compute v’ = BWT(u)
3. Estimate flattened Markov transition vector

||

1
x[a+5'|z\]Zmzﬂ[uéza/\ugflzﬁ]
=2

4. Normalize = such that z[i] = +/x[i] /v/2.

After step (4) in the above process, we obtain from the
input u a single feature vector = which we might use, in place
of u, in machine learning or information retrieval algorithms.
Regardless of the length of the input sequence u, the size of
the vector « will depend only on the alphabet size |X|. When
working on raw bytes, this would be a 256 feature vector.
While such a vector takes up to 256 KB per sequence u, the
individual input data objects we consider in this work range
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from 1 MB in size up to 400 MB. This makes the BWMD
description quite compact by comparison. When « is shorter
in length, the vector = can be stored in a sparse form, making
the memory cost O(min(|ul, |3]?))

The normalization in step (4) is also chosen intentionally.
The Hellinger Distance is a metric over probability distribu-
tions. For the case of two discrete probability distributions
P=(p1,...,pr) and Q = (qu,- .., qx), the Hellinger Dis-
tance is defined as follows:

k
> (Wpi—va) @)

i=1

nro -

Due to the form of (4), the Hellinger distance corresponds
to the Euclidean distance between two transformed and scaled
versions of P and (). By using the square root of the coeffi-
cients in step (4), divided by /2, we have a feature vector
x that has been placed into a space where the Euclidean dis-
tance can be computed as usual. The results are then equiva-
lent to the Hellinger distance between Markov transition vec-
tors, giving us a statistically sound interpretation for BWMD.
That the BWMD is a valid distance metric also follows imme-
diately from the use of the Euclidean distance, which is well
known to be a valid metric, a property that the EBWT lacks.

We explicitly use the Hellinger distance over other alterna-
tives, like KL-Divergence, because it corresponds exactly to
the Euclidean distance after transformation. This makes is a
valid distance metric for which we can make mathematical
statements about its behavior with little work, and prove it
does not have the same shortcomings as prior methods in this
space. In addition, most other clustering and fast retrieval
algorithms are built around the Euclidean distance, making
our method compatible with a maximal number of compli-
mentary techniques. This is not the case for any prior com-
pression based measure. The ability to use algorithms like
k-means, where other alternatives cannot, provides BWMD
with advantages in terms of clustering accuracy, as well as
computational efficiency to handle big data.

Note that because of the BWT, our approach is not equiva-
lent to 2-grams. Our comparison with LZJD, which can be in-
terpreted as adaptive variable-length gram(Raff and Nicholas
2017b), and BitShred, which uses 16-grams, will show that
our method is meaningfully more effective than simple n-
gram approaches.

4 Theoretical Results

We begin by developing a stronger theoretical understanding
of our new method, as well as the prior approach EBWT.
Prior works have looked at a number of properties of the
EBWT(Mantaci et al. 2007; Mantaci, Restivo, and Sciortino
2008; Mantaci et al. 2005), and describe situations in which
EBWT will behave as a metric for a subset of possible inputs,
and that it is invertible like the standard BWT. However, our
interest in BWT is as a general purpose similarity measure for
information retrieval and machine learning applications. We
begin by showing three undesirable properties of the EBWT
that reduce our confidence in its use for such applications.



Then we will investigate the nature of our new BWMD in
these same cases where EBWT might fail.

4.1 EBWT Shortcomings

First we show a simple property that is a direct result of the
EBWT measuring distance as a function of repeated source
sequences. When we have two strings v and v in any alphabet
3., it is necessarily the case that the distance is bounded below
by the difference in sequence lengths |u| and |v|. If u and
v differ significantly, we are unlikely to be able to make
meaningful similarity comparisons.

Theorem 1. The distance ebwt(u,v) > ||u| — |v|| — 1.

Proof. Consider any two strings v and v. The minimum dis-
tance involves the maximum number of transitions between
string sources. If |u| < |v|, that means there can be at most
2 - |u| transitions, going back and forth between « and v on
the merging. That necessitates |v| — |u| repetitions at the end.
Given the definition of ebwt in (3), that means the minimum
distance between u and v must be |v| — |u| — 1.

O

The above result leads us to suspect that EBWT will not
be useful when the sequences being compared are of varying
lengths. The greater the difference in sequence length, the
more troubling this issue might become. Given the insight
from 1, we move on to a more serious departure from our
intuition of how a distance measure should behave. In par-
ticular, if w is a subset of v, we should expect the distance
between v and v to be small. Instead, it is possible for EBWT
to return the maximal distance under this scenario.

Theorem 2. [t is possible for ebwt(u,v) = |v|+ |u| — 2, the
maximum possible distance, even if u C v.

Proof. Consider the string v = @™ and v = a"?, such
that no > ng, |u] ny and |v) ny. Because of the
topographical sorting, all rotations of v and v will have
the same characters, and so the sorting will only resolve
once the max substring length is reached. Since all rota-
tions in u are of length ny, which is shorter than ns, a
sorting will place all rotations of u before any rotations of
v. This results in a transition pattern of "' v"2, and thus
ebwt(u,v) =ng —1+ny — 1= |ul+ |v| — 2. O

2 defies our expectations in the case of similar inputs. If we
use the behavior of the NID from (1), we would expect the
distance in this scenario to be small. Consider the proof’s ex-
ample with u = @™ and v = a™?: we would expect NID(u,v)
< log(na/nq). This is because v could be encoded as the se-
quence u repeated no /nq times, which in the worst case, can
be represented in a number of bits logarithmic in the value
being encoded (i.e., the nature of any big-integer representa-
tion is that the maximum value that can be represented grows
exponentially with a doubling of the bits).

We now show that EBWT likewise surprises us in the case
of dissimilar inputs, where we can have u and v with no
overlap in content, but EBWT identifies as having maximal
similarity.
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Theorem 3. [t is possible for ebwt(u,v) = 0, even if there
exists no shared characters between u and v. More formally,
there exists w, v and an alphabet |3| > |u| + |v| such that for
everyx € wand z € v, x ¢ v A z ¢ u yet ebwt(u,v) = 0.

Proof. Let a||b denote the concatenation of a and b, and
N . . .
Hizlz the sequential concatenation of 1,2, ..., N. Without

loss of generality, define the string u = ]
H?:OlQ -4+ 1. Thus |u| = |v|, but in the lexicographical
sorting u and v will alternate between rotations u[0] = 2,
v[0] = 3, u[l] =4, v[1] =5, ..., ulng] = 2 - ng, v[ng]
2 - ng + 1. Thus ebwt(u, v) will always contain transitions
with no source repetition, hence ebwt(u, v) = 0. O

n .
" 2. jand v =
=1

The reader may note that the construction of 3 would al-
low one to argue that the scenario should return a small dis-
tance under the ideal Kolmogorov distance with NID. This
could be argued because the construction of « and v allows
v to be represented as v = u + 1. However, the same sce-
nario can occur with randomized strings where the alphabet
does not increment with any simple pattern and is filled with
random tokens, so long as there is no overlap in the tokens
and the tokens “’balance out” once sorted (i.e., there is no
FO)ystvfi] = f(uli]) yet v[i] > uli] A uli + 1] > v[i]Vi).
This requires further expanding the alphabet size ||, and as
such makes 3 the least practical of our concerns. However,
we find it enlightening as a theoretical shortcoming which
we would prefer to avoid.

While these issues give us cause for concern, EBWT has
found use in practice. We will show in 5 that our concern
for EBWT’s utility is more justified when sequences have
varying length.

4.2 Behaviors of BWMD

To delve into BWMD’s behavior, we will begin by analyzing
the same scenarios used to show our theoretical concerns
with the EBWT in the preceding section, as well as compare
the behavior of BWMD to that of the LZJD algorithm.

Corollary 1. Given u = a™ and v = a™2, such that ny >
na, then bwmd(u,v) = 0.

Proof. Under the construction of the embedding of u, x,, €
RI*I, ||z||o = 1 since there will be only one transition pattern
of a— > a. As such, the value at that index ¢ will be x,,[i] =
\/I/\/§ = 1/\/§ Since the embedding x, will have the
same construction, and thus, x,[i] — x,[i]] = 0, and Vj #
i, xy[j] = x4[j] = 0. Therefore, the distance between u and
v will be zero. O

The above also does not conform to expectation with re-
spect to the NID, because we are ignoring the length of the
inputs in our computation of distances. The NID(u,v) would
be greater than zero in this scenario and is necessitated by
storing the difference in repetition lengths ny and ny. This
tells us BWMD will be less sensitive to differences in se-
quence length, which may be desirable or not, depending on
the application.

The behavior of LZJD in this scenario was used to prove
its sensitivity to potential repetition of the input. It was shown



that LZID(a"*,a"2) = 1 — 7V§”1+171 as a lower bound for
no+1—1

a similar scenario (Raff and Nicholas 2017a). This distance
grows at a rate considerably faster than logarithmic, but is
also better than the EBWT distance in this case. We conclude
that both LZJD and BWMD have better behavior, but BWMD
will lower-bound the NID and LZJD will upper-bound the
NID.

In a similar manner as 1 was shown, the same construction
can be applied to 3’s issue for BWMD.

Corollary 2. For all u,v such that for every z € v, x ¢ v
A z ¢ wu, then bwumd(u,v) = 1, the maximum possible
distance.

2

The derivation follows from the fact that Zle Di

Zle p; = 1. This means the distance computation will

reduce to 1/ V2v/2 -1 = 1. Therefore, the distance when the
embeddings z,, and x,, have no intersection is maximized. In
this case, BWMD aligns well with the behavior we would
expect from the NID. Likewise it is easy to see that LZJD
will return its maximum distance of 1 in this scenario as well.
LZJD measures the set intersection, so when the sets have no
intersection, then maximal distance is achieved.

5 Genomic Clustering

We begin by showing that our new BWMD has similar utility
as the original EBWT distance for genomic phylogeny from
DNA sequences. This was the original proposed use of the
EBWT measure, where they evaluated the Single-Link Clus-
tering results on mitochondrial DNA (mtDNA) (Mantaci et al.
2005). Such data can be obtained using the NIH GeneBank
, which we have used to create a similar corpus of DNA se-
quences to compare the relative pros and cons of BWMD and
EBWT. We will use both mtDNA as has been done in prior
work, but also a more challenging case with chromosomal
genomic scaffold DNA sequences. We will produce dendro-
grams for each tasks with Single-Link Clustering (SLINK).

First, we will evaluate mtDNA data on 28 different species,
and use Single-Link Clustering to produce a dendrogram of
the species based on their mtDNA. The results are shown
in 1, with both EBWT and BWMD taking under 1 second
to perform the clustering. Our goal is not to fully evaluate
the quality of each dendrogram, but to show that both meth-
ods produce reasonable results in this case, which may be
of interest to researchers in bioinformatics. Both EBWT and
BWMD do reasonably well at this task, with differing mis-
takes, advantages, and disadvantages.

EBWT gets most base level groups correct (e.g., lion, tiger,
cat in one group, primates grouped together). There is a
failure to properly group the harbor and gray seals as related
to each other, and instead act as outliers which SLINK is
forced into a cluster at the end at higher cost. EBWT also
fails to group the white rhino with other members of the
Ferungulates family (e.g., the horse and zebra would have
been closest members) (Cao et al. 1998). BWMD was able to
correctly pair the seals and placed white rhino with a larger
family of Ferungulates (closest to horse, which is correct,
and with the cows and yak which are members). But BWMD
failed to place the mouse and rat together, and dispersed the

5448

harbor seal

gray seal

opossum

platypus

long beaked echidna

gray seal

harbor seal
zebra

lion

opossum

platypus

long beaked echidna
gibbon

orangutan

white rhino
gibbon
orangutan

sumatran orangutan
gorilla

sumatran orangutan humans
pygmy chimpanzee

chimpanzee

humans
gorilla

pygmy chimpanzee

chimpanzee cat

house mouse lion

tiger

cat

tiger
horse

white rhino

horse zebra

cow wallaroo

eastern grey kangaroo
western grey kangaroo
finback whale

blue whale

cow

domestic yak
wild yak
finback whale
blue whale
wallaroo

T

astern grey kangaroo

western grey kangaroo

domestic yak

-

at

(2) BWMD

ST T

wild yak

house mouse

rat

(b) EBWT

Figure 1: Single-Link Clustering result on mitochondrial
mtDNA data.

zebra and lion from their more appropriate neighbors.

Results with both methods are reasonable. However, the
mtDNA task is an easier task. All of the mtDNA sequences
are of similar sizes, with the western grey kangaroo being
shortest at 15 KB in length and the lion being longest at 17
KB. Our theoretical results in 4 would indicate that we may
see more significant issues if we had sequences of varying
length. We explore this with a dataset of chromosome ge-
nomic scaffold DNA for a subset of the species evaluated.
We selected one whole scaffold DNA sequence from a ran-
dom chromosome for the 11 species where this was available.
We selected “unplaced genomic scaffold” sequences for 3 re-
maining species (the yaks and tiger), which is a much shorter
and incomplete amount of data. This gives us a minimum
sequence size of 22 KB and a maximum of 33 MB.

The SLINK results are shown in Figure 2. At a base level,
the cost to perform EBWT and its scalability issues are
more pronounced. BWMD takes only 47 seconds to perform
SLINK clustering. EBWT took 28 minutes, making it over
35x slower. When plotting the EBWT dendrogram in Figure
2b, we include the size of the DNA sequence in parentheses.
When organized in this way, it becomes clear that the EBWT
clustering is degenerate, and corresponds exactly to file-size,
rather than content.

In contrast, the BWMD in Figure 2a produces reasonable
groupings despite disparate sequence lengths. For example,
(full scaffold) cat and (unplaced and incomplete) tiger are cor-
rectly grouped despite the cat sequence being 450 x longer.
The BWMD results are not perfect: the orangutan and do-
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Figure 2: Single-Link Clustering on Genomic Scaffolding.

mestic yak were placed farther from the other (well-grouped)
primates and ferungulates respectively. Overall we can see
that groups which should be placed near each other are, with-
out degrading to sequence length information.

We include LZJD ( Figure 2c) in this scenario, to demon-
strate that BWMD has increased value over other alternatives.
Here we can see that LZJD suffers the same failure as EBWT
in placing the three smallest partial segments into a single
cluster. With the exception of correctly grouping the two
chimpanzee species, the LZJD dendrogram is degenerate.

These results are in line with our theory derived in 4. When
working with sequences of homogeneous length, EBWT per-
formed well. But BWMD is able to handle disparate sequence
lengths reasonably well, where EBWT degrades to grouping
by sequence length rather than content.

BWMD’s ability to handle the original mtDNA data, as
well as substantially better results with the irregular-sized
scaffold DNA, is made more impressive by the fact that
BWMD is encoding everything into R'® due to the small
alphabet || = 4. This is a reduction in storage cost by a
factor of up to 515.6x, and allows for more flexibility in
creating a larger and searchable index using BWMD.

5.1 A note on BMWD’s Disadvantage

It is also worth noting that, from an information encoding per-
spective, BWMD is at a disadvantage in this testing over DNA
data. EBWT is dimensionless, and has the representation ca-
pacity of the merged sorting of two different strings, meaning
its representational capacity is a function of the sequence
length under consideration. BWMD encodes each sequence
into a fixed-length feature vector of size |Y|2. Since we are
working with DNA data, the alphabet ¥ = {A,T,C,G}
is quite small. As such all DNA sequences in these experi-
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ments, up to 33 MB in size, are being embedded into a 16-
dimensional space. BWMD’s ability to match or outperform
EBWT means we must be doing a significantly better job at
leveraging the first-order information expressed by the Bur-
rows Wheeler Transform.

6 Malware Results

It can be difficult to reliably parse malicious software as
malware authors may intentionally violate rules and format
standards. Compression based similarity measures are useful
in this case as they allow us to avoid these complex pars-
ing issues. In this section we will look at the classification
accuracy of BWMD and LZJD for several datasets. Our ex-
pectation is that LZJD will have better classification accu-
racy, due to Lempel-Ziv compressors being more effective
than those based on Burrows Wheeler. However, we find that
BWMD has significant advantages when clustering is the
goal accuracy by up to 65.6x, and is 24 x faster to search
large corpora by obtaining sub-linear scaling with no loss
in accuracy. Since LZJD cannot achieve this, this advantage
will only increase with corpus size.

Many prior works have looked at malware classification
and clustering by processing raw bytes, due to the difficulty
of parsing malware. We will compare with the seminal Bit-
Shred algorithm (Jang, Brumley, and Venkataraman 2011) for
clustering. Other similar byte based distance functions such
as Ssdeep and Sdhash where evaluated, but founds to have
degenerate performance on our smallest and easiest corpora,
which can be found in appendix section 6.1. Compression
distances such as EBWT and NCD are not evaluated in this
section, because it would require multiple compute months
for our smallest dataset, and simply cannot scale to the size
of our malware corpora.

Table 3: Malware datasets used in experiments.

Dataset Avg Size  # Classes Train Test Storage Size
EMBER 1.17 MB 2 600,000 200,000 936 GB
VS20F 705 KB 20 160,000 40,000 141 GB
Kaggle Bytes 4.67 MB 9 10,868 — 50.8 GB
Kaggle ASM  13.5 MB 9 10,868 — 147 GB
Drebin APK  1.37 MB 20 4,664 — 6.4 GB
Drebin TAR ~ 1.84 MB 20 4,664 — 8.6 GB

For our evaluation, we will use several datasets summa-
rized in Table 3. The EMBER dataset (Anderson and Roth
2018) pertains to a binary classification problem of “benign
vs malicious” for Windows executables. Because there are
only two classes, clustering results will not be evaluated on
this corpus. However it is by far the largest corpus, allowing
us to explore the scalability of our algorithms. The raw files
can be obtained from VirusTotal (www.virustotal.com) and
are nearly 1TB total. Our remaining datasets will be multi-
class problems where each sample is a member of a specific
malware family. We will use these to evaluate both classifica-
tion accuracy, as well as accuracy in clustering with respect
to the class labels. Using VirusShare (Roberts 2011) we cre-
ate another Windows based dataset with 20 malware families.
The families were determined using VirusTotal and the AV-



Class tool which determines a single canonical malware fam-
ily label based on multiple Anti-Virus outputs (Sebastidn et
al. 2016). We select the 20 most populous families, and use
7,000 examples for training and 3,000 for testing. The last
four datasets we use are evaluated in “’two forms”, following
prior work (Raff and Nicholas 2017a). The Kaggle datasets
are from a 2015 Kaggle competition sponsored by Microsoft
(Ronen et al. 2018). In the ”Bytes” version our algorithms
are run on the raw malware binary, and in the "ASM” version
the output of IDA-Pro’s disassembler is used instead. From
the Drebin corpus (Arp et al. 2014) we use the 20 most popu-
lous families, where the ”APK” version is the raw bytes of
the Android APK (essentially a Zip file with light compres-
sion), and the "TAR” version which unpacks the APK and
recombines all content into a single tar file.

6.1 Malware Classification

We begin our analysis by looking at nearest neighbor classi-
fication performance of various methods. The performance
of each algorithm under this scenario gives us insight not
only to its utility, but how effective it would be for analysts
in finding similar malware. Utility in this scenario requires
both high accuracy and computational efficiency, as malware
corpora are often measured in the terabyte to petabyte range.

Small Scale Malware Classification The Kaggle and
Drebin corpora are considerably smaller in size, allowing
us to test a wider selection of methods against them. In the
below table we use balanced accuracy, where the weights of
each file are adjusted so that the total weight of each class is
equal, because malware families are not evenly distributed in
each corpus.

We can see from these results that the compression-based
approaches, LZJD and BWMD, generally outperform other
alternatives by a wide margin. As was expected, LZJD has
higher accuracy that BWMD, since LZJD is based on a more
effective compression algorithm. While this is a slight weak-
ness of BWMD, its advantage comes in being orders of mag-
nitude faster, as we will show in the large scale testing in the
next section. This makes it the only method usable for larger-
scale corpora. This also shows that Ssdeep and Sdhash are
simply not accurate enough to be considered for use, without
regard to computational constraints.

BWMD performed second best on every dataset, the only
exception being a 3 point difference to the BitShred algo-
rithm. However, BWMD outperformed BitShred by at least
11 points on all other datasets. Supporting our theoretical anal-
ysis in 4, we also see hints that BWMD is better equipped to
work with extremely long sequences. Most notably, BWMD
is the only method which had improved accuracy and reduced
variance when moving from Kaggle Bytes (4.67 MB) to Kag-
gle ASM (13.5 MB). This suggests that the disassembly may
be in a form that allows the BWT to better capture first-order
dependencies for compression.

The fact that BWMD has non-trivial accuracy on Drebin
APK (random guessing is 5%) is particularly impressive and
worth noting. This is because the APK files are essentially
Zip files with a standard structure, and the Zip compression
format is a more effective one than most BWT based methods

5450

1010 L\\\\\\EWMI\)\ﬁ\r\l\lte\ \HEWM\ID\\\II\)HH\ T \HHHL
—— LZID Brute —— LZJD VP
) --- BWMD DCI
E et .
o
£
H ————————————
108 7o :
| Lol Lol Lol Lol

103 104 10° 106

Training Set Size

102

Figure 3: Table shows 9-NN search retrieval speed on the Em-
ber test set (in milliseconds, y-axis, log-scale) as the number
of training points (x-axis, log-scale) increases.

such as bzip. As such, that there is any first-order information
exploitable for effective similarity search is impressive, and
indicates the utility of BWMD in wider applications.

Large Scale Malware Classification On EMBER we use
9-Nearest Neighbors as our classifier so that we can compute
meaningful values for the Area Under the ROC Curve (AUC)
(Bradley 1997). In this malware detection context, AUC can
be interpreted as an algorithm’s ability to properly prioritize
all malicious software above all benign software. This metric
is useful for prioritizing work queues, and is therefore partic-
ularly pertinent. We evaluate only BWMD and LZJD due to
computational constraints on this larger dataset.

BWMD obtains an AUC of 98.3%, where LZJD acheives
a slightly better 99.7% AUC. As expected, LZJD obtains a
higher accuracy than BWMD, because LZJD is built upon
a more effective compression algorithm. However, accuracy
in isolation does not determine what method is best to use.
Due to the large size of malware corpora, sub-linear scaling
is needed to be useful for realistic sized datasets.

BWMD does have an advantage over LZJD in its ability
to scale to large corpora in an efficient manner. This is crit-
ical, since industry datasets routinely require comparisons
to terabytes of files or more (Roussev 2010). Prior work has
tried, with limited success, to scale LZJD to larger corpora.
Using an extension of the Vantage Point (VP) tree (Yiani-
los 1993), only a 2.5x speedup over brute force search was
achieved(Raff and Nicholas 2018a). Because BWMD op-
erates by embedding files into a Euclidean space, we can
leverage specialized algorithms like the Dynamic Continu-
ous Index (DCI) algorithm (Li and Malik 2017) that only
work for the Euclidean distance. DCI works by projecting the
whole dataset down to different, random, embeddings, and
allows obtaining the true nearest neighbors in a fast and effi-
cient manner. LZJD is not compatible with such algorithms,
resulting in BWMD being better equipped for this task.

In 3 we compare the total query time of BWMD and LZJD
under different indices, as the training set size increases from
64 files up to the full 600,000. We found the VP tree of
minimum variance (Raff and Nicholas 2018a) performed best
compared to other algorithms like KD and Cover-trees, and
so only its results are included. In the dashed line we show



Table 4: Balanced Accuracy results for 1-NN classification on each dataset. Results show mean 10-Fold Cross Validation accuracy
(standard deviation in parentheses). Best results in bold, second best in italics.

Dataset Ssdeep Sdhash BitShred BWMD LZID

Kaggle Bytes 38.4(1.4) 60.2(2.3) 43.7(1.9) 96.4(2.2) 97.9(1.4)
Kaggle ASM  26.6(2.2) 288(1.3) 369(1.6) 97.0(1.8) 97.1(1.7)
Drebin APK  13.6(1.6) 5.8(0.5) 583(3.9) 553(44) 81.0(4.0)
Drebin TAR 242 (29) 83(1.2) 65.1@3.7) 763(3.6) 879(2.1)

Table 5: Clustering performance of BWMD, LZJD, and BitShred. Best results shown in bold.

k=C k=10-C

Dataset Metric BWMD LZJD BitShred BWMD LZJD BitShred
V-M 0.581  0.352 0.007 0.546 0414 0.028
Kaggle Bytes Homog  0.597  0.254 0.003 0.885 0.378 0.015
Complt  0.566  0.573 0.239 0.396  0.457 0.265
V-M 0.528  0.235 0.014 0.562 0.531 0.366
Kaggle ASM  Homog  0.550 0.176 0.007 0911  0.599 0.291
Complt  0.508  0.351 0.257 0.407  0.477 0.495
V-M 0.307 0.219 0.095 0412 0.326 0.389
Drebin APK  Homog  0.296  0.172 0.054 0.566  0.313 0.333
Complt  0.319  0.303 0.375 0.323 0.340 0.468
V-M 0.403  0.248 0.065 0.508 0.478 0.386
Drebin TAR  Homog 0416  0.177 0.036 0.754  0.503 0.332
Complt  0.391 0.413 0.335 0.383  0.455 0.460
V-M 0.353  0.009 0.009 0.449  0.204 0.056
VS20F Homog  0.328  0.005 0.005 0.562  0.137 0.030
Complt  0.381  0.249 0.221 0.374  0.400 0.378

BWMD accelerated with the Dynamic Continuous Index
(DCI) algorithm (Li and Malik 2017).

We can see that as the training corpus becomes larger, the
VP trees are able to get small constant factor speedups, but
are not able to reliably prune large portions of the search
space. Because BWMD is in Euclidean space, it is the only
method able to leverage the DCI algorithm and thus able
to get significant order-of-magnitude search speedups. This
combination makes BWMD 24 x faster than LZJD (5.6 CPU
hours compared to 5.6 days), and 834 x faster than BWMD
with a brute force search. One can clearly see that DCI’s scal-
ing is sub-linear, and its advantage grows with the corpus
size. This is obtained with no loss in accuracy on the Em-
ber corpus, making BWMD the only effective approach for
scaling to even larger corpora.

6.2 Malware Clustering

In this section we will show that BWMD has significant ad-
vantages in terms of clustering malware into families. This
benefit comes largely from BWMD mapping sequences into
a Euclidean feature space, where we can leverage tried-and-
true algorithms like k-means to perform fast and useful clus-
tering. LZJD is incompatible with k-means, and similar meth-
ods that require an explicit euclidean feature vector. As such
LZJD, like BitShred, is constrained to distance based cluster-
ing methods like agglomerative clustering. This puts them at
a significant disadvantage compared to BWMD.

Evaluating the quality of our clustering results, we will
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consider three measures: Homogeneity, Completeness, and V-
Measure, as introduced by Rosenberg and Hirschberg (2007)
and using the class labels as ground truth cluster assignments.
Homogeneity measures how well an algorithm does at mak-
ing each found cluster as ’pure” as possible (i.e., only one
class in each cluster). Completeness measures how well an
algorithm groups all examples of a class into as few clusters
as possible (i.e., all examples of one class in only one clus-
ter). V-Measure is the harmonic average of Homogeneity and
Completeness. All three metrics are measured on the scale
[0, 1], with 0 being worst, and 1 being the maximum score.

In performing the clustering, we will test using k£ = the true
number of classes and £ = 10x the true number of classes.
The former (k = C') is done to judge how well the clustering
algorithms are able to recover the underlying ground truth.
The latter (k = 10 - C) is done as it corresponds best to how a
malware analyst would desire to use these tools.It is easier to
over-estimate the number of clusters than to predict the exact
value of k, and by clustering an analyst would hope to reduce
their workload by quickly checking that files in the same
cluster are related, and then performing an in-depth analysis
on only a few representatives from each cluster (VanHoudnos
et al. 2017). For this reason, we consider Homogeneity the
most important of the three measures, as it corresponds with
how an analyst would use clustering, followed by V-Measure,
and then Completeness.

BWMD is the only method that can leverage the k-
Means algorithm, and we use Hamerly’s variant because



it avoids redundant computation while returning the exact
same results(Hamerly 2010). For LZJD and BitShred we
use Average-Link clustering using a fast O(n?) algorithm
(Miillner 2011). While the original BitShred paper used
Single-Link, we found Average link provided the best results
across all metrics for both BitShred and LZJD. The results
are shown in Table 5, where we can see BWMD dominates
LZJD and BitShred by our most important metrics, Homo-
geneity and V-Measure’. BWMD’s advantage in this regard
is often dramatic. For example, BWMD scores 2.34 x better
on Homogeneity compared to LZJD when k£ = 10 - C on the
Kaggle bytes dataset, and 59x better than BitShred. While
BWMD does not always perform best by the Completeness
metric, it is always competitive with the best scoring method,
which is why BWMD dominates by V-Measure . The results
overall clearly indicate that BWMD provides the best clus-
terings across multiple datasets, of different encodings, and
different numbers of clusters, showing the flexibility of the
compression-based approach.

Because BWMD can leverage the k-means concept and
the many efficient algorithms for its computation, it is also
the most scalable for these methods. LZJD and BitShred are
inherently limited by the O(n?) lower-bound complexity of
hierarchical clustering # . For example, BWMD took only
27 minutes to over-cluster the 160,000 files in the VS20F
training set, the largest under consideration. This is 17.3x
faster than LZJD which took 7.76 hours, and 54.6 x faster
than Bitshred at just over a day.

7 Conclusion

We have developed and introduced the Burrows Wheeler
Markov Distance (BWMD), a new distance metric inspired
by the Burrow Wheeler Transform.

A theoretical analysis has shown several ways in which
BWMD has better behavior, which is confirmed by show-
ing new abilities for clustering DNA sequences that prior
methods could not handle. For malware clustering, we have
shown BWMD considerably outperforms prior methods in
both speed and accuracy, and BWMD is the only byte-based
method which can achieve sub-linear search scaling on larger
corpora.
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