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Abstract

One of the most popular approaches for neural network com-
pression is sparsification — learning sparse weight matrices.
In structured sparsification, weights are set to zero by groups
corresponding to structure units, e. g. neurons. We further
develop the structured sparsification approach for the gated
recurrent neural networks, e. g. Long Short-Term Memory
(LSTM). Specifically, in addition to the sparsification of indi-
vidual weights and neurons, we propose sparsifying the pre-
activations of gates. This makes some gates constant and sim-
plifies an LSTM structure. We test our approach on the text
classification and language modeling tasks. Our method im-
proves the neuron-wise compression of the model in most of
the tasks. We also observe that the resulting structure of gate
sparsity depends on the task and connect the learned struc-
tures to the specifics of the particular tasks.

Introduction

Recurrent neural networks (RNNs) yield high-quality results
in many applications (Chan et al. 2016; Ha, Dai, and Le
2017; Ren, Kiros, and Zemel 2015; Wu et al. 2016) but often
are memory- and time-consuming due to a large number of
parameters. There are a lot of memory-limited applications
where RNN compression is desired, for example, programs
running on smartphones. In many practical problems, RNNs
can be compressed orders of times with only a slight qual-
ity drop or even with quality improvement due to the reg-
ularization effect (Chirkova, Lobacheva, and Vetrov 2018;
Narang et al. 2017; Wen et al. 2018).

Most of the methods for RNN compression can be divided
into three groups: based on matrix factorization (Jose, Cissé,
and Fleuret 2018; Tjandra, Sakti, and Nakamura 2017; Prab-
havalkar et al. 2016), quantization (Liu, Cao, and Yu 2018;
Wang et al. 2018), or sparsification (Narang et al. 2017;
Chirkova, Lobacheva, and Vetrov 2018). In this paper, we
focus on sparsification, i. e. setting a lot of weights to zero.
In addition to the individual weight sparsification, mod-
ern sparsification approaches perform group sparsification,
which is also called structured sparsification (Wen et al.
2018). Group sparsification implies removing weights by
groups corresponding to structure units (neurons in RNNs).
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Figure 1: Proposed sparsification scheme for LSTM with
three levels of sparsity: weights, gates, and neurons (shown
in blue).
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Figure 2: Proposed sparsification scheme for LSTM: neuron
weight group and gate weight group. White cells represent
zero weights. Zero row along with non-zero bias leads to the
constant corresponding gate. Zero column results in remov-
ing the corresponding neuron.

In addition to compression, group sparsification also accel-
erates the testing stage.

Altogether, existing approaches perform RNN sparsifi-
cation, either at the level of individual weights (Chirkova,
Lobacheva, and Vetrov 2018; Narang et al. 2017; See, Lu-
ong, and Manning 2016), or at the level of hidden neu-
rons (Wen et al. 2018). However, most of the modern re-
current architectures (e. g. LSTM (Hochreiter and Schmid-
huber 1997), or Gated Recurrent Units (GRU) (Cho et al.
2014)), have a gated structure: to compute the next hid-
den state, one firstly computes gate values and then updates
the hidden state based on the gates. In this paper, we pro-
pose to add an intermediate level of sparsification between
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weights and neurons — gates (see fig. 1). Removing weights
by groups corresponding to gates makes the values of some
gates constant, independent of the inputs, and equal to the
activation function of the bias (see fig. 2). As a result, the
LSTM/GRU structure is simplified. With this intermediate
level introduced, we obtain a three-level hierarchy of spar-
sification: weights — gates — neurons. The sparsification
of individual weights helps to sparsify the preactivations of
gates (make their values constant), and the latter helps to
sparsify hidden neurons (remove them from the model).

The proposed idea can be implemented for any gated
architecture and in any sparsification framework. We im-
plement the idea for the most common architecture LSTM
in two sparsification frameworks: pruning (Wen et al.
2018) and Bayesian sparsification (Chirkova, Lobacheva,
and Vetrov 2018). The introduced gate sparsification im-
proves the neuron-wise compression of the gated RNNs in
most cases. Moreover, we observe that the resulting gate
structures, which gates are constant and which are not, vary
for different natural language processing tasks. We analyze
typical resulting gate structures and connect them to the
specifics of the particular tasks.

Related work

For neural network sparsification, two main groups of ap-
proaches are pruning and Bayesian sparsification. In prun-
ing (Han, Mao, and Dally 2016; Baoyuan Liu et al. 2015),
�1-regularized (Tibshirani 1996) weights with absolute val-
ues less than a predefined threshold are set to zero. To
achieve group sparsification (Scardapane et al. 2017; Wen
et al. 2016), for each neuron, a group of all weights asso-
ciated with this neuron is defined, and group Lasso (Yuan
and Lin 2006) is applied to the resulting groups. If all the
weights associated with a neuron are set to zero, this neuron
is removed from the model. Approaches for pruning differ in
the pruning schedule (when to start pruning, when to change
threshold, etc.), threshold choice (constant, based on the por-
tion of weights/groups we want to set to zero, etc.), and reg-
ularization. For RNNs, See, Luong, and Manning; Narang et
al. (2016; 2017) propose unstructured sparsification method,
and Wen et al. (2018) propose removing weights by groups
corresponding to the hidden neurons in LSTM. Narang, Un-
dersander, and Diamos (2018) remove blocks of the RNN
weight matrices.

Bayesian sparsification techniques (Molchanov, Ashukha,
and Vetrov 2017; Louizos, Welling, and Kingma 2018) treat
the weights of the network as random variables and ap-
proximate the posterior distribution over the weights given
a sparsity-inducing prior distribution. Louizos, Ullrich, and
Welling; Neklyudov et al. (2017; 2017) perform structured
sparsification for fully-connected and convolutional net-
works. To do it, they modify the computational graph, and
multiply the output of each neuron by a learnable (and spar-
sifiable) group weight. If a group weight is set to zero, the
corresponding neuron is removed from the model. Chirkova,
Lobacheva, and Vetrov (2018) adapt Bayesian sparsification
to RNNs taking into account the recurrent specifics.

Our work focuses on a specific definition of weight groups
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Figure 3: Proposed groups of weights in the LSTM layer.
Different groups are shown using different line types: four
groups corresponding to the gates (dotted horizontal lines),
and one group corresponding to a neuron (solid vertical
lines).

for the gated RNNs and can be implemented in any struc-
tured sparsification framework.

Proposed method

Main idea

We describe our approach for LSTM (Hochreiter and
Schmidhuber 1997), however, it can be straightforwardly
applied to other gated architectures. The LSTM cell is com-
posed of input, forget and output gates (i, f , o), and informa-
tion flow g (which we also call gate for brevity). In LSTM,
the computation of the next hidden state ht is performed as
follows:

it = sigm(W x
i xt +Wh

i ht−1 + bi)

ft = sigm(W x
f xt +Wh

f ht−1 + bf )

gt = tanh(W x
g xt +Wh

g ht−1 + bg) (1)

ot = sigm(W x
o xt +Wh

o ht−1 + bo)

ct = ft � ct−1 + it � gt ht = ot � tanh(ct)

The computation of the gates can be seen as a fully-
connected layer with input [xt, ht−1], weight matrix, com-
posed of all W in (1), and biases b = [bi, bf , bg, bo] (see
fig. 2).

Our idea is to take into account the gated structure when
performing the sparsification of the gated RNNs. To do it, in
addition to the sparsification of individual weights and hid-
den neurons, we add an intermediate level of sparsification
— gates (see fig. 1). We do not sparsify biases because they
do not take up much memory, compared to the weight ma-
trices.

The introduction of the gate level means removing
weights by groups corresponding to gates. These groups are
represented by the rows of the LSTM weight matrix W (see
dotted horizontal lines in fig. 3). For example, if we zero out
the k-th row of matrices W x

f and Wh
f , there are no ingoing

connections to the k-th forget gate, so the gate becomes con-
stant, independent of xt and ht−1 and equal to sigm(bf,k).
As a result, we do not need to compute the k-th forget gate
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on the forward pass and can use a precomputed value. We
can construct a mask (whether the gate is constant or not)
and use this mask to insert constant values into the gate vec-
tors i, f, g, o. This reduces the amount of computations on
the forward pass.

At the neuron level, we define weight groups correspond-
ing to the hidden neurons in LSTM. If we zero out the m-th
column of the LSTM weight matrix W and of the matrix
from the next layer (see solid vertical lines in fig. 3), there
are no outgoing connections from the m-th hidden neuron,1
and the neuron does not affect the network’s output. As a
result, we can remove the m-th hidden neuron and all its
weights (corresponding rows and columns of W , and the
column of the next layer’s weight matrix).

To sum up, our three-level hierarchy of the gated RNN
sparsification works as follows. We begin with a wide dense
network and induce sparsity during training. After train-
ing, we firstly remove neurons that do not affect the net-
work’s output. For the remaining neurons, some gates are
constant, so the neurons’ structures are simplified. For the
non-constant gates, some weights are sparsified, so we can
store weight matrices using a sparse matrix format.

Below we describe how we implement the proposed
idea in two sparsification frameworks: pruning (Wen et al.
2018), and Bayesian sparsification (Chirkova, Lobacheva,
and Vetrov 2018). We chose (Wen et al. 2018), among other
pruning techniques for RNNs, because it is the only one that
performs a neuron-wise sparsification. To the best of our
knowledge, Bayesian approaches for RNNs with neuron-
wise sparsification are not investigated in the literature,
therefore, we use a modified version of the method from
(Chirkova, Lobacheva, and Vetrov 2018) as a base approach.

Implementation of the idea in pruning

Consider a dataset of N sequences (xn, yn) and a model
p(y|x,w, b), defined by an RNN, with weights w, and biases
b.

To implement our idea about three levels of sparsifica-
tion, for each neuron η, we define five (intersecting) sets
of weights wη,i, wη,f , wη,g, wη,o, wη,h. The first four sets
of weights correspond to four gates (dotted horizontal lines
in fig. 3), and the last set corresponds to the hidden neuron
(solid vertical lines in fig. 3). We apply group Lasso regular-
ization (Yuan and Lin 2006) to these groups. We also apply
Lasso regularization to the individual weights, to achieve the
three-level sparsification hierarchy. The resulting objective
is as follows (H denotes all hidden neurons in the LSTM
layer):

−
N∑

n=1

log p(yn|xn, w, b) + λ1

∑
η∈H

(‖wη,i‖2 + ‖wη,f‖2+

+‖wη,g‖2 + ‖wη,o‖2 + ‖wη,h‖2) + λ2‖w‖1 → min
w,b

1Weights in the m-th column of the LSTM weight matrix W
correspond to the outgoing connections from ht−1,m to ht, and
weights in the m-th column of the next layer’s weight matrix, cor-
respond to the outgoing connections from ht−1,m to the next layer
(e. g., fully-connected output layer).

We use a similar pruning algorithm as in Intrinsic Sparse
Structures (ISS) (Wen et al. 2018) but with other weight
groups. We prune the weights from scratch. During train-
ing, on the forward pass, we set to zero all the individual
weights with absolute values less than the threshold. We do
not mask gradients for the pruned weights, so the weights
can again become non-zero. The value of the threshold is
the same for all epochs. After training, if for some η, all the
weights in wη,h are set to zero, we remove the correspond-
ing hidden neuron as it does not affect the network’s output.
If for some gate (for example, f ), all the weights in wη,f are
set to zero, we mark this gate as constant.

In contrast to our approach, in (Wen et al. 2018), group
Lasso is applied to larger groups in order to eliminate hidden
neurons from the model:

wη = wη,i ∪ wη,f ∪ wη,g ∪ wη,o ∪ wη,h.

This approach does not lead to the sparse gate structures.

Implementation of the idea in Bayesian framework

Preliminaries. Our approach relies on a Sparse variational
dropout (SparseVD) (Molchanov, Ashukha, and Vetrov
2017). This model comprises a log-uniform prior over the
weights: p(|wij |) ∝ 1

|wij | , and a fully factorized normal
approximate posterior: q(wij |μij , σij) = N (wij |μij , σ

2
ij).

The biases are treated as deterministic parameters. To find
the parameters of the approximate posterior distribution, and
the biases, the evidence lower bound (ELBO) is optimized:

N∑
n=1

Eq(w|μ,σ) log p(yn|xn, w, b)

−KL(q(w|μ, σ)||p(w)) → max
μ,σ,b

(2)

Because of the log-uniform prior, for the majority of
weights, the signal-to-noise ratio μ2

ij/σ
2
ij tends to zero.

These weights become too noisy and can be removed from
the model without affecting the performance. In (Chirkova,
Lobacheva, and Vetrov 2018), SparseVD is adapted to
RNNs.

Our model. To sparsify the individual weights, we ap-
ply SparseVD (Molchanov, Ashukha, and Vetrov 2017) to
all the weights w of the RNN, taking into account the re-
current specifics underlined in (Chirkova, Lobacheva, and
Vetrov 2018). To compress the LSTM layer and remove hid-
den neurons, we follow (Louizos, Ullrich, and Welling 2017)
and multiply the activations of the hidden neurons by group
weights zh.

The key component of our model is introducing group
weights zi, zf , zg, zo that are multiplied by the preactiva-
tions of the gates. The resulting forward pass, through the
LSTM layer, looks as follows:

ft = sigm

((
W x

f xt +Wh
f ht−1

)� zf + bf

)

{similarly for it, ot and gt}
ct = ft � ct−1 + it � gt ht = ot � tanh(ct)� zh
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Algorithm 1 Forward pass through Bayesian LSTM for one
sequence.
Require: [x1, . . . xT ], c0, h0

Require: Parameters μ, σ, b
1: Sample εxi , ε

h
i , . . . , ε

i, εf , . . . ∼ N (0, I)
2: W x

i = μx
i + εxi � σx

i , . . . ; zi = μi + εi � σi, . . .
3: // sampling reparametrized weights
4: for t = 1, . . . , T : do

5: ft = sigm

((
W x

f xt + Wh
f ht−1

) � zf + bf

)
,

similarly for it, ot, gt
6: ct = ft � ct−1 + it � gt, ht = ot � tanh(ct)� zh

return [c1, . . . , cT ], [h1, . . . , hT ]

The model is equivalent to multiplying the rows and the
columns of the weight matrices by group weights:

ŵh
f,ij = wh

f,ij · zhi · zfj {similarly for i, o and g}
If some component of zi, zf , zo, zg is set to zero, the cor-

responding gate is marked as constant. If some component
of zh is set to zero, we remove the corresponding neuron
from the model, as its output is always multiplied by zero.

Training our model. We work with the group weights
z in the same way as with the weights w: we approxi-
mate the posterior with the fully factorized normal distri-
bution, given the fully factorized log-uniform prior distri-
bution. To find the approximate posterior distribution, we
maximize ELBO (2). To estimate an expectation in (2),
we sample weights from the approximate posterior distribu-
tion, using the same weight parametrization as in SparseVD
for RNNs (for the details, see (Chirkova, Lobacheva, and
Vetrov 2018)). The forward pass is presented in algorithm 1.

With the integral estimated with one Monte-Carlo sam-
ple, the first term in (2) becomes a usual loss function (e. g.,
cross-entropy in language modeling). The second term is a
regularizer depending on the parameters μ and σ (for the ex-
act formula, see (Molchanov, Ashukha, and Vetrov 2017)).

After learning, we zero out all the weights and group
weights with the signal-to-noise ratio less than the thresh-
old. At the testing stage, we use the mean values of all the
weights and group weights.

Experiments

We perform experiments with LSTM architecture in both
sparsification frameworks. For each framework, we use
a dense model as a baseline for quality, and compare
the two-level sparsification approach (weights+neurons,
W+N) and the proposed, three-level, sparsification approach
(weights+gates+neurons, W+G+N) in terms of quality and
sparsity. We follow the experimental setups of (Wen et al.
2018) and (Chirkova, Lobacheva, and Vetrov 2018) for prun-
ing, and Bayesian sparsification respectively, and use them
as baselines for sparsity. We also analyze gate structures, ob-
tained using our method, on different tasks. Please note that
we do not compare two frameworks between each other. Our

goal is to show that the proposed idea leads to an improve-
ment in both frameworks.

Experimental setup – Pruning

For the pruning framework, we follow Wen et al. (2018)
and perform experiments on a word-level language mod-
eling task on the Penn Treebank (PTB) dataset (Marcus,
Marcinkiewicz, and Santorini 1993). We train a standard
model of Zaremba, Sutskever, and Vinyals (2014) of two
sizes (small and large) with an embedding layer, two LSTM
layers, and a fully-connected output layer. The embedding
and LSTM layers, in the small and large models, contain
200 and 1500 neurons, respectively.

In these experiments, we apply regularization only to the
LSTM layers for comparability with ISS results (Wen et al.
2018). The strengths of the individual and group Lasso reg-
ularizations are selected using grid search, so that the vali-
dation perplexities of ISS, and our model, are approximately
equal. Below, we provide more training details for the repro-
ducibility of the results.

Details. All the small models, including the baseline
model, are trained without dropout, as in standard Tensor-
Flow implementation. We train them from scratch, for 20
epochs, with Stochastic Gradient Descent (SGD), with a
decaying learning rate schedule: the initial learning rate is
equal to 1, the learning rate starts to decay after the 4-
th epoch, the learning rate decay is equal to 0.6. For the
two-level sparsification (W+N), we use group Lasso regu-
larization with λ1 = 0.002, and Lasso regularization with
λ2 = 1e − 5. For the three-level sparsification (W+G+N),
we use group Lasso regularization with λ1 = 0.0017, and
Lasso regularization with λ2 = 1e−5. We use the threshold
1e− 4 to prune the weights in both models during training.

All the large models, including the baseline model, are
trained in the same setting as in (Wen et al. 2018), except
for the group Lasso regularization, because we change the
weight groups. We use the code provided by the authors.
Particularly, we use a binary dropout (Zaremba, Sutskever,
and Vinyals 2014), with the same dropout rates. We train
the models from scratch, for 55 epochs, with SGD, with a
decaying learning rate: the initial learning rate is equal to
1, the learning rate decreases two times during training (af-
ter epochs 18 and 36), the learning rate decay is equal to
0.2 and 0.1 for the two- and three-level sparsification, re-
spectively. For the two-level sparsification (W+N), we use
group Lasso regularization with λ1 = 0.0015, and Lasso
regularization with λ2 = 1e − 5. For the three-level sparsi-
fication (W+G+N), we use group Lasso regularization with
λ1 = 0.00125, and Lasso regularization with λ2 = 1.5e−5.
We use the same threshold 1e− 4 as in small models.

Experimental setup – Bayesian sparsification

For the Bayesian framework, we follow Chirkova,
Lobacheva, and Vetrov (2018) and perform an evaluation
on text classification and language modeling tasks. For the
text classification experiments, we use the Internet Movie
Database (IMDb) dataset (Maas et al. 2011) for binary clas-
sification, and AG’s Corpus of News Articles (AGNews)
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Task Method Quality Compression Neurons Gates
Word PTB Original 120.28 – 114.41 1x 200− 200 800 – 800

(small) Pruning W+N (ISS) 110.34 – 106.25 1.44x 72 – 123 288 – 492
Perplexity Pruning W+G+N 110.04 – 105.64 1.49x 64 – 115 193 – 442

Word PTB Original 82.57 – 78.57 1x 1500− 1500 6000− 6000
(large) Pruning W+N (ISS) 81.25 – 77.62 2.97x 324 – 394 1296 – 1576

Perplexity Pruning W+G+N 81.24 – 77.82 3.22x 252 – 394 881 – 1418

Table 1: Quantitative results for pruning. Pruning W+N corresponds to the ISS method of Wen et al. (2018). For language
modeling, we evaluate quality on the validation and test sets. Compression is equal to |w|/|w �= 0|. In the last columns, the
numbers of remaining hidden neurons and non-constant gates, in LSTM layers, are reported.

Task Method Quality Compression Neurons Gates
Original 84.1 1x 128 512

IMDb Bayes W (SparseVD) 83.62 18567 8 17
Accuracy % Bayes W+N 83.98 17874x 5 12

Bayes W+G+N 83.98 19747x 4 6

Original 90.6 1x 512 2048
AGNews Bayes W (SparseVD) 89.14 561x 34 76

Accuracy % Bayes W+N 88.55 645x 17 62
Bayes W+G+N 88.41 647x 14 39

Original 1.499− 1.454 1x 1000 4000
Char PTB Bayes W (SparseVD) 1.472− 1.429 7.9x 431 1718

Bits-per-char Bayes W+N 1.478− 1.430 10.2x 390 1560
Bayes W+G+N 1.467− 1.425 9.8x 404 1563
Original 120.28 – 114.41 1x 200− 200 800 – 800

Word PTB Bayes W (SparseVD) 114.80 – 109.85 10.52x 55 – 124 218 – 415
(small) Bayes W+N 110.25 – 104.81 11.65x 68 – 110 272 – 392

Perplexity Bayes W+G+N 109.98 – 104.45 11.44x 52 – 108 197 – 349

Table 2: Quantitative results for Bayesian sparsification. Bayes W corresponds to the SparseVD method of Chirkova,
Lobacheva, and Vetrov (2018). For text classification tasks, the vocabulary is sparsified in all sparsification approaches. For
language modeling, we evaluate quality on validation and test sets. Compression is equal to |w|/|w �= 0|. In the last columns,
the numbers of remaining hidden neurons and non-constant gates, in LSTM layers, are reported.

dataset (Zhang, Zhao, and LeCun 2015) for four-class classi-
fication, and an architecture which consists of an embedding
layer, one LSTM layer and a fully-connected output layer on
the last step. We conduct language modeling experiments on
the PTB dataset on both character- and word-level tasks. For
character-level language modeling, we use a model with one
LSTM layer and a fully-connected output layer, while for
word-level language modeling, we use the same small ar-
chitecture as in pruning. Embedding layers for classification
tasks have 300 neurons. The sizes of LSTM layers for all
tasks may be found in tab. 2.

In these experiments, we apply regularization to all layers,
including the embedding and output layers, for comparabil-
ity with SparseVD results (Chirkova, Lobacheva, and Vetrov
2018). Since in the text classification tasks, usually only a
small number of input words are important, we use addi-
tional multiplicative weights to sparsify the input vocabulary
following Chirkova, Lobacheva, and Vetrov (2018). For the
networks with the embedding layer, in configurations W+N
and W+G+N, we also sparsify the embedding components
(by introducing group weights zx multiplied by xt). To com-
pute the number of remaining neurons or non-constant gates,
we use the corresponding rows/columns of W , and the cor-

responding group weights, z, if applicable. Below, we pro-
vide more training details for the reproducibility of the re-
sults.

Details. We train our networks using Adam (Kingma
and Ba 2015). Baseline networks overfit for all our tasks,
therefore, we present the results for them with early stop-
ping. Models for the text classification and character-level
language modeling are trained in the same setting as
in (Chirkova, Lobacheva, and Vetrov 2018) (we used the
code provided by the authors). For the text classification
tasks, we use the learning rate equal to 0.0005 and train
the Bayesian models for 800 / 150 epochs on IMDb / AG-
News. The embedding layer, for IMDb / AGNews, is initial-
ized with word2vec (Mikolov et al. 2013) / GloVe (Penning-
ton, Socher, and Manning 2014). For the language modeling
tasks, we train the Bayesian models for 250 / 50 epochs on
character-level / word-level tasks using the learning rate of
0.002.

For all the weights that we sparsify, we initialize log σ
with -3. We eliminate the weights with the signal-to-noise
ratio less than τ = 0.05.
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Figure 4: Structure of gate sparsity for text classification and language modeling obtained with the proposed Bayesian approach
(Bayes W+G+N). Constant gates are shown in white with corresponding activation values. For language modeling, only 15
randomly chosen active neurons are presented.

Figure 5: Averaged over validation sequences, the norm of
the gradients of hidden neurons, w. r. t. LSTM input, for
different time-lag. Left: the second LSTM layer of the word-
level language model (neurons with different gate structure
are shown in different colors). Right: IMDb classification.

Figure 6: Structure of gate sparsity for text classification
and word-level language modeling obtained with Bayes W
(without group weights). Constant gates are shown in white,
with corresponding activation values. For language model-
ing, only 15 randomly chosen active neurons are presented.

Quantitative results

The quantitative results for Bayesian sparsification and
pruning are shown in tables 1, 2. Pruning W+N, in ta-

ble 1, corresponds to the ISS method of Wen et al. (2018),
Bayes W, in table 2, corresponds to the SparseVD method
of Chirkova, Lobacheva, and Vetrov (2018).

In most experiments, the proposed three-level sparsifica-
tion approach improves the gate-wise and the neuron-wise
compression of the model without a significant quality drop.
The only exception is the character-level language model-
ing task, which we discuss later in the qualitative results
section. The overall compression is not always higher for
the proposed method, because a high neuron-wise compres-
sion does not always lead to a high weight-wise compres-
sion: if a model uses fewer neurons, it may need more com-
plex dependencies between these neurons, and, as a result,
more non-zero weights. The numbers for compression are
not comparable between two frameworks because, in prun-
ing, only LSTM layers are sparsified, while in the Bayesian
framework, all the weights in the network are sparsified.

Qualitative results

In this section, we analyze the resulting gate structure for
different tasks, models, and sparsification approaches.

Gate structure depends on the tasks. Figure 4 shows the
typical examples of the gate structure of the remaining hid-
den neurons, obtained using the Bayesian approach. We ob-
serve that the gate structures vary for different tasks. For lan-
guage modeling tasks, output gates are very important, be-
cause models need to, both, store all the information about
the input in the memory, and output only the current predic-
tion at each timestep. On the contrary, for the text classifi-
cation tasks, models need to output the answer only once, at
the end of the sequence, hence they rarely use output gates.
The character-level language modeling task is more chal-
lenging than the word-level one: the model uses the whole
gate mechanism to solve it. We think this is the main reason
why gate sparsification does not help here.

As can be seen in fig. 4, in the second LSTM layer of
the small word-level language model, a lot of neurons have
only one non-constant gate — output gate. We investigate
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Figure 7: Structure of gate sparsity for language modeling obtained with the proposed pruning approach (Pruning W+G+N).
Constant gates are shown in white, with corresponding activation values. In each image, only 15 randomly chosen active neurons
are presented.

the described effect and find that the neurons with only non-
constant output gate learn short-term dependencies, while
neurons with all non-constant gates usually learn long-term
dependencies. To show that, we compute the gradients of
each hidden neuron of the second LSTM layer w. r. t. the in-
put of this layer, at different lag t, and average the norm of
this gradient, over the validation set (see fig. 5, left). The
neurons with only non-constant output gates are “short”: the
gradient is large only for the latest timesteps and small for
the old timesteps. On the contrary, neurons with all non-
constant gates, are mostly “long”: the gradient is non-zero
even for the old timesteps. In other words, changing input
20–100 steps ago does not affect “short” neurons too much,
which is not true for the “long’ neurons. The presence of
such “short” neurons is expectable for the language model:
neurons without memory quickly adapt to the latest changes
in the input sequence and produce actual output.

In fact, for the neurons with only non-constant output
gate, the memory cell ct is either monotonically increasing,
or monotonically decreasing, depending on the sign of the
constant information flow g, so tanh(ct) always equals ei-
ther to −1 or +1,2 and ht = ot or −ot. Hence, these neurons
are simplified to vanilla recurrent units.

For the classification tasks, memorizing information
about the whole input sequence, until the last timestep, is
important, therefore information flow g is not constant and
saves information from the input to the memory. In other
words, long dependencies are highly important for classifi-
cation. Gradient plots (fig. 5, right) confirm this claim: the
values of the neurons are strongly influenced by both the
old and latest inputs. Gradients are bigger for the short lag
only for one neuron, because this neuron focuses, not only
on the previous hidden states, but also on reading the current
inputs.

Gate structure intrinsically exists in LSTM. In the pre-
vious experiments, the most visible gate structures were ob-

2Except for the first few epochs because ct is initialized with 0
value

tained for IMDb classification and for the second LSTM
layer of the word-level language modeling task. For these
tasks, the same gate structures were detected, even with un-
structured sparsification. If we compare the results of the
proposed three-level sparsification method in fig. 4, and the
results of the unstructured Bayesian approach (Bayes W), in
fig. 6, we can see that gate structures for the same task have
a similar form. In the case of IMDb classification, the model
has a lot of constant output gates and non-constant informa-
tion flow, in the case of language modeling, the model has
neurons with only non-constant output gates. The described
effect shows that gate structure intrinsically exists in LSTM
and depends on the task. The proposed method utilizes this
structure to achieve better compression.

We observe the similar effect when we compare gate
structures for the small word-level language models, ob-
tained using Bayes W+G+N (fig. 4) and Pruning W+G+N
(fig. 7). We can see that the same gates become constant in
these models: constant input and/or forget gate in the first
layer and only non-constant output gate in the second layer.
For the large model (fig. 7), the structure is slightly different
than for the small model. It is expected because there is a
big quality gap between these two models, so their intrinsic
structure may be different.

Conclusion

In this paper, we propose a sparsification approach for the
gated RNNs, that takes into account the intrinsic gated struc-
ture and simplifies it. We experiment on several natural lan-
guage processing tasks and show that the sparsification of
the gate preactivations improves neuron-wise compression
in two common sparsification frameworks: Bayesian spar-
sification and pruning. We also perform the analysis of the
resulting gate structures and connect the observed gate struc-
tures to the specifics of the particular tasks.
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