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Abstract

Spiking neural networks (SNNs) are considered to be more
biologically plausible and lower power consuming than tra-
ditional artificial neural networks (ANNs). SNNs use dis-
crete spikes as input and output, but how to process and
learn these discrete spikes efficiently and accurately still re-
mains a challenging task. Moreover, most existing learning
methods are inefficient with complicated neuron dynamics
and learning procedures being involved. In this paper, we
propose efficient alternatives by firstly introducing a sim-
plified and efficient neuron model. Based on it, we develop
two new multi-spike learning rules together with an event-
driven scheme being presented to improve the processing ef-
ficiency. We show that, with the as-proposed rules, a single
neuron can be trained to successfully perform challenging
tasks such as multi-category classification and feature extrac-
tion. Our learning methods demonstrate a significant robust-
ness against various strong noises. Moreover, experimental
results on some real-world classification tasks show that our
approaches yield higher efficiency with less requirement on
computation resource, highlighting the advantages and po-
tential of spike-based processing and driving more efforts to-
wards neuromorphic computing.

Introduction

Due to the development of deep learning, artificial neural
networks (ANNs) have prospered in many fields, such as
computer vision and speech recognition (LeCun, Bengio,
and Hinton 2015). However, current deep learning meth-
ods are resource consuming, data depending and lack bi-
ological plausibility as compared to high efficiency of the
brain. Therefore, efficient and biologically plausible spiking
neural networks (SNNs) can thus be more favorable (Maass
1997). Unlike artificial neurons that communicate with each
other by numerical values, biological ones use discrete all-
or-nothing response, i.e. spikes (Kandel et al. 2000). It is
believed that spikes play an essential role in efficient pro-
cessing in biological systems, but how to model the neu-
rons in a way such that they can efficiently learn to process
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spikes while resembling biological counterparts to certain
extent still remains challenging.

There are many spiking neuron models that have been
proposed for emulating the ability of biological neurons,
such as Hodgkin-Huxley model (Hodgkin and Huxley
1952), spike response model (SRM) (Gerstner and Kistler
2002), and leaky integrate-and-fire (LIF) model (Burkitt
2006). Among them, LIF and SRM models are most widely
used due to their simple forms and computational effectivity
(Ponulak 2005).

Based on these spiking neuron models, different learning
algorithms have been developed. The tempotron (Gütig and
Sompolinsky 2006) is an efficient rule that trains neurons to
make decisions by binary response of firing or not. However,
the binary response of the tempotron constrains its ability to
utilize the temporal structure of its output (Yu, Li, and Tan
2018). To overcome this limitation, a series of learning rules
were proposed to train neurons to fire at desired times, such
as ReSuMe (Ponulak 2005), SPAN (Mohemmed et al. 2012)
and PSD (Yu et al. 2013). With association between different
output spike times and categories, neuron can perform the
challenging task of multi-category classification, but how bi-
ological systems estabilsh such a precise instruction signal
is still unclear. Moreover, most of these rules are designed
for a temporal code where information is carried by the pre-
cise arrival time of input spikes (Panzeri et al. 2010), limit-
ing their generalization to other schemes such as a rate code
where information is encoded by firing frequencies (Brette
2015).

Recently, a new multi-spike tempotron (MST) rule (Gütig
2016) has been proposed to train neurons to fire desired
number of spikes. This kind of multi-spike learning en-
ables neurons to process both rate- and temporal-based
spike patterns, and thus provides a new way for process-
ing information under a broad range of coding schemes. In-
spired by it, two multi-spike learning rules (Yu, Li, and Tan
2018), namely TDP1 and TDP2, were developed to improve
simplicity and efficiency by using a linear assumption for
threshold crossing.These rules are successfully applied to
sound recognition and demonstrate advanced performance.
(Yu et al. 2019). In a later work, another method was devel-
oped (Miao, Tang, and Pan 2018). It simplifies the expres-
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sion of membrane potential by assuming an infinite thresh-
old and update synaptic weights by local maximum point.
However, a common disadvantage of these rules exists in the
complexity of neuron dynamics, computation scheme and
spike learning, as a result of which would limit their imple-
mentations in both software and hardware.

A recent variant was proposed to improve the process-
ing speed by combining the advantages of both tempotron
and PSD (Yu, Wang, and Dang 2018). Similarly, another ef-
ficient method was developed (Xiao Rong and Tang 2019)
by quickly finding a local maximum value as the signal to
update synaptic weights. In this paper, we continue to con-
tribute to this family of multi-spike learning rules with ef-
ficiency mainly considered for both processing and learn-
ing. Firstly, we introduce a simplified LIF neuron model
for efficient processing of spikes, where membrane poten-
tial is modeled with an impulse function. In addition, we
take an event-driven scheme to further improve the process-
ing efficiency. Based on these, we propose two new rules for
multi-spike learning and evaluate their performance on var-
ious tasks such as multi-category classification, feature ex-
traction and real-world classifications. Experimental results
show that our method has higher performance and lower
computational request than other baseline learning rules,
making our work significantly valuable to spike-based and
neuromorphic computing.

Method

In this section, the neuron model and two multi-spike learn-
ing algorithms are described in detail, together with an
event-driven scheme.

Neuron Model

The biologically inspired LIF model has been widely used
in many neuroscience tasks due to its simplicity and compu-
tational effectivity (Ponulak and Kasinski 2011). Therefore,
we build our simplified neuron model based on it, as follows:

τ
dV

dt
= −V (t) + Iin(t) + Iout(t) (1)

where τ is the time constant of neuron’s membrane poten-
tial V . Iin and Iout model the input currents from presynap-
tic neurons and firing reset dynamics, respectively. The two
currents can be set in a simple form as Eq. 2 and 3:

Iin(t) =

N∑
i=1

wi

∑
tji≤t

δ(t− tji ) (2)

Here, N and wi denote the number of the presynaptic affer-
ents and the corresponding synaptic efficacy, respectively.
tji is the arrival time of the j-th presynaptic spike of the i-th
afferent.

Iout(t) = ϑ
∑
tjs<t

δ(t− tjs) (3)

where ϑ denotes the firing threshold. Whenever neuron’s
membrane potential crosses it, an output spike is elicited.
tjs represents the time of the j-th output spike. δ(t) is a unit

Figure 1: Dynamics of the spiking neuron model. A. input
spike pattern where x and y axis denotes the time and affer-
ent ids, respectively. Each dot represents a spike. B. synapic
weights of corresponding afferents in A. C. membrane po-
tential trace of the neuron in response to the pattern in A.
Gray dashed line denotes the firing threshold. D. The post-
synaptic potential kernel, κ.

impluse function where its value is equal to zero everywhere
except for t at 0. Its integral over the entire domain is one.
δ(t) describes the occurrence of neuron’s firings from both
pre-synaptic neurons (tji ) and its own output (tjs).

Substituting Eq. 2 and 3 into Eq. 1, the final form of the
neuron model can be given as:

V (t) =
N∑
i=1

wi

∑
tji≤t

κ(t− tji )− ϑ
∑
tjs<t

κ(t− tjs) (4)

Here κ(t) = exp(−t/τ) is an exponential decay kernel de-
scribing the influence of spikes on postsynaptic membrane
potential.

As is shown in Fig. 1, neuron’s membrane potential
evolves by integrating synaptic currents from afferent neu-
rons. Each afferent spike contributes a postsynaptic potential
(PSP), whose peak amplitude is determined by w, to the neu-
ron. When its membrane potential crosses the firing thresh-
old, an output spike is elicited, followed by a reset dynam-
ics. When there is no input spike, the membrane potential
will gradually decay to the rest level.

In most other multi-spike learning rules, a double-
exponential kernel is adopted for PSP as:

K(t) = V0[exp(−t/τm)− exp(−t/τs)] (5)

where the maximum value of the kernel function is normal-
ized by a factor V0. The membrane time constant τm and
the synaptic time constant τs are generally set to 20 ms and
5 ms, respectively. We find the effects of different kernels on
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neuron’s membrane potential can be approximated by fol-
lowing

∫
K(t)dt =

∫
κ(t)dt, and thus we set our parameter

τ according it.
Compared to the double exponential kernel, our model is

more simple, yet without affecting its performance on vari-
ous tasks like recognition and feature extraction that we will
demonstrate later in this paper.

Event-Driven Scheme

An efficient event-based computation scheme is adopted to
improve the processing in this study. This event-driven ap-
proach is superior to a time-based one because it does not
depend on a step size for simulation, thus reducing compu-
tational operations to be linearly related to the total num-
ber of input spikes (Yu, Li, and Tan 2018). In this approach,
computations are driven by spikes one after another in order
of time. So, for a stream input spikes t1 ≤ t2 ≤ ... ≤ tn
with their corresponding synaptic weights w1, w2, ..., wn,
the voltage at the k-th spike is given as:

V (tk) =

k∑
i=1

wiexp(− tk − ti
τ

)− ϑ
∑
tjs<tk

exp(− tk − tjs
τ

)

:= Dk − Ek

(6)

The states of Dk and Ek can be expressed recursively as
follows:

Dk = Dk−1exp(−Δk−1

τ
) + wk (7)

Ek = Ek−1exp(−Δk−1

τ
) (8)

where Δk−1 = tk − tk−1 denotes the interspike interval
before the k-th input spike. Our computation method is de-
tailed in Algorithm 1.

Algorithm 1 Event-driven computation scheme
Input: Sorted input spike times S = {tk|k=1,2,...,n}
Output: Output spike number no

1: function RESPONSE(S)
2: for each input spike with time tk do
3: Δk−1 = tk − tk−1

4: Update Dk by Eq. 7
5: Update Ek by Eq. 8
6: Update membrane potential V (tk) by Eq. 6
7: while V (tk) ≥ ϑ do
8: V (tk)← V (tk)− ϑ
9: Ek ← Ek + ϑ

10: Elicit an output spike no ← no + 1
11: end while
12: end for
13: return no

14: end function

Figure 2: Illustration of EML and EMLC learning rule in-
cluding the long-term potentiation (LTP) and long-term de-
pression (LTD) process. Top, both LTP and LTD depends
on critical thresholds ϑ∗

k. Vertical dashed line denotes the
threshold of the neuron. Bottom, both LTP and LTD depends
on the current state of the neuron in response to a spike pat-
tern. The blue circle represents the maximum value of the
subthreshold voltage, and the red circle denotes the mini-
mum value of the reseted potentials at all output spikes, tjs.

Learning Rule

Recently, MST (Gütig 2016) is proposed to train neurons to
elicit spikes according to a given target spike number. Fol-
lowing this work, efficient variants are developed such as
TDP1 and TDP2 (Yu, Li, and Tan 2018) where a linear as-
sumption for threshold crossing is applied to simplify the
processing. Further these studies, we propose two new ones
based on our neuron model in this study.

A.The EML Rule

Like MST and TDP, our first learning rule named efficient
multi-spike learning (EML), is also based on the spike-
threshold-surface (STS) (Gütig 2016). STS describes the re-
lation between the number of output spikes and the neuron’s
threshold. A small value of threshold will normally result in
a high number of output spikes (see Fig. 2). STS is character-
ized by a sequence of critical threshold values ϑ∗

k at which
nout jumps from k − 1 to k. Therefore, for a given input
spike pattern, the output spike number can be changed by
manipulating the critical threshold.

Each critical threshold value ϑ∗
k corresponds to a voltage

value described by Eq. 4, and thus it is a function of synap-
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tic weights �w and differentiable with respect to them. For a
given threshold ϑ, we define the maximum of all the peaks
of subthreshold voltage as vmax(ϑ). Consider a given ϑ∗ as
the threshold, we assume there exists a t∗ such that V (t∗) =
vmax(ϑ

∗) = ϑ∗ = ϑ. We denote the derivative of ϑ∗ with
respect to the ith synaptic efficacy as ϑ∗′

i . In MST and TDP1,
the influence of output spikes tjs (j ∈ {1, 2...,m}) before t∗
are considered, so the derivative is given as:

ϑ∗′
i =

∂V (t∗)
∂wi

+

m∑
j=1

∂V (t∗)
∂tjs

∂tjs
∂wi

(9)

Differently, in our EML method, we find the effect
through previous output spikes can be neglected. The rea-
son is that for any previous output spike j, ∃ξ > 0 such that
V (tjs)−ϑ > ξ. A sufficiently small change on w will hardly
affect tjs. So the last component in Eq. 9 is a vanishing part.
The derivative of our methods can thus be expressed as:

ϑ∗′
i =

∂V (t∗)
∂wi

=
∑
tji≤t∗

κ(t∗ − tji ) (10)

According to Eq. 10, changing synaptic efficacies can
modify critical threshold values, and thus results in a dif-
ferent output spike number. We choose a simple form of
learning to modify synaptic weights whenever there is a mis-
match between the neuron’s actual (o) and desired (d) num-
ber of spikes, as:

Δw =

{
−λdϑ∗

o

dw if o > d

λ
dϑ∗

o+1

dw if o < d
(11)

where λ > 0 is the learning rate that controls the step size
of each update. As is shown Fig. 2, LTP will occur when the
neuron elicits less spikes than desired, while LTD will lead
the learning if it fires too many.

B.The EMLC Rule

The above mentioned rules, such as MST, TDP and EML,
are all based on STS. A common disadvantage is that they
depend on evaluations of critical thresholds as well as their
derivatives with respect to synaptic efficacy, resulting in rel-
atively low efficiency. Here, we propose our second efficient
multi-spike learning rule where only neuron’s current states
of response are considered. We name it as EMLC.

For a given input spike pattern, the number of output
spikes can be adjusted by directly modifying the voltage
closest to the threshold. We define the time points for adap-
tation as tLTP and tLTD. For LTP process, tLTP is the time
point corresponding to the maximum value of the subthresh-
old voltage. For LTD process, tLTD is selected as the time
point corresponding to the minimum value of the voltage af-
ter firing reset among all output spikes. We use these time
points to adjust synaptic efficacies (see Fig. 2), and the
EMLC rule can thus be formalized as:

Δw =

{
−λ∂V (tLTD)

∂w if o > d

λ∂V (tLTP)
∂w if o < d

(12)

In this way, neurons can thus learn to fire a desired number
of spikes only based on its current state of response rather
than a complicated STS function, resulting in a simplified
computation.

Experiment

In this section, experiments are conducted to evaluate the
performance of our methods. Firstly, we give the details of
our default settings. Next, we test the effects of different ini-
tial setups, followed by experiments on multi-classification
and feature extraction. Finally, we examine performance of
our learning rules on some real-world datasets.

Experimental Setup

The neuron is connected with N afferents, and each one fires
at a Poisson rate of rin = 4 Hz over a time window T .
We set N = 500 and T = 500 ms. The initial weights are
drawn from a random Gaussion distribution with both mean
and standard deviation being set as 0.01. Additionally, we
set ϑ = 1 and λ = 0.0001. Parameter setups different from
the default would be stated otherwise. All experiments were
conducted on a platform of Intel E5-2620@2.10GHz

Figure 3: Effects of different afferent firing rates rin. A. ini-
tial actual output spike number nout versus rin, solid line
and shaded area denote the mean and standard deviation, re-
spectively. The horizontal dotted line shows the desired out-
put spike number while the vertical dotted line denotes the
minimum cpu time in B. B. training times of different meth-
ods.

Here, we measure the effects of rin and initial weight dis-
tribution winit

mean on the processing and learning since these
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two have a direct influence on neuron’s output response. Our
learning efficiency is compared with baseline methods of
MST, TDP1 and TDP2.

Effects of Initial Setups

Neuron’s output response varies under different initial con-
ditions: some setups lead to a high firing rate output while
others would result in a low or even silent response. How
neurons respond under different setups and whether they
can adapt to proper states effectively and efficiently with our
learning rules are studied in this section.

In Fig. 3, patterns are generated by a Poisson process with
different rin. The target is to train neurons to fire 20 desired
output spikes. Following setups in (Yu, Li, and Tan 2018),
the learning rate is scaled as λr0in/rin with r0in = 4 Hz.
Fig. 3A shows neuron’s response to different setups of rin:
it starts to fire if rin is greater than a certain amount (5 Hz
here), and its output spike number increases linearly after
that with rin. Fig. 3B shows the learning efficiency of dif-
ferent multi-spike rules. For all the learning rules, the closer
the distance between initial response and the desired one is,
the less running time is required. Both our proposed learn-
ing rules, EML and EMLC, are faster than other baselines.
EMLC is the fastest one among all.

Figure 4: Effects of different initial mean weight wmean
init . A.

initial response nout versus wmean
init . B. execution times of

learning.

Fig. 4 shows the effects of winit
mean on neuron’s initial re-

sponse and the performance of different learning methods.
Again, our methods are more efficient than others as sug-
gested by our experimental results.

Multi-category Classification

The learning ability of spiking neurons to classify different
spike patterns have been widely studied (Brader, Senn, and
Fusi 2007; Memmesheimer et al. 2014). Some of which fo-
cus on rate-coded patterns, while others based on precise
timings. Here, we design several tasks to evaluate the learn-
ing performance of our method.

In the first task, we use our EML rule to train a single neu-
ron to perform multi-category classification by firing differ-
ent spike numbers in response to each. In this experiment,
both the rate and temporal codes are considered. The exper-
imental setups are similar to those in (Yu, Li, and Tan 2018).
Under the rate coding scheme, we randomly generate three
firing-rate templates, where a random half of the afferents
have a low firing rate of 2 Hz while the other half with a high
one of 10 Hz. The patterns are generated according to the
Poisson process every time. For the temporal-based experi-
ment, three spike pattern templates are randomly generated
with the default setup and then fixed. New spike patterns are
constructed by adding two types of noises to the templates:
spike jitter noise (σjit) and random deletion noise (pdel). We
set σjit = 2 ms and pdel = 0.1.

Figure 5: Multi-category classification of single neurons.
A. Gaussian kernel evaluation of the output spike numbers,
with a bandwidth of 0.35. The time- and rate-based exper-
iments are separated by the horizontal line. Vertical dotted
lines denotes the decision boundaries used in B. B. classifi-
cation accuracy of each category.

A single neuron is trained to fire different output spike
numbers in response to each category as : 5 (Class1), 10
(Class2) and 15 (Class3). After learning, the neuron can suc-
cessfully discriminate different categories where informa-
tion can be coded by either time or rate (see Fig . 5). More-
over, our learning rule achieves remarkable performance
with accuracies of 100% on the given task.
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In the second task, we use three neurons to learn the multi-
category classification task, with each neuron being trained
for one category. A temporal-based task is used to evaluate
the robustness of our learning methods. Again, spike pat-
terns of each category are constructed by adding two types
of noises to the template: spike jitter noise σjit and spike
deletion noise pdel. After training, these two noises are used
to evaluate the learning performance. Multi-spike learning
rules are applied to train the three neurons to elicit more than
20 spikes responding to their target category and to keep
silent for the others. In the decision phase, we consider the
classification is correct only when the corresponding neuron
fires more than 10 spikes.

Figure 6: Learning performance of different rules on the
classification task. A. learning accuracy under the spike jit-
ter noise σjit. B. learning accuracy under the spike deletion
noise pdel. C. inference time of the neurons in A. Data were
averaged over 100 independent simulations.

Fig. 6 shows that the tempotron rule is inferior to all multi-
spike learning rules in term of robustness, indicating the ad-
vantages of exploiting output temporal structure with mul-
tiple spikes. Notably, our EML and EMLC learning rules
outperform the other multi-spike rules in terms of robust-
ness against different noises. Moreover, the inference time
shows that our methods are more efficient (over twice) than
the others.

Learning for Feature Extraction

Useful information is often hidden in distracting streams of
unrelated sensory activities, making it difficult to be detected

by neurons, a common challenging task referred as ‘tempo-
ral credit-assignment’ problem (Gütig 2016). In this part, we
will show the ability of our EML rule for solving this prob-
lem.

Figure 7: Learning for feature extraction. A. a spike stream
where features (shaded green, yellow and blue) and distrac-
tors (shaded gray) are embedded in a background activity.
B and C are the membrane potential trace of the neuron in
response to the spike pattern in A after training.

Similar to the task in (Yu, Li, and Tan 2018), we first ran-
domly generate six activity patterns with the background fir-
ing statistics and then fixed them. Half of the activity pat-
terns are assigned as feature patterns while the others are re-
ferred as distractors. In each trial, the occurrence number of
each activity pattern is generated by a Poisson process with
a mean of 3, and then the activity patterns are randomly em-
bedded to a random background over T = 2s. The task is to
train the neuron to fire different desired spike numbers at the
presence of different feature patterns while to keep silent for
distractors as well as background. The total desired output
spike number n∗

out in response to a trial pattern is given by
n∗
out =

∑nf

i=1 cidi where ci is the number of the i-th feature
pattrern and di is the desired output spike number of the i-th
feature. nf is the total number of feature patterns.

Fig. 7 shows that our method can successfully learn the
two different temporal credit-assignment tasks where di for
three feature patterns are set as {1,1,1} and {1,2,3}, respec-
tively.

Real-world Classification Tasks

In this section, we evaluate the performance of our EML
and EMLC rules for solving some more realistic recogni-
tion tasks. Different encoding schemes are adopted to con-
vert external stimuli into spike patterns. We set the number
of classification neurons to be the same as that of categories.
The neurons are trained to fire a desired output spike num-
bers nd for the corresponding category while keep silent for
the others. We use a winner-take-all (WTA) scheme (Oster,
Douglas, and Liu 2009) for our readout where the predicted
category is represented by the neuron with most number of
spikes. In addition, a momentum scheme (Gütig and Som-
polinsky 2006) with μ = 0.9 is applied to accelerate the
learning.
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Table 1: Performance of different multi-spike learning rules on UCI datasets.

Dataset MST TDP1 \ TDP2 Yu’s work 1 EML \ EMLC (Ours)
Accuracy Epoch Time(s) Accuracy Epoch Time(s) Accuracy Epoch Time(s) Accuracy Epoch Time(s)

BC 95.68 100 4.59 95.80 \ 95.75 100 \ 100 4.18 \ 4.15 96.18 100 2.65 96.01 \ 91.24 100 \ 100 1.50 \ 1.48

Iris 95.80 200 3.17 95.52 \ 95.55 200 \ 200 2.82 \ 2.78 95.88 200 1.91 96.16 \ 91.58 200 \ 200 1.12 \ 1.08

Zoo 82.65 85 2.23 78.75\ 80.25 88 \ 91 1.25 \ 1.32 80.90 82 1.16 80.00 \ 82.30 82 \ 76 0.69 \ 0.64

1 This work in (Yu, Wang, and Dang 2018).

Table 2: The performance comparison on MNIST dataset.

Network Model Neurons Training size Test size Accuracy(%)
CNN+EML(Ours) 800+10 500 100 89

CSNN (Xu et al. 2018) 800+400 500 100 88
CNN+EML (Ours) 800+10 10000 5000 91.81

Dendritic Neurons (Hussain, Liu, and Basu 2014) 5000+10 10000 5000 90.26
CNN+EML (Ours) 800+10 60000 10000 92.52

Unsupervised STDP SNN (Diehl and Cook 2015) 784+6400+6400 60000 10000 95

A. UCI Benchmarking

In this part, three datasets are selected from UCI repositories
(Asuncion and Newman 2007) and are used in this experi-
ment. We use a Gaussian receptive field method (Eurich and
Wilke 2000; Bohte, Kok, and La Poutre 2002) to encode in-
put variables. 60% samples are used as training while the
rest as the test. The target output spike number for each neu-
ron is denoted as nd which is set to 10 for the Breast Cancer
and Iris datasets while set to 1 for the Zoo dataset.

• Breast Cancer (BC). A binary classification dataset for
breast cancer recognition which contains 683 samples
with 9 features each. In our experiment, every input fea-
ture is encoded by 8 neurons with Gaussian receptive
fields.

• Iris. It contains 3 categories with 50 samples in each. Ev-
ery sample consists of 4 features. We use 12 neurons to
encode each input feature.

• Zoo. This dataset is for animal classification where there
are 7 classes with 16 features. The total number of sam-
ples is 101. We use 10 neurons to encode each feature.

Table 1 shows the recognition results of different multi-
spike learning rules under the same experimental setups. For
both Breast Cancer and Iris dataset, the training epochs are
fixed, while an early-stop criterion is used to test conver-
gence speed for the Zoo dataset. As is shown in the table,
our methods are more efficient than all other baselines, with
a leading speed across all dataset. The recognition accura-
cies of our methods are mostly at the top ranges or compa-
rable to the best.

B. MNIST Dataset

Here, a more complex dataset, MNIST, is used to evaluate
the performance of our EML rule. The MNIST dataset con-
tains a large number of handwritten digits from 0 to 9, where
each example has an image size of 28×28 pixels (Larochelle
et al. 2007).

We adopt the encoding method of (Xu et al. 2018) that
uses CNN to extract features. Then the activation values are
linearly mapped to spiking times. We choose 800 encoding
neurons and use 10 neurons to learn the patterns. In order
to make a fair comparison with different methods, different
numbers of samples used for training and test are set accord-
ingly. The target output spike number nd is set to 10 and time
window T is set to 100 ms.

A comparison of different SNN-based models is shown in
Table 2. The CSNN model (Xu et al. 2018) uses 400 tem-
potron neurons in the output layer with each 40 to repre-
sent a same class. With a number of 500 training samples,
it achieves an accuracy of 88%. Remarkably, our method
reaches 89% but with fewer neurons, thanks to the multi-
spike characteristic. When more training data are used, the
accuracy of our method increases as expected. With a size
of 10000 training samples, our method outperforms the den-
dritic neurons (Hussain, Liu, and Basu 2014) and with a
lighter structure. A complex network structure with more
neurons could further improve the performance accuracy as
that in (Diehl and Cook 2015), but a rate-based coding is
normally the key. Both these can limit the efficiency of the
network. Differently, our work demonstrates the advantages
of our learning rule that enables light network structure un-
der a temporal code to achieve a comparable accuracy.

Conclusion

In this work, two new multi-spike learning methods are
proposed for fast processing and robust learning. We have
demonstrated the advantages of our method with challeng-
ing tasks including multi-category classification and feature
extraction. Our learning rules can successfully perform the
task and show a strong robustness to noise. Furthermore,
we evaluated the performance of our rule on several real-
world dataset. Experimental results show that our method
has higher performance and lower computation cost than the
others, making it beneficial for fast and efficient neuromor-
phic computing.
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