The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Stochastic Approximate Gradient Descent via the Langevin Algorithm

Yixuan Qiu,' Xiao Wang’
'Department of Statistics and Data Science, Carnegie Mellon University, yixuanq@andrew.cmu.edu
?Department of Statistics, Purdue University University, wangxiao @purdue.edu

Abstract

We introduce a novel and efficient algorithm called the
stochastic approximate gradient descent (SAGD), as an alter-
native to the stochastic gradient descent for cases where un-
biased stochastic gradients cannot be trivially obtained. Tra-
ditional methods for such problems rely on general-purpose
sampling techniques such as Markov chain Monte Carlo,
which typically requires manual intervention for tuning pa-
rameters and does not work efficiently in practice. Instead,
SAGD makes use of the Langevin algorithm to construct
stochastic gradients that are biased in finite steps but accu-
rate asymptotically, enabling us to theoretically establish the
convergence guarantee for SAGD. Inspired by our theoreti-
cal analysis, we also provide useful guidelines for its prac-
tical implementation. Finally, we show that SAGD performs
well experimentally in popular statistical and machine learn-
ing problems such as the expectation-maximization algorithm
and the variational autoencoders.

Introduction

The stochastic gradient descent method (SGD, Bottou 2010;
Bottou, Curtis, and Nocedal 2018) is one of the most popular
and widely-used optimization techniques in large-scale ma-
chine learning problems. In many cases, the objective func-
tion one needs to optimize can be written as an expectation,
F(0) = E[f(0;¢)], over some random variable £ € R"
whose distribution is independent of the parameter vector
€ © C RP. Under very mild regularity conditions, the
true gradient of F'(6) is also an expectation, obtained as
g(0) = VF(0) = E[Vf(0;¢)]. When the computational
cost of g(0) is massive, SGD makes use of the stochastic
gradient, denoted by g(#), to update the parameter vector.
It has been well studied that by appropriately choosing the
step sizes, SGD has good convergence properties (Robbins
and Monro 1951). As an important special case, SGD is
frequently used in the scenario where F'() is an average
over the data points, F(§) = n=* Y7 | f(6; X;). If data
X1,...,X, are assumed to be independent and identically
distributed, then an unbiased stochastic gradient can be triv-
ially obtained as §(0) = V f(6; X1), where I follows a uni-
form distribution on {1,2,...,n}.

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5428

However, there are a much broader class of problems
where ¢ follows a general probability distribution (). Un-
like the previous simple scenario, in many cases an unbi-
ased stochastic gradient cannot be easily obtained due to the
complexity of 7(&). If w(€) is beyond the scope of standard
distribution families, then some general-purpose sampling
techniques such as Markov chain Monte Carlo (MCMC,
Gilks, Richardson, and Spiegelhalter 1995; Metropolis et
al. 1953; Hastings 1970; Geman and Geman 1984; Brooks
et al. 2011) have to be adopted, which can be quite slow in
practice.

In this article, we propose a novel and efficient algo-
rithm called the stochastic approximate gradient descent
(SAGD), as an alternative to SGD for cases where unbi-
ased stochastic gradients cannot be trivially computed. The
key idea of SAGD is to construct the stochastic gradient
using the Langevin algorithm (Roberts and Tweedie 1996;
Roberts and Stramer 2002; Cheng et al. 2018b), a sampling
method whose statistical error can be rigorously quantified.
In addition, we use an adaptive sampling scheme that allows
larger errors in the early stage of the optimization, and grad-
ually improves the precision as the procedure goes on.

These heuristics are formalized in the SAGD algorithm,
and various theoretical results are developed to guarantee its
convergence. Moreover, our analysis gives clear rates of the
relevant hyperparameters, which provide useful guidelines
for practical implementations of SAGD. The highlights and
main contributions of this article are as follows:

e We develop a new computational framework for SGD
problems in which a stochastic gradient cannot be triv-
ially obtained. The proposed SAGD algorithm is fully au-
tomated with a solid convergence guarantee.

e New theoretical contributions are made to the under-
damped Langevin algorithm for sampling from sophisti-
cated distributions, which are of interest by their own.

e We discuss the application of the proposed SAGD frame-
work in some important statistical and machine learning
problems, including the expectation-maximization algo-
rithm (EM algorithm), and the variational autoencoders
(VAE). We show that SAGD is able to automate the EM
algorithm for complex models and effectively remove the
bias of VAE.

Notation: Throughout this article we adopt the following
notation. Let R” be the r-dimensional Euclidean space with
the inner product (-,-) and norm || - ||. For matrices and
higher-order tensors, || - || denotes the operator norm. Let
C C R" be a closed convex set, and then the notation
Pc(x) means the projection of z € R” onto C'. A map-
ping ¢ : R™ — RR? is said to have polynomial growth if
there exist a constant C' > 0 and an integer m > 0 such that
|l¢(z)|] < C(1+|z||™) for all z € R". The notation V¢ is
used to denote the i-th derivative of a multivariate function
¢ : R” — R, and in particular V¢ = ¢. We use 4,7, to
denote the space of mapping ¢ such that ¢ is m-times differ-
entiable, and ¢ and its derivatives have polynomial growth.
A function ¢ : R™ — R is said to be L-Lipschitz continuous
if [¢(x) — 6(y)| < Lllz - y|| for all 2,y € B".

Related Work

The two main ingredients of the proposed SAGD frame-
work are SGD and the Langevin algorithm. SGD has been
extensively studied in the literature, and recent research
mainly focused on its acceleration, for example variance
reduction methods (Johnson and Zhang 2013; Reddi et al.
2016), adaptive step sizes (Duchi, Hazan, and Singer 2011;
Zeiler 2012), momentum methods (Kingma and Ba 2015;
Luo et al. 2019), etc. In this article, the proposed SAGD
framework is based on the original version of SGD, but it
can be easily adapted to those acceleration methods.

The Langevin algorithm has two variants, the overdamped
Langevin algorithm and the underdamped version. Most of
the analysis in literature was based on the overdamped ver-
sion (Dalalyan 2017; Durmus and Moulines 2019; 2017;
Cheng and Bartlett 2018), whereas some recent research
suggests that the underdamped version has faster conver-
gence for some special classes of distributions (Cheng et al.
2018a; Ma et al. 2019). Due to this reason, we use the un-
derdamped Langevin algorithm to develop the SAGD frame-
work. As a byproduct, we have derived new results for the
underdamped Langevin algorithm that complement prior art.

The Langevin algorithm can be compared to MCMC, as
they are both useful sampling techniques. In fact, there are
MCMC algorithms derived from the Langevin algorithm
such as the Metropolis-based overdamped Langevin algo-
rithm (Roberts and Tweedie 1996) and the underdamped
Langevin MCMC (Cheng et al. 2018b). Nevertheless, the
Langevin algorithm has several advantages in our problem.
First, the Langevin algorithm skips the Metropolis adjust-
ment step existing in most MCMC methods, which saves
computational time and avoids duplicated values in the sam-
ple. Second, as our theoretical analysis shows, the Langevin
algorithm has transparent hyperparameter setting and re-
quires less manual intervention. The downside is the result-
ing bias of the Langevin algorithm, but the theoretical anal-
ysis shows that it does not harm the convergence of SAGD.

The idea to combine SGD with the Langevin algorithm
has been seen in articles such as Xie et al. (2018) and Han
et al. (2019), but in these works the Langevin algorithm
was merely used as an MCMC-like sampling technique, and
its statistical error and impact on the convergence of opti-

5429

mization were ignored. Instead, in SAGD the two ingredi-
ents are connected in a coherent way, with a rigorous the-
oretical analysis. One recent work that is similar to SAGD
is De Bortoli et al. (2019), but the major difference is that
they used the overdamped Langevin algorithm for sampling,
whose theoretical analysis is very different from SAGD.
Another direction of research that combines SGD and the
Langevin algorithm is the stochastic gradient Langevin dy-
namics (SGLD, Welling and Teh 2011; Vollmer, Zygalakis,
and Teh 2016). However, SGLD utilizes SGD to accelerate
the Langevin sampling method, while our work aims at ex-
tending SGD by using the Langevin algorithm to construct
the approximate gradient.

The Underdamped Langevin Algorithm

In this section we provide some background knowledge of
the underdamped Langevin algorithm, and derive a few im-
portant results that are crucial to the convergence of SAGD.
At a high level, the underdamped Langevin algorithm is
an approach to obtaining approximate samples from a tar-
get distribution 7(£). In many cases, we can only compute
7(€) up to some normalizing constant, i.e., we have access
to V(&) == —log(m(£)) + C, where C' is free of . Then
the underdamped Langevin diffusion is defined by the fol-
lowing stochastic differential equation (SDE) for W (¢) =
(€1 (), p" (1) € R* with £(¢), p(t) € R,

d¢(t) = p(t)dt,
dp(t) = —yp(t)dt — VV (E(t))dE + /2vd B(t),
5(0) = 607 p(o) = pPo, t 2 07

where v > 0 is a fixed constant but can be chosen arbitrarily,
and B(t) is an r-dimensional Brownian motion. Under mild
conditions, Proposition 6.1 of Pavliotis (2014) shows that
the invariant distribution of W () is unique, with the density
function

mw (€, p) < exp{=V()—[lpl|*/2} oc m(€)-exp(~|lpl*/2),

where p is an auxiliary variable, and our main interest is in .
The form of my (€, p) indicates that ¢ and p are independent
with € ~ 7(§) and p ~ N (0, I,.). That is, if we can solve
the SDE exactly, then £ follows the target distribution in the
long run.

However, in general the solution to (1) and (2) has no
closed form, so some discretization methods have to be
adopted. Consider the following discretized chain for W, =
(& pi)" k>0

k1 = &k + Opi,

prt1 = (L —=8)pr — 6 - VV (&) +
where § is the step size, {n,}7, i N(0,1,), and ny, is
independent of {Wk}fz_ol. The iterations (3) and (4) are typ-
ically referred to as the underdamped Langevin algorithm.

The importance and usefulness of the {1}, } sample will
be illustrated in Theorem 2. Before that we need to first guar-
antee that { W}, } is well defined and does not explode as time
goes on. Formally, we show that under some mild condi-
tions, {W},} is stable in the sense that it has finite moments

)
2

3)

2y0my, (4)

of any order, uniformly in the step count k. The result is
summarized in Theorem 1, along with the assumptions we
need to impose.

Assumption 1. (a) V(x) is bounded from below, i.e.,
V(x) > vy for some constant vy € R and all x € R". (b)
The operator norm of the second derivative of V' is bounded,
ie, |[V2V(z)|| < v for some constant v > 0 and all
xR (c)V(x) €

For Assumption 1(a), we can assume 1y, = 0 without loss
of generality. This is because we can always work on a scale-
transformation of &, £ = ¢£, resulting in a transformed V/,
V'(z) = V(z/c) + loge. In what follows we adopt this
simplification, so that we have V' (z) > 0.

o0
poly*

Assumption 2. There exist constants « > 0and 0 < 3 < 1
such that for all x € R",

B2 -B)
8(1-8)
Assumption 2 is a common and standard regular-

ity condition on V coming from Mattingly, Stuart, and
Higham (2002). We then have the following conclusion:

(VV(z),2) > BV () + 7y Cpllzl|* =, Cp =

N | =

Theorem 1. Suppose Assumptions 1 and 2 hold, and choose
§ small enough such that & < min{1/v,v/(2v),(D +1 —
VD% +1)/v}, D = ~*Cg/v> Then for any fixed | > 0
and all k > 0, there exist constants C = C(1,0) > 0, A =
A(1,9) > 0, and an integer m = m(l) > 0 such that

E (1€ + llpel*') < € {1+ (l&l™ + ool ™) e™**} .

Next, we present the main result for the underdamped
Langevin algorithm. Let ¢ : R?*" — R be a multivariate
function with the notation p(w) = ©(&, p), where w
(€T, pT)T. Then define its expectation with respect to 7y as
@ =Er, = [& p)mw (&, p)dédp. Itis easy to see that
if p(w) = Vf(6;€), then p = Er, o = VF(0) is exactly
the true gradient function we are interested in. Driven by the
motivation to approximate , Theorem 2 below shows that
we can construct an estimator ¢ using the sequence {W},

where ¢ = K1 ZkK:_Ol o(Wh).

Theorem 2. Let ¢, ¢, and ¢ be defined as above, with v €
‘fpr Ji’ . Assume that the conditions in Theorem 1 hold. Then
there exist constants Cy > 0 and Cy > 0 such that for any

0 > 0 in the range and any integer K > 0, we have
1
E(¢) — | < —
[E(¢) <p|_01<K6+5>,
L \2 1 2
E[(gp gp)]_@(mws)

Theorem 2 shows that in general ¢ is a biased estima-
tor for ¢, but its bias and mean squared error can be made
arbitrarily small by appropriately choosing the algorithm pa-
rameters d and K.

Here we make a few remarks about the results in
this section. Theorem 1 is similar to Proposition 2.7 of
Kopec (2015), but they use the implicit Euler scheme to dis-
cretize the Langevin SDE, which is computationally much

5430

harder. Therefore, Theorem 1 is a new result for the explicit
Euler scheme given by (3) and (4). The rates in Theorem
2 are known results (Chen, Ding, and Carin 2015). How-
ever, in most prior art the assumptions to make Theorem 2
hold are highly non-trivial and very difficult to check for
real machine learning models. For example, Chen, Ding,
and Carin (2015) needs to assume that our conclusion in
Theorem 1 holds, along with other technical conditions. In
contrast, our assumptions are only made on the log-density
function V (), which is the actual model that machine learn-
ing practitioners are given. In this sense, the results devel-
oped in this article have much broader practical use.

The benefit of our new results is that we can easily ver-
ify the assumptions for popular machine learning models.
For example, the following corollary justifies the use of
Langevin algorithm to sample from deep generative models
(e.g. VAE). Consider a single-layer neural network h(z) =
a(Wz+b), where z € R", b € R™, W € R™*", and the
activation function is a(z) = log(1 + e”). Then we have the
following result.

Corollary 1. Assume that Z ~ N (0, I,) and X|{Z = z} ~
N(h(z),0?I), where o2 is a constant. Let p(z|z) denote the
conditional density of Z given X = x, and then V(z) =
—log p(z|x) satisfies Assumptions I and 2.

For brevity we omit the multi-layer case, but it can be
analyzed similarly. In later part of this article we will discuss
the application of SAGD to VAE model in more details.

Stochastic Approximate Gradient Descent

With the statistical properties of the underdamped Langevin
algorithm studied in Theorem 2, the SAGD framework can
then be readily developed. Recall that our target is to min-
imize the function F'(6) = E[f(6;£)], whose true gradient
g(0) = E[Vf(0;&)] is hard to compute exactly. Using the
technique developed in the previous section, we can con-
struct a stochastic gradient, §(0) = K1 Zsz_ol Vf(0; &),
to approximate g(6). Unlike most existing SGD settings,
g(#) is not an unbiased estimator for g(#), as suggested by
Theorem 2. Therefore, we refer to the optimization method
based on such a §(0) as the stochastic approximate gradient
descent. The outline of SAGD is given in Algorithm 1.

Despite the fact that §(0) is a biased estimator for the true
gradient, we show that by carefully choosing the hyperpa-
rameters, we can actually guarantee the overall convergence
of SAGD. Interestingly, the convergence rate for a convex
objective function, in terms of the number of gradient up-
dates, is the same as the vanilla SGD method with an order
of O(1/+/T), as is shown in Theorem 3.

Assumption 3. f(0;-) € € %" for each 6 € ©, and there

exist a constant C' > 0 and an integer m > 0 such that
IViF(0;)] < C(1+]-||™) foralld € © and 0 < i < r+5.
Theorem 3. Suppose that F(0) is convex and L-Lipschitz
continuous in 0 € ©, and © is a closed convex set with di-
ameter D < oc. Also assume that Assumption 3 and the con-
ditions in Theorem 1 hold. Then by choosing 6; = C1/ Vi,
K; = Cot, and oy = ag/\/t, where C1,Cy, a9 > 0 are
constants, we have E[F(0)] — F* < O(1/v/T).

Algorithm 1: Stochastic approximate gradient descent
for minimizing F(0) = E[f(6;¢)]

Input : 7T, {a:}, {0:}, {K:}, initial values 0y, &9, po
Output: Parameter estimate for 6

fort=0,1,...,7 —1do
&t.0 < &os Pr.o < Pos
fork=1,2,..., K; —1do

e k1 &+ Orpes
Sample 7 ~ N (0, I.);

Pt k+1 <
(1 —=~0¢)pt.e — 0t - VV (&t k) + v/ 270uM1 15
gi(0) K, 'S V0 E);
| Ot41 < Po (0r — o - §(64));
return 0 = T~ 31 0,

The significance of Theorem 3 is that it provides clear
rates for the hyperparameters §; and K; in the sampling
algorithm, which are crucial for practical algorithm imple-
mentation but are typically missing in other MCMC-based
methods. Of course, the preservation of the SGD rate is not
without a price. Theorem 3 indicates that the number of in-
ner iterations, i.e., /{; in Algorithm 1, needs to increase with
t. However, the developed error bounds are typically conser-
vative, so for practical use, we advocate the following tech-
niques to speed up SAGD: (1) An educated initial value &,
can be used to initialize the Langevin algorithm, for example
in VAE & is sampled from the trained encoder; (2) A persis-
tent Langevin Markov chain is stored during optimization,
motivated by the persistent contrastive divergence (Tieleman
2008); (3) Some advanced gradient update schemes such as
Adam can be used.

More generally, we consider objective functions that are
nonconvex but smooth, and assume that © = RP. Theorem
4 indicates that with a proper choice of hyperparameters, the
algorithm again has a nice convergence property.

Theorem 4. Suppose that g(0) is G-Lipschitz continuous
in 0, and assume that Assumption 3 and the conditions in
Theorem 1 hold. Let §, = C1t~¢, K, = Cst?°, and oy, =
ag/t for some constants 0 < ag < 1/(2G) and Cy,Co, ¢ >
0. Then we have liminf,_, . E[||g(6;)]|?] = 0.

Theorem 4 is an analog to Theorem 4.9 of Bottou, Curtis,
and Nocedal (2018). It is not meant to be the strongest con-
clusion, but to provide insights on the convergence property
of SAGD for nonconvex objective functions.

Applications: EM Algorithm and VAE
Automated EM Algorithm

The SAGD framework is very useful for implementing an
automated version of the EM algorithm (Dempster, Laird,
and Rubin 1977). EM algorithm is a powerful and indis-
pensable tool to solve missing data problems and latent vari-
able models. Given the data set X that follows a proba-
bility distribution with density function f(z;6), we are in-
terested in computing the maximum likelihood estimator

5431

0 = argmaxg £(0;z) for the unknown parameter vector 0,
where ¢(0; x) = log[f (z; @)] is the log-likelihood function.

However, in many cases the computation of the marginal
distribution f(x; 6) is intractable, but with an additional ran-
dom vector U, the complete log-likelihood L(6;x,u)
log[f(x,u;8)] is simple. This phenomenon typically hap-
pens when U represent missing data or latent variables in
the model. The EM algorithm computes 0 in an iterative
way. Given the current value of 6, denoted by 6y, the EM
algorithm proceeds by the following two steps:

e Expectation Step (E-step): Compute the expected value
of L(0;x,U) with respect to the conditional distribu-
tion of U given X = x under the current parame-
ter estimate 0y, and define the function Q(6;0;) =
EU|X:I,91¢ [L(H, Z, U)]

e Maximization Step (M-step): Update the estimate
of # by maximizing the () function: 641
argmaxy Q(0;0%).

The EM algorithm has a remarkable monotonicity prop-
erty, i.e., the marginal log-likelihood ¢(0;) is always non-
decreasing on the {0y} sequence. Due to such nice prop-
erties, the EM algorithm has been the standard optimiza-
tion technique for Gaussian mixture models and many other
missing data models. However, one serious problem of the
EM algorithm is that the expectation defining the @) func-
tion usually has no simple closed form, so the Monte Carlo
EM algorithm (MCEM, Wei and Tanner 1990; Levine and
Casella 2001) proposes to use Monte Carlo methods to ap-
proximate the expectation. Using MCMC to approximate
the expectation in the E-step is not a new idea, but what re-
ally matters is how to properly choose the hyperparameters
to guarantee the convergence of the M-step.

In this sense, Theorem 3 provides a clear way to make
the EM algorithm effectively automated. It is easy to see
that the target distribution 7 (&) is p(u|x; 6), the conditional
density of U given X = =z, which is proportional to the
joint density of (X, U) under 6. Therefore, we can define
V() —L(0y;x,€), and then apply Algorithm 1 to di-
rectly solve the M-step, whose convergence is readily guar-
anteed. Finally, one only needs to create an outer loop to it-
eratively update the {6} } sequence, until some convergence
condition is met.

Debiased VAE

The automated EM algorithm can be further used to improve
the popular VAE model (Kingma and Welling 2014). VAE
has the same goal of seeking the maximum likelihood esti-
mator for 6, but it uses the variational Bayes technique to
maximize a lower bound of £(¢; x). Let ¢(u|x) be any con-
ditional density function, and then VAE maximizes the func-
tion ¢(0;), defined by

€(0; x) = Eyng[log p(xfu; 0)] — KL[g(ulz)|lp(w)], (5)
where p(u) is the marginal density of u, and p(x|u; 0) is the
conditional distribution of X given U = u. In most VAE
settings, U ~ N(0, 1), and ¢(u|z) is taken to be a normal
distribution whose mean and variance parameters are repre-
sented by a deep neural network. VAE has been successfully

applied to many problems, but its most critical weakness is
that VAE does not maximize the exact log-likelihood, which
induces a bias in the final 6.

Here we show that using the SAGD framework, the bias
of VAE can be removed via an additional refining step. First,

it is easy to show that 2(9; x) has another representation,

00;2) = £(0;2) — KL[g(u|x)||p(u|x; #)]. That is, if the
distribution ¢(u|z) matches the true p(u|xz; 0), then £(0; x) is
the genuine log-likelihood function £(#; x). In this case, the
objective function (5) can be optimized via an EM algorithm
with a @ function Q(0; 01) = Evp(u|z:0,) [log p(x|u; 0) +
log p(u)], and we update the current parameter 6, by a gra-
dient move

Okr1 = Or + cu, - [0Q(0;01) /00|90, ,

with the true expectation replaced by the Langevin-based ap-
proximate gradient. The consequence of this refining step is
that we are now optimizing the true log-likelihood function
£(0; x) instead of the lower bound ¢(6; x), and hence the bias
of VAE is removed.

We emphasize that we do not position SAGD as a replace-
ment for VAE; in fact, VAE is computationally more effi-
cient and has a lower variance. Instead, the major virtue of
SAGD is its bias-correction capacity that fixes the intrinsic
gap between the evidence lower bound of VAE and the true
likelihood. Therefore, we suggest using VAE to pre-train
models, and then fine-tuning the generative network using
SAGD due to its theoretical guarantee.

Numerical Experiments
EM Algorithm

In this section we use numerical experiments to demon-
strate the applications of SAGD in EM algorithm and VAE
as discussed in the previous section. First consider a sim-
ple model such that the parameter estimation procedure
can be easily visualized. Assume that given latent variables

ZyyeoiyDn YN (0,1), the data are independently gener-
ated as X;|{Z1 = z1,...,Zn = zp} ~ Gamma(10 - o(a +
bz;)), where o(x) = 1/(1 + exp(—x)) is the sigmoid func-
tion, and Gamma(s) stands for a gamma distribution with
shape parameter s. The target is to estimate the unknown
parameters 6 = (a,b) from the observed data X, ..., X,,.
In our simulation, the true parameters are set to a = 2 and
b = 0.5, and a sample size n = 100 is used to simulate X;.

For a single variable pair (x,z), it is easy to show
that the complete log-likelihood function is L(#;x,z) =
—22/2 + (s — 1)log(x) — log{I'(s)} + C, where s
10 - o(a 4 bz), T'(+) is the gamma function, and C' is a con-
stant. The EM algorithm is then used to solve this problem
as follows. In the k-th M-step, we fix parameter estimate
at 0, = (ay,br), and then optimize the objective function
Q(0;0r) = Ez x—z.6,[L(0;x, Z)] using SAGD. The next ¢
value is set to the optimum of Q(6; 6y).

Since for this model we can evaluate the true deriva-
tives of Q(0;0y) using numerical integration, it is of in-
terest to compare SAGD with the exact gradient descent
(GD) method. We set the initial value to be 6y = (0, 1),

5432

and run both SAGD and exact GD for 7" = 100 iterations
in each M-step, with a constant step size oy = 0.2. For
SAGD, Langevin parameters are specified as 6; = 0.1//¢
and K; = t + 20, with the first 100 Langevin iterations
discarded as burn-in, similar to that in MCMC. Figure 1(a)
demonstrates the path of (a,b) values on the surface of the
true log-likelihood function after three M-steps, and Figure
1(b) gives the log-likelihood values at each gradient update.
Clearly, Figure 1 shows that the path of SAGD nicely ap-
proximates that of exact GD, which further verifies the va-
lidity of the SAGD algorithm.

Debiased VAE

In the second experiment, we use synthetic data to show
that even in the simplest setting, VAE can lead to biased
distribution estimation, but its bias can be effectively cor-
rected by SAGD. The observed data are generated as fol-
lows: given independent latent variables Z; ~ 7(z), we set
Xi; = Z; + e;, where e; ~ N(0,1) is independent of Z;,
1 =1,2,...,n. The target is to recover the unknown latent
distribution 7(z) from X, ..., X,,. In the VAE framework,
we first represent Z by a deep neural network transforma-
tion Z = hy(U), where U ~ N(0, 1), and then we have
p(z|u; 0) = N(hg(u),1). Once the neural network function
hg has been learned, we can simulate random variates of
Z = hy(U) by generating random U ~ N(0,1), and 7(2) is
approximated by the empirical distribution of a large sample
of Z. Therefore, by evaluating the quality of the Z sample,
we can study the accuracy of the learned hy function.

In our experiment, we consider three true latent distri-
butions and generate the corresponding data sets: (a) m =
N(1,0.5%); (b) an exponential distribution of mean 2; (c)
a mixture of normal distributions, 7 = 0.4 - N(0,0.5%) +
0.6 - N(3,0.52). For each case, we first train a VAE model
with 5000 iterations, and then fine-tune the neural network
parameter 6 by running the following four training algo-
rithms for additional 1000 iterations: (a) VAE; (b) the im-
portance weighted autoencoders (IWAE, Burda, Grosse, and
Salakhutdinov 2016) with £ = 50 importance samples; (c)
Hamiltonian Monte Carlo (HMC) to approximate the true
gradient; (d) SAGD. In HMC we use the same step size
and chain length as SAGD, and run L = 5 leapfrog steps
to get each proposal. After training is finished, we simulate
random variates of Z, and compare its empirical distribu-
tion 7 with the true latent distribution 7. The Kolmogorov—
Smirnov distance and 1-Wasserstein distance between 7 and
m are computed. Figure 2 shows the data distribution, true la-
tent distribution 7, and the estimated 7 in each setting, based
on one simulated data set of sample size n = 1000.

Figure 2 reflects the following remarkable results. For the
normal case, VAE has little bias, since the true conditional
distribution pyy| x (u|z) is indeed normal, which is well char-
acterized by the encoder. However, in other two cases, nei-
ther the latent distribution 7(2) nor py|x (u|z) is normal,
and hence VAE gives highly biased estimates for 7. For the
three debiasing methods, the refining steps indeed reduce
the bias of VAE. However, the debiasing effect of HMC is
smaller than that of SAGD, even though theoretically they
are similar. HMC also takes more computing time due to the

True Log-likelihood

2.0
1.54
© 1.04
0.54
0.04
0 1 7
a
Objective NI .
Function -350 -3.25 -3.00 -2.75 -2.50
Method Exact GD == SAGD
(a)

24
8 26 //
©
S /_/
c
.0
=
g
v i
L -28-
° ;
o
5 ;
= ;
g 08
=
&304
— i
:
E' M-Step 1 M-Step 2 M-Step 3
i
324 . . :
0 100 200 300
Iteration
Method ExactGD —— SAGD
()

Figure 1: (a) The paths of (a, b) on the surface of the true log-likelihood function. (b) The log-likelihood function value versus
the number of gradient updates. The horizontal line on the top stands for the maximum log-likelihood value.

leapfrog steps and the calculation of acceptance probabil-
ity. For IWAE, it tends to overly truncate the support of the
distribution and exaggerate the density of modes. Overall,
SAGD provides the most favorable bias reduction results.

Table 1: Mean and standard errors (in parentheses) of
Kolmogorov—Smirnov distance (D) and 1-Wasserstein dis-
tance (W) between 7 and 7 across replications.

VAE IWAE HMC SAGD
D 0033 0.043 0.032 0.033

Normal (0.0024) (0.0035) (0.0019) (0.0020)
W 0.052 0.066 0.050 0.052

(0.0040) (0.0047) (0.0032) (0.0035)
D 0.095 0.059 0.085 0.064

Exp(2) (0.0018) (0.0039) (0.0016) (0.0029)
W 0226 0.125 0.161 0.115

(0.0079) (0.0091) (0.0051) (0.0082)
D 0.127 0.098 0.104 0.085

Mixture 0.0027) (0.0061) (0.0015) (0.0019)
W 0.320 0.165 0.276 0.197

(0.0025) (0.0059) (0.0021) (0.0031)
D 0.093 0.080 0.092 0.065

High-Dim. (0.0010) (0.0012) (0.0008) (0.0005)
W 0222 0.158 0.212 0.093

(0.0027) (0.0029) (0.0030) (0.0015)

To further take into account the randomness in data gen-
eration, we simulate 30 replications of the data set in each
setting, and compute the mean and standard errors of the dis-
tance metrics, shown in Table 1. Also included in this table
is a high-dimensional data set with sample size n = 10000

5433

and dimension p = 100: each dimension independently fol-
lows an exponential distribution with mean 2. We pre-train
this data set using VAE for 10000 epochs, and then fit each
method with 1000 more epochs. The mean and standard er-
rors are computed over all dimensions. Both Figure 2 and
Table 1 indicate that SAGD provides good bias reduction re-
sults for VAE in both simple and high-dimensional settings,
which highlights the importance of optimizing the correct
objective function in model fitting.

Generative Model for MNIST Data

In the last experiment, we consider the MNIST handwrit-
ten digits data set, and fit generative models on it. The di-
mension of the latent space is set to 20, and the genera-
tive network is a combination of convolutional filters and
fully-connected layers. We first train a VAE model for 500
epochs with a batch size of 200, and then run SAGD for 100
epochs for fine-tuning. In SAGD, twenty independent chains
are used to compute the approximate gradient, each with five
burn-in’s.

Since SAGD basically refines the generative network of
VAE, we can directly compare their output images. We ran-
domly generate 100 digits from the trained VAE model and
the debiased model, respectively, and in Figure 3 we show
some representative pairs of generated digits, with VAE-
trained ones on the top, and SAGD-refined ones on the bot-
tom. It is clear that the SAGD refining step improves the
quality of the generated images. For example, in the first
column of Figure 3, VAE shows an ambiguous digit between
“9” and “7”, but the refined one is a definite “7”.

VAE

IWAE

HMC Debiased via SAGD

D =0.0499

D =0.0501
W =0.0784

JewloN

|enuauodx3y

4| D=0.1438
W =0.3111

D =0.0689
W =0.1671

D =0.1044
W =0.2598

D =0.0831
W =0.1733

S]RW.ON JO UNIXI

10 -5 0 5

10 -
Density Type --- Data —— Truelatent

10 -5 0 5 10

Estimated Latent

Figure 2: A demonstration of the data distribution (black dashed curves), true latent distribution (7(z), red solid curves), and
estimated latent distributions (7 (z), blue histograms). Each row in the plot matrix corresponds to a true latent density setting.
The text on the top-left corner of each plot gives the Kolmogorov—Smirnov distance (D) and 1-Wasserstein distance (W)

between 7 and 7.

vae BIREIEPEE
Debiasedmﬂmm

Figure 3: Representative examples from randomly generated
digits that show significant improvement after the refining
step using SAGD.

Conclusion

In this article we have developed the SAGD framework for
optimizing objective functions that can be expressed as a
mathematical expectation with intractable gradients. SAGD
uses the Langevin algorithm to construct an approximate
gradient in each iteration, whose accuracy is carefully con-
trolled. Theoretical analysis shows that SAGD has the same
convergence property as SGD, and more importantly, all the
hyperparameters of SAGD are transparent so that the algo-
rithm can be practically implemented. We have successfully
applied SAGD to both the automated EM algorithm and the
debiased VAE. To summarize, SAGD is an alternative to the
ordinary SGD in a broader realm, and it is hoped that SAGD
can be used to solve more statistical and machine learning
problems both efficiently and reliably.

We mention two future directions for the research on
SAGD. First, one might be interested in improving the
Langevin algorithm, as the assumptions we have made are
mild yet not the weakest. A second direction is to study the
convergence of SAGD combined with various acceleration
techniques, such as the momentum methods.

5434

References

Bottou, L.; Curtis, F. E.; and Nocedal, J. 2018. Optimiza-
tion methods for large-scale machine learning. SIAM Review
60(2):223-311.

Bottou, L. 2010. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of COMPSTAT 2010.
Springer. 177-186.

Brooks, S.; Gelman, A.; Jones, G.; and Meng, X.-L. 2011.
Handbook of Markov Chain Monte Carlo. Chapman &
Hall/CRC.

Burda, Y.; Grosse, R. B.; and Salakhutdinov, R. 2016. Im-
portance weighted autoencoders. In 4th International Con-
ference on Learning Representations.

Chen, C.; Ding, N.; and Carin, L. 2015. On the convergence
of stochastic gradient memc algorithms with high-order in-
tegrators. In Advances in Neural Information Processing
Systems 28, 2278-2286.

Cheng, X., and Bartlett, P. L. 2018. Convergence of
langevin memc in kl-divergence. In Proceedings of Algo-
rithmic Learning Theory, volume 83 of Proceedings of Ma-
chine Learning Research, 186-211.

Cheng, X.; Chatterji, N. S.; Abbasi-Yadkori, Y.; Bartlett,
P. L.; and Jordan, M. I. 2018a. Sharp convergence rates for
langevin dynamics in the nonconvex setting. arXiv preprint
arXiv:1805.01648.

Cheng, X.; Chatterji, N. S.; Bartlett, P. L.; and Jordan, M. L.
2018b. Underdamped langevin mcmc: A non-asymptotic
analysis. In Bubeck, S.; Perchet, V.; and Rigollet, P., eds.,
Proceedings of the 31st Conference On Learning Theory,
volume 75 of Proceedings of Machine Learning Research,
300-323.

Dalalyan, A. S. 2017. Theoretical guarantees for ap-
proximate sampling from smooth and log-concave densities.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 79(3):651-676.

De Bortoli, V.; Durmus, A.; Pereyra, M.; and Vidal, A. F.
2019. Efficient stochastic optimisation by unadjusted
langevin monte carlo. application to maximum marginal

likelihood and empirical bayesian estimation. arXiv preprint
arXiv:1906.12281.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 39(1):1-38.

Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research 12(Jul):2121—
2159.

Durmus, A., and Moulines, E. 2017. Nonasymptotic conver-
gence analysis for the unadjusted langevin algorithm. The
Annals of Applied Probability 27(3):1551-1587.

Durmus, A., and Moulines, E. 2019. High-dimensional
bayesian inference via the unadjusted langevin algorithm.
Bernoulli 25(4A):2854-2882.

Geman, S., and Geman, D. 1984. Stochastic relaxation,
gibbs distributions, and the bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence PAMI-6(6):721-741.

Gilks, W.; Richardson, S.; and Spiegelhalter, D.
Markov Chain Monte Carlo in Practice.
Hall/CRC.

Han, T.; Nijkamp, E.; Fang, X.; Hill, M.; Zhu, S.-C.; and
Wu, Y. N. 2019. Divergence triangle for joint training of
generator model, energy-based model, and inference model.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 8670-8679.

Hastings, W. K. 1970. Monte carlo sampling methods using
markov chains and their applications. Biometrika 57(1):97—
109.

Johnson, R., and Zhang, T. 2013. Accelerating stochastic
gradient descent using predictive variance reduction. In Ad-
vances in Neural Information Processing Systems 26, 315—
323.

Kingma, D. P, and Ba, J. 2015. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, 1-13.

Kingma, D. P,, and Welling, M. 2014. Stochastic gradient
vb and the variational auto-encoder. In 2nd International
Conference on Learning Representations.

1995.
Chapman &

Kopec, M. 2015. Weak backward error analysis for langevin
process. BIT Numerical Mathematics 55(4):1057-1103.

Levine, R. A., and Casella, G. 2001. Implementations of the

monte carlo em algorithm. Journal of Computational and
Graphical Statistics 10(3):422-439.

Luo, L.; Xiong, Y.; Liu, Y.; and Sun, X. 2019. Adaptive

5435

gradient methods with dynamic bound of learning rate. In
7th International Conference on Learning Representations.
Ma, Y.-A.; Chatterji, N.; Cheng, X.; Flammarion, N.;
Bartlett, P.; and Jordan, M. I. 2019. Is there an ana-
log of nesterov acceleration for memc? arXiv preprint
arXiv:1902.00996.

Mattingly, J. C.; Stuart, A. M.; and Higham, D. J. 2002. Er-
godicity for sdes and approximations: locally lipschitz vec-
tor fields and degenerate noise. Stochastic Processes and
their Applications 101(2):185-232.

Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.;
Teller, A. H.; and Teller, E. 1953. Equation of state calcula-
tions by fast computing machines. The Journal of Chemical
Physics 21(6):1087-1092.

Pavliotis, G. A. 2014. Stochastic Processes and Applica-
tions: Diffusion Processes, the Fokker-Planck and Langevin
Equations, volume 60. Springer.

Reddi, S. J.; Hefny, A.; Sra, S.; Poczos, B.; and Smola, A.
2016. Stochastic variance reduction for nonconvex opti-
mization. In Proceedings of the 33nd International Con-
ference on Machine Learning, 314-323.

Robbins, H., and Monro, S. 1951. A stochastic approx-
imation method. The Annals of Mathematical Statistics
22(3):400-407.

Roberts, G. O., and Stramer, O. 2002. Langevin diffusions
and metropolis-hastings algorithms. Methodology and Com-
puting in Applied Probability 4(4):337-357.

Roberts, G. O., and Tweedie, R. L. 1996. Exponential con-

vergence of langevin distributions and their discrete approx-
imations. Bernoulli 2(4):341-363.

Tieleman, T. 2008. Training restricted boltzmann machines
using approximations to the likelihood gradient. In Pro-
ceedings of the 25th International Conference on Machine
Learning, 1064-1071.

Vollmer, S. J.; Zygalakis, K. C.; and Teh, Y. W. 2016. Explo-
ration of the (non-) asymptotic bias and variance of stochas-
tic gradient langevin dynamics. The Journal of Machine
Learning Research 17(1):5504-5548.

Wei, G. C., and Tanner, M. A. 1990. A monte carlo im-
plementation of the em algorithm and the poor man’s data
augmentation algorithms. Journal of the American statisti-
cal Association 85(411):699-704.

Welling, M., and Teh, Y. W. 2011. Bayesian learning via
stochastic gradient langevin dynamics. In Proceedings of the
28th International Conference on Machine Learning, 681—

688.

Xie, J.; Lu, Y.; Gao, R.; and Wu, Y. N. 2018. Cooperative
learning of energy-based model and latent variable model
via mcmc teaching. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Zeiler, M. D. 2012. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701.

