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Abstract

We propose new frequent substring pattern mining which can
enumerate all substrings with statistically significant frequen-
cies of their locally optimal occurrences from a given sin-
gle sequence. Our target application is genome sequences,
around a half being said to be covered by interspersed and
consecutive (tandem) repeats, and detecting these repeats is
an important task in molecular life sciences. We evaluate the
statistical significance of frequent substrings by using a string
generation model with a memoryless stationary information
source. We combine this idea with an existing algorithm,
ESFLOO-0G.C (Nakamura et al. 2016), to enumerate all sta-
tistically significant substrings with locally optimal occur-
rences. We further develop a parallelized version of our algo-
rithm. Experimental results using synthetic datasets showed
the proposed algorithm achieved far higher F-measure in ex-
tracting substrings (with various lengths and frequencies) em-
bedded in a randomly generated string with noise, than con-
ventional algorithms. The large-scale experiment using the
whole human genome sequence with 3,095,677,412 bases
(letters) showed that our parallel algorithm covers 75% of the
whole positions analyzed, around 4% and 24% higher than
the recent report and the current cutting-edge knowledge, im-
plying a biologically unique finding.

1 Introduction

Genome sequences are known to be strings that contain
many consecutive (tandem) and interspersed repeats, and
the percentage of these repeats reaches 30-50% in mam-
malian genomes (Faulkner, Kimura, and et al. 2009). These
interspersed repeats are created by transposition of the so-
called retrotransposons, where typical examples are SINEs
(short interspersed nuclear elements), LINEs (long inter-
spersed nuclear elements) and LTRs (long terminal repeats).
More importantly retrotransposons affect genomes directly,
by which retrotransposons are involved with a lot of genome
related biological activities, such as promoting genome evo-
lution, supporting genome structure and so on (Faulkner,
Kimura, and et al. 2009). A lot of efforts are being made
to identify repeats in genomes, and the number of repetitive
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substrings in the most well-recognized database, Repbase
(Bao, Kojima, and Kohany 2015), is steadily increasing.

Currently we can easily access genome sequences of vari-
ous species. A widely conducted approach of finding repeats
out of these sequences is the so-called de novo discovery,
which finds repeats in genome sequences without using prior
information about structures or similarity of the known re-
peats (Bergman and Quesneville 2007). Most major de novo
approaches can be classified into three types: 1) clustering
after pairwise alignment (Bao and Eddy 2002; Quesneville,
Nouaud, and Anxolabéhère 2003; Edgar and Myers 2005;
Kurtz et al. 2001; Volfovsky, Haas, and Salzberg 2001), 2)
frequent k-mer extension (Li et al. 2005; Price, Jones, and
Pevzner 2005; Gu et al. 2008) and 3) clustering after the
second approach (Ghodsi, Liu, and Pop 2011).

Frequent pattern mining has been well investigated and
matured in the past 30 years, and frequent subsequence min-
ing (Agrawal and Srikant 1995) would be a possible ap-
proach for genome sequences. There are two types of se-
quence patterns: subsequences and substrings (contiguous
subsequences). In general a subsequence is, given multiple
sequences, evaluated by the number (called support) of se-
quences (occurrences) with this pattern, while a substring
is, given a single sequence, by the number of occurrences
of this substring in this sequence. The former idea of sub-
sequences is more standard in data mining, while the lat-
ter idea of substrings would be more reasonable for find-
ing repetitions in genomes. In fact there are studies on fre-
quent substring mining to find interspersed repeats as oc-
currences of patterns in a given string (Zhu et al. 2007;
Nakamura et al. 2016). Frequent pattern mining is to enu-
merate all patterns that satisfy a prefixed minimum number
of supports which is called min sup. In other words, each
obtained pattern has a reason of why being a pattern, mak-
ing frequent pattern mining more advantageous than finding
patterns by heuristics or clustering. However, there are two
problems when applying frequent pattern mining to huge
genome sequences: 1) determining the min sup, because a
low min sup causes many garbage small patterns and a high
min sup might lose important large patterns with low sup-
ports. 2) avoiding heavy computation of enumerating pat-
terns with low supports.
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The first problem can be addressed by enumerating sta-
tistically significant patterns (Terada et al. 2013). Statistical
significance in mining frequent subsequences can be con-
sidered under an independence (memoryless) model (Low-
Kam et al. 2013), which can compute the expected num-
ber of sequences with a candidate pattern in given multi-
ple sequences and then the statistical significance of the real
appearances of the pattern is tested by multiple hypothesis
testing as to if a given family-wise error rate is achieved.
This approach is for subsequences and not for substrings,
and cannot be directly applied to mining frequent substrings
in a given single string. However statistical significance un-
der the memoryless model has been considered for genome
sequence already (Ewens and Grant 2005) though not nec-
essarily for mining patterns. Recently a method for enumer-
ating the longest substring pairs appearing many times in a
genome is proposed (Jelovic et al. 2018), checking the sta-
tistical significance under the assumption of randomly gen-
erated sequences. This method considers exactly the same
strings, resulting in only short strings captured as statisti-
cally significant repeats.

We propose novel frequent substring pattern mining
which, given a string, enumerates all substrings that occur in
statistically significant frequencies under a string generation
model with a memoryless stationary information source.
Into this new framework of pattern mining, we incorporate
the idea of frequent locally optimal occurrences (Nakamura
et al. 2016), where pattern occurrences need local optimal-
ity in alignment with the pattern. This combination would be
appropriate for considering the occurrences of interspersed
repeats. For computational efficiency, we consider the sim-
plest 0-gaped settings, in which occurrences must have a pat-
tern with the same length. We say that, given p-value thresh-
old α, pattern q with length m has statistically significant
frequency, if the p-value on frequency f(q) of locally opti-
mal occurrences of pattern q is at most α, i.e. f(q) ≥ σq for
σq = min{σ | P{f(q) ≥ σ} ≤ α}, where the probability
is calculated using the assumed stochastic model of string
generation. We use the lower bound σ̄[m] = minq:|q|=m σq

instead of σq for all length-m patterns q for computational
efficiency. Frequency threshold σ̄[m] for length-m patterns
in a length-n string is approximated by min{σ ∈ N |
P{X ≥ σ | X ≥ 1} ≤ α} for Poisson random variable
X ∼ Po(λ) with λ = (n −m + 1)W∗(m), where W∗(m)
is the maximum value among occurrence probabilities of all
length-m patterns in a random length-m string. Probability
W∗(m) cannot be computed trivially, because many differ-
ent strings can be locally optimal occurrences of a length-
m pattern and W∗(m) is the sum of those probabilities. We
show an efficient algorithm of calculating W∗(m), based on
dynamic programming. We develop an efficient algorithm,
E3SFLOO (Enumerate Substring patterns with Statistically
Significant Frequencies of Locally Optimal Occurrences) in-
corporating the above calculation of σ̄[m] (m = 1, . . . , n)
into ESFLOO-0G.C (Nakamura et al. 2016) and further de-
velop a parallelized version of E3SFLOO.

Effectiveness of E3SFLOO was demonstrated by us-
ing synthetic data of random strings in which substrings
with various lengths, frequencies and noise are embedded.

Without noise, E3SFLOO could extract all embedded sub-
strings (F-measure: 0.997), which was hard for ESFLOO-
0G.C with any min sup (F-measure: ≤0.688). In particu-
lar, E3SFLOO was robust, regarding approximate match-
ing, achieving F-measure of 0.876 for strings, containing
substrings with statistically significant frequency and noise
of 4%. Also E3SFLOO ran fast enough for huge strings,
for example, spending only 19.4 seconds for a string with
10,000,000 letters and 9,996 embedded substrings (75 letters
at the longest). We found that parallelization (64 threads)
made 36.34 times faster than that with only the main thread.

We applied E3SFLOO to the whole human genome se-
quence (around 3.1 billion letters) and examined the occur-
rences of the obtained patterns after postprocessing. The re-
sult shows that the occurrences covered 75% of the whole
sequences, around 4% larger than the recent report by using
P -clouds (de Koning et al. 2011). We further compared our
occurrences with the positions annotated by RepeatMasker
(Smit, Hubley, and Green 2017) basically as substrings sim-
ilar to those which are already registered in Repbase (Bao,
Kojima, and Kohany 2015), or annotated by Tandem Re-
peats Finder (TRF) (Benson 1999). These positions covered
only around 51% of the entire genome, 24% lower than our
coverage rate, and 87.5% of these positions were covered by
our occurrences. Finally detected repeats with the length of
> 2, 000 showed the discovery of unknown repeats, some
being distributed over different chromosomes. Overall these
results imply that E3SFLOO can be a promising tool to de-
tect unknown repeats in genome sequences, which might be
covered by various types of repeats far more than those al-
ready found.

2 Problem Setting

Let Σ be a finite alphabet with letters as elements. For ar-
bitrary two letters x, y ∈ Σ, real-valued function w(x, y),
called a score function, is defined to satisfy the following
three conditions:
SF1 w(x, y) = w(y, x) for all x, y ∈ Σ

SF2 w(x, x) > 0 for all x ∈ Σ

SF3 w(x, y) < 0 for some x, y ∈ Σ

Positive w(x, y) implies that two letters x and y are sim-
ilar. Sequence s = s[1] · · · s[n] that is composed of let-
ters s[1], . . . , s[n] ∈ Σ, is a string and n is the length of
string s. For two strings s = s[1] · · · s[n], t = t[1] · · · t[n]
with the same length of n, similarity score S is defined as
S(s, t) =

∑n
i=1 w(s[i], t[i]).

For 1 ≤ i ≤ j ≤ n, consecutive part s[i] · · · s[j] of string
s = s[1] · · · s[n] is called a substring of s and denoted as
s[i..j]. Note that s[i+1..i] is also used to denote a null string.

We consider approximate pattern p[1..m] that frequently
occurs in string s[1..n]. As occurrences of pattern p[1..m] in
string s[1..n], we consider minimal locally optimal occur-
rences defined as follows.

Definition 1 (Minimal locally optimal occurrences1)
Substrings s[i..i + m − 1] of s[1..n] that satisfy the fol-
lowing two conditions are called minimal locally optimal
occurrences of p[1..m].
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CS1 S(p[1..h], s[i..i+ h− 1]) > 0 for all 0 < h ≤ m

CS2 S(p[1..m], s[i..i+m−1]) > S(p[1..h], s[i..i+h−1])
for all 0 ≤ h < m

Example 1 For s = s[1..12] = abcaacbabbba, p[1..5] =
abcba and w(x, y) that is 1 for x = y and −1 for x �=
y, s[8..12] is a minimal locally optimal occurrence of p but
s[1..5] and s[4..8] do not satisfy CS2 and CS1, respectively.

The following problem is the frequent pattern mining
problem considered in (Nakamura et al. 2016).

Problem 1 Given string s, score function w and natural
number σ, enumerate substrings s[i..j] of s for which mini-
mal locally optimal occurrences appear in s at least σ times.

In Problem 1, frequent patterns are defined by fixed
threshold σ. Since short string patterns occur more fre-
quently than long string patterns, statistically significant
long patterns might be missed by using a large threshold
while a lot of garbage short patterns might be extracted by
using a small threshold.

To overcome this problem, we propose new frequent pat-
tern mining, in which we give2 p-value threshold α, instead
of fixed threshold σ, assuming that a given sequence is gen-
erated by a memoryless stationary information source. Con-
sider memoryless stationary information source S0(P0) that
generates letter x in Σ with probability P0(x). Let s′ be
a length-n random sequence generated from S0(P0). Let
σ(n, p, P0, α) be the minimum natural number σ such that
minimal locally optimal occurrences of pattern p appear in
s′ at least σ times with the probability of at most α under
the condition that p appears in s′ at least once3. Then, our
frequent pattern mining can be described as follows.

Problem 2 Given string s[1..n], score function w, memo-
ryless information source S0(P0) and positive real value
α ∈ (0, 1), enumerate substrings s[i..j] of s, for which
minimal locally optimal occurrences appear in s at least
σ(n, s[i..j], P0, α) times.

3 Computing σ(n, p, P0, α)
3.1 Approximation by Poisson Distribution

Since a naive exact computation of σ(n, p, P0, α) would be
very costly, we propose an approximate way of computing
σ. Let s′[1..n] be a random sequence generated by a given
memoryless stationary information source S0(P0). Then,
s′[1..m], s′[2..m + 1], . . . , s′[n −m + 1..n] can be seen as
a state transition sequence of a Markov information source
with Σm states. Note that given pattern p[1..m] is one of the
Σm states. Let {wq | q ∈ Σm} be the stationary distribution
over the state space Σm. Let Q(p) be the subset of Σm so
that every member t[1..m] of Q(p) is a minimal locally op-
timal occurrence of p[1..m], and let Wp denote

∑
q∈Q(p) wq .

1In (Nakamura et al. 2016), occurrences that satisfies this con-
dition are called minimal locally optimal 0-gap occurrences.

2p-value threshold α corresponds to family-wise error rate
αn(n+ 1)/2.

3We need this condition because patterns are restricted to sub-
strings of a given string.

Let X be the number of member state occurrences in Q(p)
in s′. Then, σ(n, p, P0, α) is expressed as

σ(n, p, P0, α) = min{σ ∈ N | P{X ≥ σ | X ≥ 1} ≤ α}.
We approximate4 the distribution of X by Poisson distri-
bution Po((n − m + 1)Wp). Let X ′ ∼ Po(λ), where
λ = (n−m+ 1)Wp. Then,

P{X ≥ σ | X ≥ 1} ≈P{X ′ ≥ σ | X ′ ≥ 1}

=
1

1− e−λ

(
1− e−λ

σ−1∑
i=0

λi

i!

)

holds. Thus the following σ̃(n, p, P0, α) can be regarded as
an approximate value of σ(n, p, P0, α):

σ̃(n, p, P0, α)

=min

{
σ ∈ N

∣∣∣∣∣ 1

1− e−λ

(
1− e−λ

σ−1∑
i=0

λi

i!

)
≤ α

}

where λ = (n−m+ 1)Wp

To avoid computing σ̃(n, p, P0, α) for each pattern p, we
use the maximum value σ̄(n,m, P0, α) of σ̃(n, p, P0, α)
over all patterns p with the length of m that can be calcu-
lated using W∗(m) = maxp∈Σm Wp:

σ̄(n,m, P0, α) = σ̃(n, argmaxp∈ΣmWp, P0, α) (1)

3.2 Computing W∗(m)
Consider the following simple score function w:

w(x, y) =

{
a (x = y)

−b (x �= y),
(2)

where a and b are positive natural numbers with b > a > 0.
Then similarity score S(p, t) is determined only by the num-
ber of unmatched positions. Also only unmatched positions
determines if t is a minimal locally optimal occurrence of
p. Let F (m) denote the family of unmatched position sets
of minimal locally optimal occurrences of any p[1..m], i.e.
F (m) = {{i | t[i] �= p[i]} | t ∈ Q(p)}. Then, F (m) does
not depend on p and is fixed for any p of length m. Thus
by using the above score function w, Wp for pattern p ∈
Σm can be computed as Wp =

∑
t∈Q(p)

∏m
i=1 P0(t[i]) =∑

S∈F (m)

∏
i �∈S P0(p[i])

∏
i∈S(1 − P0(p[i])). Let c∗ =

argmaxx∈Σ P0(x). Then the following relation holds be-
tween W∗(m) and c∗.
Theorem 1 Let p∗[1..m] = c∗ · · · c∗. Then, for score func-
tion w defined as (2),

W∗(m) = Wp∗ =

� a
a+bm�∑
k=0

|{S ∈ F (m) | |S| = k}|
× P0(c∗)m−k(1− P0(c∗))k.

4The distribution of X can be approximated by binomial dis-
tribution B(n − m + 1,Wp) for n � m due to the ergodicity of
memoryless stationary source. Poison approximation is adequate
for p[1..m] with small (n − m + 1)Wp and rare overlapping oc-
currences. For nonsmall (n − m + 1)Wp, a normal distribution
can approximate the distribution of X , and for nonrare overlap-
ping occurrences, compound Poisson distribution can be used as
an approximation under Q(p) = {p} (Ewens and Grant 2005).
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(Proof) The second equality is easily derived as

Wp∗ =
∑

S∈F (m)

∏
i �∈S

P0(c∗)
∏
i∈S

(1− P0(c∗))

=

� a
a+bm�∑
k=0

|{S ∈ F (m) | |S| = k}|
× P0(c∗)m−k(1− P0(c∗))k.

The first inequality Wp ≤Wp∗ for any p ∈ Σm, that is,∑
S∈F (m)

∏
i �∈S

P0(p[i])
∏
i∈S

(1− P0(p[i]))

≤
∑

S∈F (m)

∏
i �∈S

P0(c∗)
∏
i∈S

(1− P0(c∗)).

can be proved by induction on |{i | P0(p[i]) < P0(c∗)}|. �
We now describe a way to compute |{S ∈ F (m) | |S| =

k}| efficiently for any m and k, as follows. Let S ∈ F (m)
with |S| = k. Consider a one-dimensional walk along a
number line that starts from 0 at time 0 and goes right by a if
i+1 �∈ S and left by b if i+1 ∈ S at time i+1 from the posi-
tion at time i. The walks for S ∈ F (m) with |S| = k reaches
(m−k)a−kb = ma− (a+ b)k at time m without reaching
either (−∞, 0] or [ma − (a + b)k,∞) at time 1 < i < m.
The number of such walks is just |{S ∈ F (m) | |S| = k}|
and can be computed by dynamic programming as follows.

For h and i (h ≥ i ≥ 0), where difference h − i is a
multiple of a, let γh,i,k denote the number of different walks
that start from i at time 0 and reach h−(a+b)k at time (h−
i)/a without reaching either (−∞, 0] or [h − (a + b)k,∞)
at time 1 < i < (h− i)/a. Then,

γma,0,k = |{S ∈ F (m) | |S| = k}|
holds. As for γh,i,k, the following theorem holds.

Theorem 2 The following recursive formulas hold for non-
negative integers h, i, k satisfying that h ≥ i and difference
h− i is a multiple of a.

γh,i,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 (k = 0)

γh,i+a,k (i ≤ b)

γh,i+a,k + γh−(a+b),i−b,k−1

(b+ 1 ≤ i ≤ h− (a+ b)k − a− 1)

γh−(a+b),i−b,k−1 (i ≥ h− (a+ b)k − a)

(Proof) When k = 0, only right moves must be taken to
reach h, and the number of different walks is one. Assume
k ≥ 1. When i ≤ b, the walk reaches (−∞, 0] if the next
move is left. Thus the number of different walks is equal to
γh,i+a,k. When i ≥ h−(a+b)k−a, if the next move is right,
then the walk reaches [h−(a+b)k,∞). Thus the number of
different walks is equal to γh−(a+b),i−b,k−1. Otherwise, that
is, when b+1 ≤ i ≤ h−(a+b)k−a−1, the next move can
be either right or left. Thus the number of different walks is
γh,i+a,k + γh−(a+b),i−b,k−1. �

Given a natural number M , Algorithm 1 shows a pseu-
docode of an algorithm for computing γma,0,k for 1 ≤ m ≤
M and 0 ≤ k ≤ ma

a+b . This algorithm is an O(M3) time
algorithm.

Algorithm 1 Computing γma,0,k

Require: M : maximum pattern length,
a, b: parameters of score function (2)

Ensure: γma,0,k for 1 ≤ m ≤M and 0 ≤ k ≤ ma
a+b .

1: γh,i,0 ← 1 for all 1 ≤ h ≤Ma and 0 ≤ i ≤ h
where difference h− i is a multiple of a.

2: Output γma,0,0 for 1 ≤ m ≤M .
3: for k = 1 to Ma

a+b do
4: γh,i,k ← γh−(a+b),i−b,k−1

for (a+ b)k + a ≤ h ≤Ma and
i = h− (a+ b)k − a.

5: for h = Ma to (a+ b)(k + 1) + 2 step −1 do
6: {The same variable can be used for γh,i,k and

γh,i,k−1

by processing in the decreasing order of h.}
7: for i = h− (a+ b)k − a− 1 to b+ 1 step −1 do
8: γh,i,k ← γh,i+a,k + γh−(a+b),i−b,k−1.
9: end for

10: end for
11: for i = b to 0 step −1 do
12: γh,i,k ← γh,i+a,k for i+ a ≤ h ≤Ma.
13: end for
14: Output γma,0,k for 1 ≤ m ≤M .
15: end for

Using γma,0,k (k = 0, . . . , 
 a
a+bm�) computed by Algo-

rithm 1, W∗(m) can be computed as

W∗(m) =

� a
a+bm�∑
k=0

γma,0,kP0(c∗)m−k(1− P0(c∗))k. (3)

4 Algorithm

4.1 Algorithm E3SFLOO

We propose an algorithm, which we call E3SFLOO (Enu-
merate Substring patterns with Statistically Significant Fre-
quencies of Locally Optimal Occurrences), developed from
ESFLOO-0G.C (Nakamura et al. 2016) for Problem 1,
as an approximation algorithm (for Problem 2) of using
σ̄(n,m, P0, α) instead of σ(n, s[i..i + m − 1], P0, α) for
i = 1, . . . , n−m+ 1.

Algorithm 2 shows a pseudocode of E3SFLOO. Given
string s[1..n] and maximum p-value (for frequent patterns),
E3SFLOO first checks the occurrence rate of each letter
c in s[1..n] and set it to P0(c) (Line 1). Using n, α and
P0, E3SFLOO computes σ̄(n,m, P0, α) for length-m pat-
terns in the increasing order of m until m = m0 with
σ̄(n,m0, P0, α) < 3 and σ̄(n,m, P0, α) is stored as σ̄[m]
(Lines 2-5). Note that σ̄[m] is set to 2 for m ≥ m0. The rest
part of the algorithm are the same as ESFLOO-0G.C (Naka-
mura et al. 2016) except using σ̄[m] for length-m patterns,
instead of a simple cut-off against frequencies (min sup).

E3SFLOO is an O(n3)-time and O(n2)-space algorithm
(Nakamura et al. 2016) except computing σ̄[m] (m =
1, . . . , n), which is O(M3) for M = argmin{m |
σ̄(n,m, P0, α) < 3} for given s[1..n] and 0 < α < 1.
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Algorithm 2 E3SFLOO(s, α)

Require: s[1..n]: string, α: maximum p-value
1: P0(c) ← |{i | s[i] = c}|/n for c ∈ {s[i] | i =

1, . . . , n}.
2: for m = 1 to n do
3: Set σ̄[m] to σ̄(n,m, P0, α) computed by Eq. (1) and

(3).
4: if σ̄[m] < 3 then σ̄[i]← 2 for i = m+ 1, . . . , n and

break
5: end for
6: Run ESFLOO-0G.C(s) that is modified so as to use min.

sup. σ̄[m] for len-m pats (m = 1, . . . , n).

4.2 Parallelization of E3SFLOO

The most time consuming part of E3SFLOO is subroutine
PatGen in ESFLOO-0G.C, in which every substring p[1..m]
of given string s is generated by traversing the suffix tree
of s and checked whether its frequency of minimal locally
optimal occurrences is at least σ̄[m]. PatGen can be paral-
lelized by traversing the suffix tree in parallel, i.e. parallelly
processing different child nodes at the same time. Each pro-
cess parallelized in this way needs no communication with
each other, and all processes can be executed independently.

Practically the above parallelization was implemented by
using multi-thread programming. In parallelization of Pat-
Gen, the task for each child node of the current node in the
suffix tree is separated as an independent subroutine and as-
signed to a waiting thread if there is, and otherwise continu-
ously processed in the same thread.

5 Experiments Using Synthetic Datasets

5.1 Datasets

For each pair of α = 0, 1, 2, 4, 8 and β = 1, 2, we gen-
erated dataset Dβ(α) that has 10 strings, each with the
length of 107. Given a set of pairs of length and frequency
{(�1, f1), . . . , (�k, fk)}, each string in Dβ(α) is generated
as follows: 1) we randomly generated string s by simu-
lated quaternary memoryless information source with the
occurrence probability of 1/4 for each letter, 2) for each
i = 1, . . . , k, we generated fi occurrences of a length-
�i pattern by copying s[103j..103j + �i − 1] to s[103(j +
a)..103(j + a) + �i − 1] (a = 1, . . . , fi − 1) for some nat-
ural number j so as not to overlap the occurrence positions.
We repeated this procedure 
104/∑k

i=1 fi� times, and 3)
for each position i = 1, . . . , 107, we selected ‘replace’ with
the probability of α/100, and then replaced letter s[i] with
one of the other three letters uniformly and randomly.

As a set of pairs of length and frequency, in D1(α),
we used {(15, 14), (20, 8), (25, 6), (30, 5), (35, 4), (55, 3),
(75, 2)}, in which frequency fi for length �i is selected so as
to satisfy fi = σ̄(107, �i, 1/4, 1.0 × 10−20). In D2(α), we
used {(15, 28), (20, 16), (25, 12), (30, 10), (35, 8), (55, 6),
(75, 4)}, where frequency fi for length �i is twice larger than
the corresponding frequency in D1(α).

Table 1: Performance comparison between E3SFLOO and
ESFLOO-0G.C using D1(0). Performances (in percentage)
are averaged over 10 strings.
algorithm parameter prec. recall F-m.
E3SFLOO p-value: 10−20 99.4 100.0 99.7

ESFLOO-0G.C

min sup: 14 98.8 18.6 31.3
min sup: 8 91.3 35.2 50.8
min sup: 6 74.5 57.7 65.0
min sup: 5 65.9 72.0 68.8
min sup: 4 35.5 86.9 50.4
min sup: 3 6.3 97.8 11.9
min sup: 2 1.3 100.0 2.5

Table 2: Performance [%] of E3SFLOO for noisy datasets.
Performances are averaged over the 10 strings.

α
D1(α) D2(α)

prec. rec. F-m. prec. rec. F-m.
0 99.4 100.0 99.7 82.4 100.0 90.4
1 99.3 70.7 82.6 85.4 97.8 91.2
2 99.4 53.6 69.6 87.3 94.8 90,9
4 99.5 29.8 45.9 89.5 85.9 87.6
8 99.2 6.7 12.6 88.7 42.8 57.7

5.2 Effectiveness of Length-Dependent Supports

We compared the performance of E3SFLOO with ESFLOO-
0G.C under various minimum supports using dataset D1(0).
In all experiments, we used score function (2) with a = 1
and b = 4. First, we enumerated patterns using E3SFLOO
or ESFLOO-0G.C, filtered out non-closed patterns and then
extracted all occurrences of the enumerated patterns. A
closed pattern is defined as substring s[i..j] for which any
extension s[i′.., j′] (i′ ≤ i, j ≤ j′ and (i′, j′) �= (i, j))
always has a smaller number of minimal locally optimal oc-
currences. We evaluated the ability of extracting occurrences
by using the following three measures, precision (prec.),
recall and F-measure (F-m.): let X and E be the sets of
extracted and embedded occurrence positions, respectively,
and precision, recall and F-measure can be defined as |X∩E|

|X| ,
|X∩E|
|E| and 2·precision·recall

precision+recall , respectively.
Table 1 shows the obtained results, in which ESFLOO-

0G.C has always a trade-off between precision and re-
call, while E3SFLOO achieved almost perfect results for
both precision and recall; E3SFLOO achieved F-measure of
99.7%, while ≤68.8% for ESFLOO-0G.C.

5.3 Robustness

We ran E3SFLOO using noisy datasets D1(α) and D2(α)
for α = 1, 2, 4 and 8 to check the robustness of E3SFLOO.
Table 2 shows the result. For D1(α), precision was al-
most 100% for all α but recall was drastically reduced for
larger α. In D1(α), pattern frequency fi was decided to be
σ̄(107, �i, 1/4, 10

−20), and so patterns are undetected as fre-
quent substrings if the pattern occurrence is undetected. As
for D2(α), recall was not reduced like that of D1(α) for
larger α, because pattern frequency fi was twice larger than

5244



Table 3: Elapsed time [sec] of E3SFLOO averaged over 10
strings in D1(0).
#threads 1 2 4 8 16 32 64
parallel 161.4 82.3 41.2 23.3 12.6 8.1 4.7
(speedup) (1.00)(1.96)(3.92)(6.93)(12.81)(19.93)(34.34)
total 176.5 98.2 56.0 38.2 27.2 22.8 19.4

that of D1(α). Thus, almost all patterns were detected as fre-
quent substrings, except the data with α = 8, even if some
occurrences cannot be detected. Note that an occurrence can
be detected if any prefix and suffix of the occurrence con-
tains less than 20% replacement positions for the score func-
tion (2) with a = 1 and b = 4.

5.4 Parallelization

We measured the elapsed time for each string in dataset
D1(0), particularly the parallel computation part as well as
the total elapsed time. Table 3 shows the averaged elapsed
time over 10 strings in D1(0), changing the number of
threads. From this table, we can see that our parallel imple-
mentation worked well, particularly for a larger number of
threads. This table reveals that our parallel implementation
achieved a speed-up factor of 34.34 for using 64 threads.

6 Experiments on Human Genome

6.1 Human Genome Data

We used Homo sapiens.GRCh37.75.dna.chromosome.x.fa
for x = 1, . . . , 22, X, Y in the human assembly
GRCh37 (release 75) [ftp.ensembl.org/pub/release-
75/fasta/homo sapien/ dna/]. The total length of the human
chromosomes is 3,095,677,412, while this string includes
many long substrings with consecutive ‘N’5, because of
ambiguity caused by incomplete experiments. We excluded
substrings with at least 10 ’N’s consecutively. As a result,
24 chromosomes are divided into 281 strings. Finally the
length of the data we used is around 2.86 billion and the
occurrence rates of letters ‘A’, ‘C’, ‘G’, ‘T’ and ‘N’ of the
data are around 0.295, 0.204, 0.205, 0.296 and 2.24×10−8,
respectively.

6.2 Four Steps for Repeats from Human Genome

We detected repeats by E3SFLOO and subsequent postpro-
cessing, which are summarized in the following four steps:

[Step 1] Running E3SFLOO

For 281 strings s1, . . . , s281 derived from the origi-
nal DNA sequences of human chromosomes, we ran a
multiple-string version of E3SFLOO that uses a gener-
alized suffix tree and counting all occurrences in all in-
put strings. Parameter settings are: α = 1.0 × 10−20

and a = 1 and b = 4 for score function (2). We used
64 threads (plus the main thread) for parallel computa-
tion. The machine has 80 core CPUs (Intel(R) Xeon(R)
CPU E7-2850@2.00GHz), 3 TB memory and CentOS re-
lease 6.7. The elapsed computational time was 63 days 2

5‘N’ means one of ‘A’, ‘C’. ‘G’ and ‘T’.

Table 4: Cover rates (%) of positions by O-E3SFLOO and
by RepeatMasker using Repbase (RM+R) and TRF.
chro. O-E3S- RM+R chro. O-E3S- RM+R chro. O-E3S- RM+R

no. FLOO &TRF no. FLOO &TRF no. FLOO &TRF
1 74.3 51.1 9 75.8 50.4 17 73.2 49.8
2 74.0 48.6 10 73.9 49.0 18 73.3 47.3
3 74.6 50.2 11 73.6 51.2 19 77.7 58.7
4 76.6 50.7 12 75.0 51.9 20 70.8 51.0
5 75.0 50.2 13 75.3 47.8 21 75.1 48.2
6 74.9 49.4 14 74.6 50.4 22 72.1 50.2
7 75.8 50.4 15 74.3 49.6 X 79.8 61.2
8 74.4 50.5 16 73.6 51.0 Y 93.7 62.4

total 75.1 50.9

hours 1 minute and 21 seconds, and the maximum res-
ident memory size was 335,624,444KB. The output of
Step 1 was 2,011,166,454 patterns6.

[Step 2] Removing Non-Closed Patterns

In order to remove redundancy, we extracted only closed
patterns. The output of Step 2 was 1,276,455,962 patterns.

[Step 3] Removing Similar Patterns

Detected patterns may be the occurrences of other pat-
terns, resulting in all these patterns are similar to each
other. In order to remove such similar patterns, we run
greedy covering algorithms as follows: Let S be the set
of the extracted patterns (substrings). Define Sp as Sp =
{q ∈ S | q is a minimal locally optimal occurrence of p}
for p ∈ S. Then, we consider a set cover problem of
S by Sp (p ∈ S). That is, we find a smallest-sized
T ⊆ S with

⋃
p∈T Sp = S. An approximation algo-

rithm for this problem is a greedy covering algorithm,
which starts from T = ∅ and repeats adding Sp with
p = argmaxq∈S\T |(S \

⋃
r∈T Sr) ∩ Sq| to T until⋃

p∈T Sp = S. Since the reverse complementary se-
quence of sequence p is the same in DNA as p, we used
Sp = {q ∈ S | q is a minimal locally optimal occurrence
of either p or its reverse complementary sequence}. The
output of Step 3 was 204,236,850 patterns.

[Step 4] Covering by Maximal Occurrences

For each component string si[1..ni] (i = 1, . . . , 281),
we computed set Oi of the minimal locally optimal oc-
currences of the extracted patterns and removed non-
maximal occurrences from Oi. That is, we removed oc-
currence si[h..j] from Oi if si[h′..j′] in Oi satisfies h′ ≤
h, j ≤ j′ and (h′, j′) �= (h, j). Let O be the set of
maximal occurrences O =

⋃281
i=1 Oi. The size of O was

182,122,859. Then, we generated the final set of the ex-
tracted patterns, for which the occurrences of the patterns
are in any of Oi(i = 1, . . . 281). The output of Step 4
was 42,721,486 patterns. The shortest and longest pattern
lengths were 5 and 127,353, respectively. The most fre-
quent length was 20 with 2,505,216 patterns. We write
the set of final occurrences as O-E3SFLOO.

6.3 Analysis

6Some non-closed patterns for right extension are already re-
moved to reduce the number of outputted patterns.
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Figure 1: Cover rate vs. pattern length x: Cover rate against (a) all or (b) (RM+R and TRF)-annotated positions by minimal
locally optimal occurrences of the obtained patterns with the length of at least x. (c) For each repeat category, cover rate against
(RM+R and TRF)-annotated positions by the same occurrences as (a) and (b).

Table 5: Cover rate (CR) [%] of O-E3SFLOO to positions
annotated by RM+R and TRF for each of ten largest repeat
categories.
repeat category rate CR repeat category rate CR
LINE/L1 34.8 91.7 SINE/MIR 5.4 68.7
SINE/Alu 21.0 99.9 TRF repeats 4.9 96.9
LTR/ERVL-MaLR 7.5 84.5 LTR/ERVL 3.9 69.3
LINE/L2 6.9 62.7 DNA/hAT-Charlie 3.1 76.0
LTR/ERV1 5.7 91.4 DNA/TcMar-Tigger 2.5 88.1
others 7.9 83.9 all 100.0 87.5

Cover Rate Table 4 shows the (cover) rate of the num-
ber of positions covered by O-E3SFLOO (by Step 4) to the
number of all positions, i.e. the entire length (which is not
the whole length but those analyzed), for each chromosome.
From Table 4, we can see that the cover rate of E3SFLOO
reached more than 75%, which is larger than 71%, reported
by an existing method, P -clouds (de Koning et al. 2011).

Figure 1 (a) shows the cover rate by the occurrences with
the length of at least m. This figure shows that around a half
(46.6%) of the covered positions are by the patterns (occur-
rences) with the length of less than 25. In our model, we may
say that many short strings can be occurrences with stati-
cally significant frequencies, while these short strings might
be parts of longer repetitive structures. Repetitive strings de-
tected by P -clouds have the length of at least 25 (de Kon-
ing et al. 2011). On the other hand, the covered rate of our
method is 40.1% by the occurrences with the length of at
least 25. This result implies that the cover rate of our method
by long repetitive strings might not be so high as P -clouds.

Regarding the difference among chromosomes, the cover
rate of chromosome Y is significantly higher than those of
other chromosomes. This result is consistent with the report
that chromosome Y has a high value of a certain repetitive
index (Haubold and Wiehe 2006).

We compared O-E3SFLOO with those annotated by
RepeatMasker 4.0.7 (Smit, Hubley, and Green 2017)
(search engine: NCBI/RMBLAST ver.2.2.27+), a well-
accepted similarity search tool, as occurrences of known
repetitive strings registered in Dfam Consensus (release:

Table 6: Four patterns with the longest cover lengths which
are not in the annotations by RM +R and TRF and at least
two occurrences in O-E3SFLOO.
chro. no.:pos. len. freq. cov. len. occ. pos. ((c): rev. compl.))
X:151868211 2431 4 9724 X:151868211,X:151884496,

15:30437979 2597 3 7791 15:23265766,15:30437979,
15:32682178(c)

22:21473896 3235 2 6470 22:21473896,22:21641963(c)
21:9856253 2090 3 6270 14:19765953(c),21:9856253,

22:16074924

20171107) [www.dfam-consensus.org] and Repbase (re-
lease: 20170127) [www.girinst.org/repbase]. RepeatMasker
does not annotate long approximate tandem repeats, and
so repeats found by Tandem Repeat Finder (TRF) (Benson
1999) were also added as annotations.

Table 4 shows that the total cover rate by repeat occur-
rences found by RepeatMasker with Repbase (RM+R) and
TRF was only 50.9%, around 24% lower than O-E3SFLOO.
Particularly the cover rate of chromosome Y was not so high
as O-E3SFLOO.

Table 5 shows the cover rate by O-E3SFLOO against an-
notations by RM+R and TRF, indicating the total cover rate
of 87.5%. Figure 1 (b) shows the cover rate by the occur-
rences with the length of at least x against the annotations by
RM+R and TRF. Comparing with Figure 1 (a), we can see
that the cover rate was significantly improved at the range
from 20 to 300 of the x-axis.

Table 5 shows the cover rate of each of the ten repeat cate-
gories with the largest numbers of annotated positions. This
table shows that 99.9% and 96.9% of positions annotated
as SINE/Alu and TRF repeats, respectively, were detected
by O-E3SFLOO. Also LINE/L1 and LTR/ERV1 were well
covered by O-E3SFLOO (91.7% and 91.4%, respectively).

Figure 1 (c) shows the cover rate for each repeat cate-
gory by the occurrences with the pattern length of at least x,
against the annotations by RM+R and TRF. From this fig-
ure, we can see that the significant improvement of the to-
tal cover rate in the range of 20 to 300 in Figure 1 (b) was
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caused by the significant cover rate increases of LINE/L2
and SIN/MIR (around 20), and SINE/Alu (around 300).

Discovery of Unknown Repeats Table 6 shows four pat-
terns with the longest cover lengths among those with at
least two occurrences in O-E3SFLOO and no overlapped
covered positions with the positions annotated by RP+R
and TRF. These four repeats are all interspersed repeats
longer than 2,000 with the frequency of 2 to 4 including
reverse complementary occurrences. The fourth pattern has
occurrences in three different chromosomes, while the oc-
currences of each of others are in the same chromosome.
According to UCSC Genome Browser [genome.ucsc.edu],
the occurrences of these four patterns are parts, particularly
pairs, of known segmental duplications (Bailey et al. 2001),
defined as block pairs ranging in size from 1,000 to 200,000
with the similarity of at least 90%. We emphasize that the
found patterns are significantly shorter than known segmen-
tal duplications, and at least three patterns are not pairs but
patterns.

7 Conclusion and Future Work

We have proposed new frequent substring mining that can
enumerate patterns with statistically significant frequencies
of locally optimal occurrences, where a memoryless station-
ary information source was used as a null stochastic model
to evaluate the statistical significance of the generated pat-
terns. Possible future work is to consider Markov informa-
tion sources, which might be more appropriate than the cur-
rent memoryless source. Also entirely understanding repeat
patterns with various lengths would be also interesting fu-
ture work, since statistically significant short patterns might
take important roles as part of longer significant patterns.
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Detection of new transposable element families in drosophila
melanogaster and anopheles gambiae genomes. Journal of Molec-
ular Evolution 57(1):S50–S59.
Smit, A.; Hubley, R.; and Green, P. 2017. Repeatmasker open-
4.0.7. http://www.repeatmasker.org/.
Terada, A.; Okada-Hatakeyama, M.; Tsuda, K.; and Sese, J. 2013.
Statistical significance of combinatorial regulations. Proceedings
of the National Academy of Sciences 110(32):12996–13001.
Volfovsky, N.; Haas, B. J.; and Salzberg, S. L. 2001. A cluster-
ing method for repeat analysis in dna sequences. Genome biology
2(8):research0027.1–research0027.11.
Zhu, F.; Yan, X.; Han, J.; and Yu, P. S. 2007. Efficient discovery of
frequent approximate sequential patterns. In Proc. of ICDM 2007,
751–756.

5247


