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Abstract

A latent space model for a family of random graphs as-
signs real-valued vectors to nodes of the graph such that edge
probabilities are determined by latent positions. Latent space
models provide a natural statistical framework for graph vi-
sualizing and clustering. A latent space model of particular
interest is the Random Dot Product Graph (RDPG), which
can be fit using an efficient spectral method; however, this
method is based on a heuristic that can fail, even in simple
cases. Here, we consider a closely related latent space model,
the Logistic RDPG, which uses a logistic link function to map
from latent positions to edge likelihoods. Over this model,
we show that asymptotically exact maximum likelihood in-
ference of latent position vectors can be achieved using an ef-
ficient spectral method. Our method involves computing top
eigenvectors of a normalized adjacency matrix and scaling
eigenvectors using a regression step. The novel regression
scaling step is an essential part of the proposed method. In
simulations, we show that our proposed method is more ac-
curate and more robust than common practices. We also show
the effectiveness of our approach over standard real networks
of the karate club and political blogs.

Introduction

Clustering over graphs is a classical problem with applica-
tions in systems biology, social sciences, and other fields
(Girvan and Newman 2002; Art, Sergiy, and others 2009;
Mishra et al. 2007; Lee, Hoehn-Weiss, and Karim 2016).
Although most formulations of the clustering problem are
NP-hard (Šı́ma and Schaeffer 2006), several approaches
have yielded useful approximate algorithms. The most well-
studied approach is spectral clustering. Most spectral meth-
ods are not based on a particular generative network model;
alternative, model-based approaches have also been pro-
posed, using loopy belief propagation (Decelle et al. 2011),
variational Bayes (Airoldi et al. 2008), Gibbs sampling (Sni-
jders and Nowicki 1997), and semidefinite programming
(Hajek, Wu, and Xu 2016; Amini, Levina, and others 2018).

Many spectral clustering methods are derived by propos-
ing a discrete optimization problem, and relaxing it to
obtain a continuous, convex optimization whose solution
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is given by the eigenvectors of a normalized adjacency
matrix or Laplacian. A post-processing step, typically k-
means, is used to extract clusters from these eigenvectors
(Ng, Jordan, and Weiss 2002; Von Luxburg 2007). Dif-
ferent matrix normalizations/transformations include Mod-
ularity (Girvan and Newman 2002), Laplacian (Mohar et
al. 1991), normalized Laplacian (Chung and Graham 1997;
Shi and Malik 2000; Rohe et al. 2011), and Bethe Hes-
sian (Saade, Krzakala, and Zdeborová 2014). These meth-
ods are often characterized theoretically in the context of
the Stochastic Block Model (SBM) (Holland, Laskey, and
Leinhardt 1983), a simple and canonical model of com-
munity structure. Theoretical bounds on the detectability
of network structure for large networks have been estab-
lished for stochastic block models (Decelle et al. 2011;
Mossel, Neeman, and Sly 2012; 2018; Massoulié 2014).
Several spectral methods have been shown to achieve this
recovery threshold (Saade, Krzakala, and Zdeborová 2014;
Krzakala et al. 2013; Newman 2006). Strong theoretical and
empirical results have also been obtained using SDP-based
(Amini, Levina, and others 2018; Hajek, Wu, and Xu 2016)
and Belief Propagation-based (Decelle et al. 2011) meth-
ods, which often have higher computational complexity than
spectral methods. A threshold has also been discovered for
perfect clustering, i.e. when community structure can be re-
covered with zero errors (Abbe, Bandeira, and Hall 2015;
Hajek, Wu, and Xu 2016).

An alternative approach to the clustering problem is to in-
voke a latent space model. Each node is assigned a latent
position vi, and the edges of the graph are drawn indepen-
dently with probability pij = g(vi, vj) for some g(·). Hoff
et al. (Hoff, Raftery, and Handcock 2002) considered two
latent space models, the first of which was a distance model,
Pi,j = l(−||vi−vj ||−μ+βxij), l(x) = 1/(1+exp(−x))

where edge probabilities depend on the Euclidean distance
between two nodes. xij is a fixed covariate term, which
is not learned. Their second model is called a projection
model:

Pi,j = l(
vi · vj
||vj || + βxij − μ). (1)

Hoff et al. suggest to perform inference using an MCMC
approach over both models. Focusing on the distance model,
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they have also extended their approach to allow the latent po-
sitions to themselves be drawn from a mixture distribution
containing clusters (Shortreed, Handcock, and Hoff 2006;
Handcock, Raftery, and Tantrum 2007). Efforts to improve
the computational efficiency have been made in references
(Salter-Townshend and Murphy 2009; Ryan, Wyse, and
Friel 2017). Related mixed membership and soft cluster-
ing methods have been developed (Airoldi et al. 2008;
Langone et al. 2013).

Young et al. (Young and Scheinerman 2007) introduced
the Random Dot Product Graph (RDPG), in which the prob-
ability of observing an edge between two nodes is the dot
product between their respective latent position vectors. The
RDPG model can be written as

Pi,j = vi · vj .
This model is related to the projection model of Hoff et al.
(1). The RDPG provides a useful perspective on spectral
clustering, in two ways. First, it has led to theoretical ad-
vances, including a central limit theorem for eigenvectors of
an adjacency matrix (Athreya et al. 2013) and a justification
for k-means clustering as a post processing step for spec-
tral clustering (Sussman et al. 2012). Second, as a natural
extension of the SBM, the RDPG describes more compre-
hensively the types of network structures, such as variable
degrees and mixed community memberships, that can be in-
ferred using spectral methods.

Let V be the n × d matrix of latent positions, where n is
the number of nodes and d is the dimension of the latent vec-
tors (d ≤ n). Sussman et al. (Sussman et al. 2012) proposed
an inference method over the RDPG based on the heuristic
that the first eigenvectors of A will approximate the singular
vectors of V , as E(A) = V V T . They also characterized the
distribution of the eigenvectors of A given V . This heuristic
can fail, however, as the first eigenvector of the adjacency
matrix often separates high-degree nodes from low-degree
nodes, rather than separating the communities. This prob-
lem occurs even in the simplest clustering setup: a symmet-
ric SBM with two clusters of equal size and density. There-
fore, we were motivated to develop a more robust inference
approach.

In this paper, we consider a closely related latent space
model, the Logistic RDPG, which uses a logistic link func-
tion mapping from latent positions to edge probabilities.
Like the previously-studied RDPG, the logistic RDPG in-
cludes most SBMs as well as other types of network struc-
ture, including a variant of the degree corrected SBM. The
logistic RDPG is also similar to the projection model, which
uses a logistic link function but models a directed graph
(with pi,j �= pj,i). Over this model, we show that the maxi-
mum likelihood latent-position inference problem admits an
asymptotically exact spectral solution. Our method is to take
the top eigenvectors of the mean-centered adjacency matrix
and to scale them using a logistic regression step. This result
is possible because over the logistic model specifically, the
likelihood function separates into a linear term that depends
on the observed network and a nonlinear penalty term that
does not. Because of its simplicity, the penalty term admits a
Frobenius norm approximation, leading to our spectral algo-

rithm. A similar approximation is not obtained using other
link functions besides the logistic link.

We show that the likelihood of the approximate solution
approaches the maximum of the likelihood function when
the graph is large and the latent-position magnitudes go to
zero. The asymptotic regime is not overly restrictive, as it
encompasses many large SBMs at or above the detectabil-
ity threshold (Decelle et al. 2011). We compare the perfor-
mance of our method in the graph clustering problem with
spectral methods including the Modularity method (Girvan
and Newman 2002), the Normalized Laplacian (Mohar et
al. 1991) and the Bethe Hessian (Saade, Krzakala, and Zde-
borová 2014), and the SDP-based methods (Amini, Levina,
and others 2018; Hajek, Wu, and Xu 2016). We show that
our method outperforms these methods over a broad range of
clustering models. We also show the effectiveness of our ap-
proach over real networks of karate club and political blogs.

Logistic Random Dot Product Graphs
In this section, we introduce the logistic RDPG, describe our
inference method, and show that it is asymptotically equiv-
alent to the maximum likelihood inference.

Definitions

Let A be the set of adjacency matrices corresponding to
undirected, unweighted graphs of size n.
Definition 1 (Stochastic Block Model) The Stochastic
Block Model is a family of distributions on A parameter-
ized by (k, c,Q), where k is the number of communities,
c ∈ [k]n is the community membership vector and
Q ∈ [0, 1]k×k is the matrix of community relationships. For
each pair of nodes, an edge is drawn independently with
probability

Pi,j := Pr(Aij = 1|ci, cj , Q) = Qci,cj .

Another network model that characterizes low dimen-
sional structures is the Random Dot Product Graph (RDPG).
This class of models includes many SBMs.
Definition 2 (Random Dot Product Graph) The Random
Dot Product Graph with link function g(·) is a family of dis-
tributions on A parameterized by an n × d matrix of latent
positions V ∈ R

n×d. For each pair of nodes, an edge is
drawn independently with probability

Pi,j := Pr(Aij = 1|V ) = g(vi · vj), (2)
where vi, the i-th row of the matrix V , is the latent position
vector assigned to node i.

The RDPG has been formulated using a general link func-
tion g(·) (Young and Scheinerman 2007). The linear RDPG,
using the identity link, has been analyzed in the literature
because it leads to a spectral inference method. We will re-
fer to this model as either the linear RDPG or as simply the
RDPG. In this paper, we consider the Logistic RDPG:
Definition 3 (Logistic RDPG) The logistic RDPG is the
RDPG with link function:

g(x) = l(x− μ), l(x) :=
1

1 + e−x
, (3)

where μ is the offset parameter of the logistic link function.
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Note that this model is similar to the projection model
of Hoff et al. (Hoff, Raftery, and Handcock 2002) (1). The
projection model is for a directed graph, with Pi,j �= Pj,i

owing to the division by ||vj ||.
Remark 1 The parameter μ in the logistic RDPG con-
trols the sparsity of the network. If the latent position vector
lengths are small, the density of the graph is

1

n(n− 1)

∑
i<j

E(Aij) ≈ l(−μ). (4)

A logistic RDPG with this property is called centered. In
the following section, we show that asymptotically exact
maximum likelihood inference of latent positions over the
centered logistic RDPG can be performed using an efficient
spectral algorithm.

For a general RDPG, the ML inference problem is:

Definition 4 (ML inference problem for the RDPG) Let
A ∈ A. The ML inference problem over the RDPG is:

max
X

∑
i �=j

Aij log g(Xi,j) + (1−Aij) log(1− g(Xi,j)),

(5)

X = V V T , V ∈ R
n×d.

Note that in the undirected case, this objective function is
twice the log likelihood.

Remark 2 A convex semidefinite relaxation of Optimiza-
tion (5) can be obtained for some link functions as follows:

max
X

∑
i �=j

Aij log g(Xij) + (1−Aij) log(1− g(Xij)),

(6)
X � 0,

where X � 0 means that X is psd. For example, this opti-
mization is convex for the logistic link function (i.e., g(x) =
l(x − μ)) and for the linear link function (i.e., g(x) = x).
This optimization can be slow in practice, and it often leads
to excessively high-rank solutions, but recently-developed
techniques may address these limitations (Boumal et al.
2016).

Maximum-Likelihood Inference of Latent Position
Vectors

Here, we present an efficient, asymptotically exact spectral
algorithm for the maximum-likelihood (ML) inference prob-
lem over the logistic RDPG, subject to mild constraints. We
assume that the number of dimensions is given. In practice,
these parameters are often set manually, but approaches have
been proposed to automatically detect the number of dimen-
sions (Zelnik-Manor and Perona 2005).

The proposed maximum-likelihood inference of latent po-
sition vectors for the logistic RDPG is described below. In
the following, we sketch the derivation of this algorithm in
a series of lemmas. Proofs for these assertions are presented
in the appendix.

• Input: Adjacency matrix A, number of dimensions d.
(optional) number of clusters k

• Step 0: Form the mean-centered adjacency matrix B :=
A− 1/(n(n− 1))‖A‖.

• Step 1: Compute d eigenvectors of B with largest eigen-
values: e1, ..., ed.

• Step 2: Let Xi = eie
T
i for 1 ≤ i ≤ d. Perform logistic

regression of the entries of A lying above the diagonal on
the corresponding entries of X1, ...., Xd, estimating coef-
ficients λ∗

1, ...λ
∗
d subject to the constraint that λi ≥ 0 ∀i.

• Output: Let V be the matrix formed by concatenating√
λ∗
1e1, ...,

√
λ∗
ded. Return V .

• (optional): Perform k-means on V , and return the in-
ferred clusters.
First, we simplify the likelihood function of Optimization

(5) using the logistic link function. Let F (X) be the log-
likelihood, and let the link function be g(x) = l(x − μ).
Then:

F (X) :=
∑

i,j

Aij log l(Xij − μ) + (1−Aij) log(1− l(Xij − μ))

=
∑

i,j

Aij log
l(Xij − μ)

1− l(Xij − μ)
+ log(1− l(Xij − μ))

=
∑

i,j

Aij(Xij − μ) + log(1− l(Xij − μ)). (7)

We have used that log(l(x)/(1 − l(x))) = x. The maxi-
mum likelihood problem takes the following form (for given
μ):

max
X

Tr(AX) +
∑
i �=j

log(1− 1

1 + e−(Xij−μ)
),

X = V V T , V ∈ R
n×d. (8)

The objective function has been split into a linear term that
depends on the adjacency matrix A and a penalty term that
does not depend on A. This simplification is what leads to
tractable optimization, and it is the reason that the logistic
link is needed; using e.g. a linear link, an optimization of
this form is not obtained.

We define a penalty function f(x) that keeps only the
quadratic and higher-order terms in the penalty term of (8).
Let

f(x) := −(h(x)− h(0)− h′(0)x), h(x) = log(1− l(x−μ)).

Now, h′(0) = −l(−μ). Let
B := A− l(−μ)1n×n

in order to re-write Optimization (8) as:

max
X

Tr(BX)−
∑
i �=j

f(Xij), (9)

X = V V T , V ∈ R
n×d.

Note that for a centered RDPG with average density Ā, μ =
l−1(Ā), and B is the mean-centered adjacency matrix A −
Ā�n×n. In the next step, we convert the penalty term in the
objective function into a constraint:
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Lemma 1 Suppose that X∗ is the optimal solution to Opti-
mization (5). Let

h∗ :=
1

n(n− 1)

∑
i,j

f(X∗
ij).

Then X∗ is also the solution to the following optimization:

max
X

Tr(BX) (10)

X = V V T , V ∈ R
n×d

1

n(n− 1)

∑
i �=j

f(Xij) ≤ h∗.

In the following key lemma, we show that the inequality
constraint of Optimization (10) can be replaced by its sec-
ond order Taylor approximation.
Lemma 2 For any ε > 0 and γ ≥ 1, there exists δ > 0 such
that for any graph whose ML solution X∗ satisfies

h∗ ≤ δ and max
i

X∗
ii ≤

γ

n

∑
i

X∗
ii, (11)

the following bound is satisfied. Let B be the mean cen-
tered adjacency matrix of the chosen graph. Let s∗ ∈ R be
the optimal value of the following optimization, obtained at
X = X∗:

max
X

Tr(BX), (12)

X = V V T , V ∈ R
n×d

1

n(n− 1)

∑
i �=j

f(Xij) ≤ h∗,

Let s̃ be the optimal value of the following optimization:

max
X

Tr(BX), (13)

X = V V T , V ∈ R
n×d

a2
n(n− 1)

∑
i �=j

X2
ij ≤ h∗.

where a2 := f ′′(−μ). Then

s̃ ≥ (1− ε)s∗.

The parameter h∗ is related to the average length of latent-
position vectors (X∗

ii). If these lengths approach zero, h∗
approaches zero, for a fixed γ. An implication of this con-
straint is that the logistic RDPG must be approximately cen-
tered. Thus, there is a natural choice for the parameter μ for
the purpose of inference:

μ̂ = −l−1(
1

n(n− 1)
‖A‖F ). (14)

This estimator of μ can be viewed as the maximum-
likelihood estimator specifically over the centered logistic
RDPG. With this choice of μ, B, the mean-centered adja-
cency matrix, can be written as

B = A− 1

n(n− 1)
‖A‖F .
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Figure 1: Normalized mean squared error (one minus
squared correlation) of inferred latent positions for two
SBMs (a-b) and a non-SBM logistic RDPG (c). The top
eigenvectors of the adjacency matrix A and the modularity
matrix M do not characterize the community structure in
panel (a) and in panel (b), respectively. Note that in practice,
a different eigenvector could be selected or multiple eigen-
vectors could be used. In panel (c), the top eigenvector of A
does not recover the latent structure. In contrast, our method
successfully recovers the underlying latent position vectors
in all cases.

Note that changing the constant in the inequality con-
straint of Optimization (13) only changes the scale of the
solution, since the shape of the feasible set does not change.
Thus, in this optimization we avoid needing to know h∗ a
priori (as long as the conditions of Lemma 2 are satisfied).

Next we show that that the solution to Optimization (13)
can be recovered up to a linear transformation using spectral
decomposition:

Lemma 3 Let X̃ be the optimal solution to Optimization
(13). Let e1,..., ed be the first d eigenvectors of B, corre-
sponding to the largest eigenvalues. Then e1, .., ed are iden-
tical to the non-null eigenvectors of X̃ , up to rotation.

Once the eigenvectors of X̃ are known, it remains only to re-
cover the corresponding eigenvalues. Instead of recovering
the eigenvalues of X̃ , we find the eigenvalues that maximize
the likelihood, given the eigenvectors of X̃ . Let X̃i = eie

T
i .

Then, the maximum-likelihood estimate of λ1, ..., λd condi-
tional on X1, ..., Xd = X̃1, ..., X̃d can be written as follows:

λ∗ := argmaxλ=(λ1,...,λd)

∑
i �=j

logP (Aij |X̃1, ..., X̃d, λ, μ).

(15)

Lemma 4 Optimization (15) can be solved by logistic re-
gression of the entries of A on the entries of X∗

1 , ..., X
∗
d ,

with the constraint that the coefficients are nonnegative, and
with intercept μ.

These lemmas can be used to show the asymptotic opti-
mality of our proposed algorithm.

Theorem 1 For all ε > 0 and γ > 1, there exists δ > 0
that satisfies the following. For any graph with size n and
adjacency matrix A, suppose that X∗ is the solution to the
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Figure 2: Performance comparison of our method (logis-
tic RDPG) against spectral clustering methods in different
clustering setups. Panels (a)-(e) illustrate networks that can
be characterized by SBM, while panel (f) illustrates a non-
SBM network model. The x axis is a measure of the number
of within-cluster vs. between-cluster edges. Our proposed
method performs consistently well, while other methods ex-
hibit sensitive and inconsistent performance in different net-
work clustering setups. Note that in some cases, such as for
the Laplacian in panel (b), performance is improved by us-
ing a different eigenvector or by using a larger number of
eigenvectors.

optimization

max
X

P (A|X),

X = V V T , V ∈ R
n×d.

Let
h∗ :=

1

n(n− 1)

∑
i �=j

f(X∗
ij).

If

h∗ < δ and max
i

X∗
ii ≤

γ

n

∑
i

X∗
ii, (16)

then
P (A|X = X∗)
P (A|X = X∗)

> 1− ε,

where X∗ is the solution obtained by the proposed algo-
rithm.

Our algorithm is asymptotically exact in the sense that the
likelihood ratio between our solution and the true maximum
converges uniformly to one as the average latent position
length shrinks. Importantly, the convergence is uniform over
arbitrarily large graphs; therefore, this regime contains most
interesting large network models, such as an SBM with large
communities that cannot be perfectly recovered. Coupling
this algorithm with a k-means post processing step leads to
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Figure 3: Performance comparison of our method (logistic
RDPG) against semidefinite programming-based clustering
methods. Hajek et al.’s method is designed for the case of
having two equally sizes partitions, thus it is not included in
Panels b-d.

a clustering method with robust performance under different
network clustering setups.

This result is stronger than the statement that an approx-
imate objective function approximates the likelihood func-
tion at the optimum of the likelihood function. Such a result,
which can be obtained for many link functions (such as an
affine-linear link), is not useful because it does not follow
that the optimum of the approximate function lies near the
optimum of the true likelihood function. Indeed, for a linear
approximation, it has no optimum since the objective func-
tion is unbounded. In order to obtain the stronger statement
that the likelihood at the optimum of the approximation is
large, it is necessary to use a quadratic approximation. For
link functions besides the logistic link, the quadratic term in
the likelihood function depends on A, and a spectral opti-
mization method cannot be obtained.

The condition in Theorem 1 that the lengths of optimal la-
tent vectors are sufficiently small is not restrictive for large
networks. Consider a sequence of increasingly-large SBMs
with two clusters of fixed relative sizes, and a convergent se-
quence of admissible connectivity matrices whose average
density is fixed. There are three asymptotic regimes for the
community structure: (1) in which the structure of the net-
work is too weak to detect any clusters at all; (2) in which
the communities can be partially recovered, but some mis-
assignments will be made; and (3) in which the commu-
nities can be recovered perfectly. The true latent position
lengths go to zero in regimes (1) and (2) as well as in part of
regime (3) (Hajek, Wu, and Xu 2016). Theorem 1 requires
maximum-likelihood latent position lengths, rather than true
position lengths, to go to zero. If this is the case, and if max-
imum likelihood achieves the optimum thresholds for partial
recovery and perfect recovery, then our method will as well.
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Performance Evaluation over Synthetic

Networks

In this section, we compare the performance of our proposed
method with existing methods. First, we assess the perfor-
mance of our algorithm against existing methods in infer-
ence of latent position vectors of two standard SBMs de-
picted in Figure 1. The network demonstrated in panel (a)
has two dense clusters. In this case, the first eigenvector of
the modularity matrix M leads to a good estimation of the
latent position vector while the first eigenvector of the ad-
jacency matrix A fails to characterize this vector. This is
because the first eigenvector of the adjacency matrix cor-
relates with node degrees. The modularity transformation
regresses out the degree component and recovers the com-
munity structure. However, the top eigenvector of the mod-
ularity matrix fails to identify the underlying latent posi-
tion vector when there is a single dense cluster in the net-
work, and the community structure is correlated with node
degrees (Figure 1-b). This discrepancy highlights the sen-
sitivity of existing heuristic inference methods in different
network models (the Modularity method has not previously
been considered a latent-position inference method, but we
believe that its appropriate to do so). In contrast, our sim-
ple normalization allows the underlying latent position vec-
tors to be accurately recovered in both cases. We also ver-
ified in panel (c) that our method successfully recovers la-
tent positions for a non-SBM logistic RDPG. In this setup,
the adjacency matrix’s first eigenvector again correlates with
node degrees, and the modularity normalization causes an
improvement. We found it remarkable that such a simple
normalization (mean centering) enabled such significant im-
provements; using more sophisticated normalizations such
as the Normalized Laplacian and the Bethe Hessian, no im-
provements over were observed (data not shown).

Second, we assessed the ability of our method to de-
tect communities generated from the SBM. We compared
against the following existing spectral network clustering
methods:
• Modularity (Newman, 2006). We take the first d eigen-

vectors of the modularity matrix M := A − vT v/2|E|,
where v is the vector of node degrees and |E| is the num-
ber of edges in the network. We then perform k-means
clustering on these eigenvectors.

• Normalized Laplacian (Chung, 1997). We take second-
through (d + 1)st- last eigenvectors of Lsym :=

D−1/2(D − A)D−1/2, where D is the diagonal matrix
of degrees. We then perform k-means clustering on these
eigenvectors.

• Bethe Hessian (Saade et al., 2014). We take the second-
through (d+ 1)st- last eigenvectors of

H(r) := (r2 − 1)1n×n − rA+D,

where r2 is the density of the graph as defined in (Saade,
Krzakala, and Zdeborová 2014).

• Unnormalized spectral clustering (Sussman et al., 2012).
We take the first d eigenvectors of the adjacency matrix
A, and perform k-means clustering on these eigenvectors.

• Spectral clustering on the mean-centered matrix B. We
take the first d eigenvectors of the matrix B and perform
k-means on them, without a scaling step.

Note that in our evaluation we include spectral clustering on
the mean-centered adjacency matrix B without subsequent
eigenvalue scaling of the proposed algorithm to demonstrate
that the scaling step computed by logistic regression is es-
sential to the performance of the proposed algorithm. When
d = 1, the methods are equivalent. We also compare the per-
formance of our method against two SDP-based approaches,
the method proposed by Hajek et al. (2015) and the SDP-1
method proposed by Amini et al. (2014). For all methods we
assume that the number of clusters k is given.

In our scoring metric, we distinguish between clusters and
communities: For instance, in Figure 2-e, there are two clus-
ters and four communities, comprised of nodes belonging
only to cluster one, nodes belonging only to cluster two,
nodes belonging to both clusters, and nodes belonging to
neither. The score that we use is a normalized Jaccard index,
defined as:

maxσ∈Sk

∑k
l=1

|Cl∩Ĉσ(l)|
|Cl| − 1

k − 1
(17)

where Cl is the l-th community, Ĉl is the l-th estimated com-
munity, and Sk is the group of permutations of k elements.
Note that one advantage of using this scoring metric is that
it weighs differently-sized clusters equally (it does not place
higher weights on larger communities.).

Figure 2 presents a comparison between our proposed
method and existing spectral methods in a wide range of
clustering setups. Our proposed method performs consis-
tently well, while other methods exhibit sensitive and in-
consistent performance in different network clustering se-
tups. For instance, in the case of two large clusters (b) the
second-to-last eigenvector of the Normalized Laplacian fails
to correlate with the community structure; in the case of hav-
ing one dense cluster (a), the Modularity normalization per-
forms poorly; when there are many small clusters (c), the
performance of the Bethe Hessian method is poor. In each
case, the proposed method performs at least as well as the
best alternate method, except in the case of several different-
sized clusters (d), when the normalized Laplacian performs
marginally better. In the case of overlapping clusters (e),
our method performs significantly better than all competing
methods. Spectral clustering on B without the scaling step
also performs well in this setup; however, its performance
is worse in panels (c-d) when d is larger, highlighting the
importance of our logistic regression step.

The values of k and d for the different simulations were:
k = 2, d = 1; k = 2, d = 1; k = 25, d = 24;
k = 17, d = 16; k = 4, d = 2; k = 2, d = 1 for panels
(a)-(f), respectively. The values of d are chosen based on the
number of dimensions that would be informative to the com-
munity structure, if one knew the true latent positions. All
networks have 1000 nodes, with background density 0.05.

While spectral methods are most prominent network clus-
tering methods owing to their accuracy and efficiency, other
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Figure 4: Estimated latent positions for nodes of two real
networks. (a) Karate club social network. (b) Political blogs
network.

approaches have been proposed, notably including SDP-
based methods, which solve relaxations of the maximum
likelihood problem over the SBM. We compare the perfor-
mance of our method with the SDP-based methods proposed
by Hajek et al. (2015) and Amini et al. (2014) (Figure 3). In
the symmetric SBM, meaning the SBM with two equally-
dense, equally-large communities, we find that our method
performs almost equally well as the method of Hajek et al.
(2015), which is a simple semidefinite relaxation of the like-
lihood in that particular case. Our method also performs bet-
ter than the method of Amini et al., which solves a more
complicated relaxation of the SBM maximum-likelihood
problem in the more general case (Figure 3).

Performance Evaluation over Real Networks

To assess the performance of the Logistic RDPG over well-
characterized real networks, we apply it to two well-known
real networks. First, we consider the Karate Club network
(Zachary 1977). Originally a single karate club with social
ties between various members, the club split into two clubs
after a dispute between the instructor and the president. The
network contains 34 nodes with the average degree 4.6, in-
cluding two high degree nodes corresponding to the instruc-
tor and the president. Applying our method to this network,
we find that the first eigenvector separates the two true clus-
ters perfectly (Figure 4-a).

In the second experiment, we consider a network of polit-
ical blogs, whose edges correspond to links between blogs
(Adamic and Glance 2005). This network, which contains
1221 nodes with nonzero degrees, is sparse (the average to-
tal degree is 27.4) with a number of high degree nodes (60
nodes with degrees larger than 100). The nodes in this net-
work have been labeled as either liberal or conservative. We
apply our method to this network. Figure 4-b shows inferred
latent positions of nodes of this network. As it is illustrated
in this figure, nodes with different labels have been separated
in the latent space. Note that some nodes are placed near the
origin, indicating that they cannot be clustered confidently;
this is occurred owing to their low degrees as the correla-
tion between node degrees and distances from the origin was
0.95.

Discussion
In this paper, we developed a spectral inference method
over logistic Random Dot Product Graphs (RDPGs), and we
showed that the proposed method is asymptotically equiv-
alent to the maximum likelihood latent-position inference.
Previous justifications for spectral clustering have usually
been either consistency results (Sussman et al. 2012; Rohe
et al. 2011) or partial-recovery results (Krzakala et al. 2013;
Nadakuditi and Newman 2012); to the best of our knowl-
edge, our likelihood-based justification is the first of its kind
for a spectral method. This type of justification is satisfying
because maximum likelihood inference methods can gen-
erally be expected to have optimal asymptotic performance
characteristics; for example, it is known that maximum like-
lihood estimators are consistent over the SBM (Bickel et al.
2013; Celisse et al. 2012). It remains an important future
direction to characterize the asymptotic performance of the
MLE over the Logistic RDPG.

We have focused in this paper on the network clustering
problem; however, latent space models such as the Logis-
tic RDPG can be viewed as a more general tool for explor-
ing and analyzing network structures. They can be used for
visualization (Hall 1970; Koren 2005) and for inference of
partial-membership type structures, similar to the mixed-
membership stochastic blockmodel (Airoldi et al. 2008).
Our approach can also be generalized to multi-edge graphs,
in which the number of edges between two nodes is bino-
mially distributed. Such data is emerging in areas including
systems biology, in the form of cell type and tissue specific
networks (Neph et al. 2012).

Appendix
Proof 1 (Proof of Lemma 1) If not, then the optimal solu-
tion to Optimization (10) would be a better solution to Opti-
mization (5) than X∗.
Proof 2 (Proof of Lemma 2) The origin is in the feasible
set for both optimizations. For each optimization, the objec-
tive function value satisfies Tr(rCX) = rTr(CX). Thus,
the optimum is either at the origin (if there is no positive so-
lution) or at the boundary of the feasible set. If the optimum
is at the origin, we have s∗ = s̃ = 0. If not, let X be be
any solution to 1

n2

∑
i,j f(Xij) = h. Let r = ||X||F , and

let r′ =
√
h/a2. Claim: fixing γ, r/r′ → 1 uniformly as

h∗ → 0.
Define

FX(a) :=
1

n2

∑
i,j

f(aXij/||X||F )

for a > 0. In addition, since r′ has been defined such that
the quadratic term of FX(r′) is a2

∑
i,j(

r′
r Xij)

2 = h∗, we
have

FX(r′) = h∗ +
1

n2
O(
∑
i,j

(
r′

r
Xij)

3). (18)

Moreover, the Taylor series for f(·) converges in a neigh-
borhood of zero. Because of the constraint

max
i,j

X∗
ij = max

i
X∗

ii ≤
γ

n

∑
i

X∗
ii,
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we can choose δ such that every entry Xij falls within this
neighborhood. This constraint also implies

1

n2

∑
X3

ij ≤
1

n2

∑
|Xij |3 = O

((
1

n2
||X||F

)3
)
.

Substituting this into (18), we have

FX(r′) = h∗ +
1

n2
O(r′3). (19)

Therefore, we have

|FX(r)− FX(r′)|
FX(r′)

=
|h∗ +O(r′3)− h∗|

h∗ = O(r′). (20)

Note that f(·) is convex function with f ′(x) > 0 for all x >
0 and f ′(x) < 0 for all x < 0. Thus FX is increasing,
convex, and zero-valued at the origin: for any a, b > 0,

|a− b|
b

<
|FX(a)− FX(b)|

FX(b)
. (21)

Thus |r−r′|
r′ = O(r′) and r

r′ = 1 +O(r′).
Let rs be the norm of the argmax to optimization (12); be-
cause the objective function is linear we have that s̃ ≥ r′

rs
s∗.

Let rt be the distance to the intersection of the boundary
of the feasible set with the ray from the origin through the
argmax to optimization (13); then s∗ ≥ rt

r′ s̃. We have
shown that both ratios tend uniformly to one. This completes
the proof.

Proof 3 (Proof of Lemma 3) First, suppose we have prior
knowledge of eigenvalues of X∗. Denote its nonzero eigen-
values by λ∗

1, ..., λ
∗
d. Then we would be able to recover the

optimal solution to Optimization (13) by solving the follow-
ing optimization

max
X

Tr(BX)

λi = λ∗
i 1 ≤ i ≤ d

rank(X) = d (22)

Note that the Frobenius norm of a matrix is determined by
eigenvalues of the matrix as follows:

||X||2F = Tr(XXT ) = Tr(X2) =
∑

λ2
i . (23)

Thus we can drop the Frobenius norm constraint in (13). Let
X be an n× n psd matrix, whose non-null eigenvectors are
the columns of a matrix E ∈ R

n×d, and whose respective
eigenvalues are λ1, ..., λd. Let V := E diag(

√
λ1, ...,

√
λd),

so that X = V V T . Rewrite the objective function as

Tr(BX) = Tr(V TBV ) =

d∑
i=1

λie
T
i Bei.

Therefore X̃ = EET and X∗ = V V T .

Proof 4 (Proof of Lemma 4) The upper-triangular entries
of A are independent Bernoulli random variables condi-
tional on X and μ, with a logistic link function. The coef-
ficients should be nonnegative, as X is constrained to be
positive semidefinite.

Proof 5 (Proof of Theorem 1) By Lemma 1, we have that
the solution to optimization (10) is equal to the log-
likelihood, up to addition of a constant. By Lemma 2, we
have that for a fixed γ, as h∗ → 0, the quotient s∗/s̃ con-
verges uniformly to one, where s∗ is the solution to (10) and
s̃ is the solution to optimization (13). The convergence is
uniform over the choice of B that is needed for Theorem 1.
Because s∗ and s̃ do not diverge to ±∞, this also implies
that s∗− s̃, and therefore the log-likelihood ratio, converges
uniformly to zero. By Lemma 3, the non-null eigenvectors of
the argmax of optimization (13) are equivalent (up to ro-
tation) to the first eigenvectors of B. Finally, by Lemma 4,
the eigenvalues that maximize the likelihood can be recov-
ered using a logistic regression step. By Lemma 2, the theo-
rem would hold if we recovered the eigenvalues solving the
approximate optimization (13). By finding the eigenvalues
that exactly maximize the likelihood, we achieve a likelihood
value at least as large.
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