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Abstract

This paper focuses on the emerging Infrared-Visible cross-
modal person re-identification task (IV-ReID), which takes
infrared images as input and matches with visible color im-
ages. IV-ReID is important yet challenging, as there is a sig-
nificant gap between the visible and infrared images. To re-
duce this ‘gap’, we introduce an auxiliary X modality as an
assistant and reformulate infrared-visible dual-mode cross-
modal learning as an X-Infrared-Visible three-mode learn-
ing problem. The X modality restates from RGB channels
to a format with which cross-modal learning can be eas-
ily performed. With this idea, we propose an X-Infrared-
Visible (XIV) ReID cross-modal learning framework. Firstly,
the X modality is generated by a lightweight network, which
is learnt in a self-supervised manner with the labels inher-
ited from visible images. Secondly, under the XIV frame-
work, cross-modal learning is guided by a carefully designed
modality gap constraint, with information exchanged cross
the visible, X, and infrared modalities. Extensive experiments
are performed on two challenging datasets SYSU-MM01 and
RegDB to evaluate the proposed XIV-ReID approach. Exper-
imental results show that our method considerably achieves
an absolute gain of over 7% in terms of rank 1 and mAP even
compared with the latest state-of-the-art methods.

Introduction
Person re-identification (ReID) aims at identifying target
persons in a query set from a large-scale gallery set cap-
tured by non-overlapping camera views (Zheng, Yang, and
Hauptmann 2016; Zhang et al. 2015; Cheng et al. 2016). Its
great application value in surveillance has propelled ever-
increasing research efforts (Luo et al. 2019; Yang et al. 2019)
as many other computer vision tasks (Wang et al. 2010;
Ma et al. 2019). Encouraging performance has been ob-
served, especially in the visible spectrum, where all the im-
ages are captured by visible cameras (Tay, Roy, and Yap
2019). However, visible cameras cannot provide enough dis-
criminative information under poor lighting conditions, e.g.,
in the dark. The applications are thus limited if only using
visible cameras.
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Figure 1: Conceptual illustration of cross-modal learning
with ‘X’. Different colors represent different IDs. And im-
ages in dashed box are easily to match together in predic-
tion. (a) Cross-model matching is difficult as the gap be-
tween visible and infrared modality is clear; (b) With ‘X’
(in triangles), cross-modal matching becomes easier. (Best
viewed in color.)

For practical use, modern surveillance systems usually
operate in dual-modes, i.e., working in the visible mode dur-
ing the day and automatically switching to the infrared mode
at night. Consequently, a new task arises naturally (Wang
et al. 2019c). Given a target infrared image, the goal is to
match the visible images of the corresponding person. This
cross-modal image matching task is named Infrared-Visible
person re-identification (IV-ReID).

A few studies have been proposed for this IV-ReID
task (Ye et al. 2018a; 2018b; Dai et al. 2018; Wang et al.
2019c; Feng, Lai, and Xie 2019; Hao et al. 2019; Wang
et al. 2019a). One special challenge in this task is how to
bridge the modality gap between the visible and infrared im-
ages. Visible images have three channels containing colour
information of visible light with wavelengths from 400 nm
to 700 nm, while infrared images have one-channel of in-
visible electromagnetic radiation, the wavelengths of which
are between 700 nm and 1 mm, longer than those of visible
light. The two modalities are, thus, inherently different. Such
a difference further accounts for different ways of using
the two modalities. For visible images based person ReID
models, the learned high-level semantic features mainly
cover appearance and colour information (Zhong et al. 2019;

4610



Infrared Modality

Visible Modality

Lightweight Generator Constraints

MRG
X Modality

Weight-sharing

CMG
Weight-sharing

Figure 2: Illustration of the proposed XIV cross-modal learning framework with an adjoint and auxiliary X modality. The
lightweight generator siphons off knowledge from the visible and infrared images and outputs the X modality images. Then
three modalities are fed into the weight-sharing cross-modal feature learner. And two modality constraints namely the cross
modality gap (CMG) and the modality respective gap (MRG) constraint, are designed to regularize feature representations and
classification outputs and to learn cross-modal information of three modalities in a common space.

Sun and Zheng 2019). On the other hand, the infrared im-
ages based ones mainly include structure and shape infor-
mation (Jungling and Arens 2010). As a result, when en-
forcing these two modalities directly into a joint objective
function for cross-modal learning, most existing IV-ReID
approaches become sensitive to the parameters, difficult to
converge, and computationally intensive. It is not surpris-
ing that most of the state-of-the-arts only achieve a mean
Average Precision under 30% on the challenging dataset
SYSU-MM01 (Ye et al. 2018a; 2018b; Hao et al. 2019;
Dai et al. 2018; Wang et al. 2019c).

To mitigate the gap problem caused by different modal-
ities, we propose a new infrared-visible cross-modal per-
son ReID approach, termed X-Infrared-Visible (XIV) cross-
modal learning. The X modality is an adjoint, auxiliary
modality to reconcile both the infrared and visible modali-
ties. With the assistance of X, the visible and infrared modal-
ities are connected, and cross-modal learning becomes eas-
ier, as demonstrated by Fig. 1.

The proposed XIV cross-modal learning approach con-
sists of two main components: a lightweight X modal-
ity generator and a weight-sharing XIV cross-modal fea-
ture learner. Concretely, the lightweight network gener-
ates the X modality images with a very small amount of
extra costs. It uses visible images as input, siphons off
knowledge from the visible and infrared images through
self-supervision (Agrawal, Carreira, and Malik 2015; Sun
et al. 2019), and outputs the X images. Afterwards, the
XIV feature learner takes the three modalities, namely the
X, the infrared, and the visible ones, as input. Through
weight sharing, the feature learner adapts to three modali-
ties jointly and generates modality-invariant features in the

common space, where cross-modal person ReID can be ef-
ficiently performed. Subsequently, the X modality gener-
ator is linked to the feature learner so that the proposed
XIV approach can be optimized in an end-to-end manner.
We devise a modality gap constraint to direct the knowl-
edge communication across modalities and optimization
through back-propagation during learning, by jointly consid-
ering the infrared-X cross-modal disparity, infrared-visible
cross-modal disparity, and the respective constraints for each
modality. Finally, we evaluate the proposed framework on
two publicly available datasets SYSU-MM01 (Wu et al.
2017) and RegDB (Nguyen et al. 2017).

The main contributions are summarized as follows:

• We propose a new approach for infrared-visible cross-
modal person ReID through the X-Infrared-Visible cross-
modal learning, based on an adjoint and auxiliary X
modality.

• We propose an extra lightweight network to generate the
X modality through self-supervised learning.

• We devise a modality gap constraint to direct the learning
and knowledge communication across modalities.

• We advance the latest state-of-the-art performance of rank
1 and mAP accuracy over 7% on the large-scale SYSU-
MM01 dataset.

Related Work
Self-supervised learning. As an alternative to fully-
supervised algorithms, self-supervised learning has pro-
vided considerable improvements in cross-modal learning,
like image and context cross-modal learning (Doersch,
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Gupta, and Efros 2015; Gomez et al. 2017), instructions and
trajectories cross-modal learning (Wang et al. 2019b), etc.
Cross-modal self-supervised learning algorithms attempt to
utilize the structure in one modality to provide the training
supervision for co-occurring modality (Patel et al. 2019).

Considering self-supervision in single-modality person
ReID, Sun et al. (Sun et al. 2019) propose a visibility-aware
part model, which learns to perceive the visibility of regions
through self-supervision. Specifically, they randomly crop
partial pedestrian images from the holistic ones and auto-
matically generate corresponding labels.

Infrared-visible person re-identification. For the IV-
ReID problem, the cross-modal methods mainly try to learn
modality relevant features. Wu et al. (Wu et al. 2017) pro-
pose a two-stream deep zero-padding network to learn the
cross-modal features in a common space. Ye et al. (Ye et
al. 2018a) introduce a two-step framework combining both
feature learning and metric learning. They (Ye et al. 2018b)
also propose a cross-modal pair-wise constraint to narrow
the gap between visible features and infrared features. Hao
et al. (Hao et al. 2019) propose an end-to-end dual stream
hyper-sphere manifold embedding model to constrain the
intra-modality and inter-modality variations. And the frame-
work proposed in (Feng, Lai, and Xie 2019) utilizes the
modality-related information and extracts modality-specific
representations by constructing an individual network for
each modality.

The works most relevant to ours are three GAN-based
methods, cmGAN (Dai et al. 2018), D2RL (Wang et al.
2019c) and AlignGAN (Wang et al. 2019a). cmGAN adopts
generative adversarial networks (Goodfellow et al. 2014)
(GANs) to learn discriminative representations from differ-
ent modalities. D2RL adopts GANs to reduce the modality
discrepancy and appearance discrepancy separately. Simi-
larly, AlignGAN accomplishes pixel and feature alignment
in an unified GAN framework. However, the differences to
ours are evident. Firstly, compared with cmGAN which di-
rectly works on the original two modalities with weight-
sharing networks, we adopt an auxiliary X modality to nar-
row the modality gap between the original two with the de-
vised modality gap constraints and ease the learning diffi-
culty just with a lightweight network and slight costs. Sec-
ondly, in D2RL, GANs are applied to translate the visible
(or infrared) image to its infrared (or visible) counterpart.
Then the visible (or infrared) image is stacked with its in-
frared (or visible) counterpart to form a four-channel multi-
spectrum image which is fed into a backbone network as
input. Comparatively, we generate an individual X modal-
ity and perform efficient cross-modal learning using three
three-channel modalities. Our new XIV cross-modal learn-
ing sheme is more advisable since the ill-posed infrared-
to-visible generation in D2RL is avoided and most modern
person ReID backbones can be directly used without extra
workload to change the structures and finetune. Thirdly, in
AlignGAN, GANs are adopted to map a visible image to a
fake infrared image, demanding that the generated fake in-
frared image could be mapped back to original visible one.
At first, as infrared image contains much less information
than visible image, the (fake) infrared-to-visible ill-posed

translation still remains, especially with the spatial trans-
formation in GANs. Instead of focusing on mapping visi-
ble images to infrared images directly, we intend to learn an
intermediate mediator between visible and infrared images.
Generally, the GANs used in these methods are complicated
and difficult to train. In contrast, we utilize an extremely
lightweight network as the X modality generator, which is
much easier to optimize than GANs. In experiments, we will
show that our method greatly outperforms those methods.

Methodology
Problem Formulation
We denote the total cross-modal person ReID dataset as T =
{Ttr, Tte}. Suppose that training set Ttr contains N images
with corresponding ground-truth label set Y = {yi}Ni=1,
where yi ∈ {1, 2, · · · , C} and C refers to the number of
classes in Ttr. And the testing set contains query set and
gallery set. Thus, Tte = {Tquery, Tgallery}.

Let V, I, and X denote the visible images, the infrared
images, and the learned X modality images, respectively. We
set f as the deep feature learner, and g as the lightweight X
modality generator. Then we have

X = g(V). (1)

During testing, we find the nearest visible neighbor Vj∗ ∈
Tgallery of a query image Ii ∈ Tquery from the gallery. And
we generate X to assist cross-modal search. Thus, we get
index j∗ using:

j∗ = argmin
j

(D(f(Ii), f(Vj)) +D(f(Ii), f(Xj))), (2)

where D(·) is the Euclidean distance.
The proposed X-Infrared-Visible cross-modal learning

approach for IV-ReID is shown in Fig. 2. Through the
X modality generation, the three infrared, X, and visible
modalities are fed into a weight-sharing deep feature learner.
With the extracted features and classification outputs, we
adopt modality respective gap constraint for each one and
cross modality gap constraint between infrared and visible
modalities, as well as infrared and X modalities. In the fol-
lowing, we describe the X modality, weight-sharing feature
learner, and modality gap constraints in detail.

X Modality
For visible image based deep models, the appearance and
colour information usually dominate the learned high-level
semantic information (Zhong et al. 2019; Sun and Zheng
2019). Conversely, infrared image has only one channel
of invisible electromagnetic radiation, making the semantic
structure and shape information major roles (Jungling and
Arens 2010). The infrared and visible modalities inherently
contain much different information. Previous approaches in-
tended to learn the cross-modal information directly from
these two original modalities. The evaluation performance
shows that this kind of direct mapping is not good enough to
narrow the gap between the two modalities (Wu et al. 2017;
Dai et al. 2018; Wang et al. 2019c).
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Comparatively, we learn an adjoint, auxiliary modality
with self-supervision as an assistant to reconcile the infrared
and visible modalities.

As shown in Fig. 2, the lightweight X modality gener-
ator uses visible images as input, siphons off knowledge
from the visible and infrared modalities. This non-linear
lightweight network contains two 1× 1 convolutional layers
and a ReLU (Krizhevsky, Sutskever, and Hinton 2012) acti-
vation layer. It first transforms the visible images to a one-
channel images and then reconstructs three-channel images.
The first 1 × 1 convolutional layer maps the original three-
channel visible images to one-channel images like the in-
frared ones. A ReLU activation layer is provided to improve
the non-linear representation capability. Then, another 1× 1
convolutional layer is used to map the non-linear activated
one-channel arrays to three-channel X modality images as
the original visible ones.

The learned X images with automatically generated la-
bels from visible images provide additional self-supervision
information. Compared with other auxiliary structure used
methods, like GAN-based ones (Dai et al. 2018; Wang et
al. 2019c; 2019a), we implement a much more lightweight
and efficient network. The network is easier to optimize
than GANs as well. Additionally, the main modality gap
between infrared and visible modalities remains in channel
space. These GAN-based methods reconstructs information
not only in channel dimension but also in the spatial dimen-
sion, destroying the original spatial structure information.
Comparatively, we apply the more rational 1 × 1 convolu-
tional layers to learn the X modality, which is only a re-
construction of channel-wise information from the visible
modality.

Weight-sharing Feature Learner
With the designed X modality generator, we propose an X-
Infrared-Visible cross-modal feature learner on the basis of
an effective baseline model (Luo et al. 2019). As shown in
Fig. 2, the feature learner takes three modalities, namely the
X, infrared, and visible ones, as input, and learns the cross-
modal information in a common feature space. By sharing
weight for the three modalities, the proposed X-Infrared-
Visible framework becomes much more compact.

The X modality plays a critical role in the framework,
as it bridges the cross-modal information communication
through a modality gap constraint, which will be intro-
duced later. By jointly considering the infrared-X as well
as infrared-visible cross-modal disparity, the X learns from
visible modality and infrared modality. The X generator is
lightweight and simplified, and could be directly integrated
with the weight-sharing feature learner.

During training, we optimize these three modalities
jointly. X modality acts as an adjoint and auxiliary assis-
tant to ease the learning difficulty. During testing, we com-
bine the similarities calculated with infrared-X and infrared-
visible pairs as Eq. 2, and achieve the best performance.

Modality Constraints
Considering the infrared-visible cross-modal matching pro-
tocol during testing as introduced before, cross-modal con-

straints are the priority in optimizing (Ye et al. 2018b;
Feng, Lai, and Xie 2019). Previous methods consider en-
hancing the feature discriminability with positive infrared-
visible pairs and negative infrared-visible pairs. Compara-
tively, we form the modality gap constraints with infrared,
visible, and X modalities in a joint manner. We form the
well-aligned batches with the size of 3M , of which the first
M is for infrared modality, the second M for X modality,
and the third M for visible modality. Thus, the cross modal-
ity gap (CMG) constraint LC could be computed as follows:

LC = LI,X
cross + LI,V

cross. (3)

Considering cross modality gap constraint between in-
frared modality and the learned X modality, the constraint
is defined as follows:

LI,X
cross =

1

M
(LI−X + LX−I), (4)

where

LI−X =
M∑

i=1

[α1 + max
j=M+1,··· ,2M

yi=yj

D(f(Ii), f(Xj))

− min
k=M+1,··· ,2M

yi �=yk

D(f(Ii), f(Xk))]+,
(5)

and

LX−I =

2M∑

i=M+1

[α1 + max
j=1,··· ,M

yi=yj

D(f(Xi), f(Ij))

− min
k=1,··· ,M

yi �=yk

D(f(Xi), f(Ik))]+.
(6)

α1 is a margin parameter and [z]+ = max(z, 0). With hard
sample mining, the Euclidean distance of positive cross-
modal pairs could be well optimized to be smaller than neg-
ative cross-modal pairs between infrared and X modalities.
The same goes for cross modality gap constraint between
infrared and visible modalities. Considering the evaluation
protocol that infrared images are regarded as query images,
the combined cross modality gap constraint targets at in-
frared images and forces the positive visible images and X
images to approach infrared ones.

Additionally, for each modality, we also apply the modal-
ity respective gap constraint to help the model converge
since the intra-modality constraints are easier than inter-
modality constraints in convergence. Concretely, we apply
cross entropy identity loss and an improved triplet loss to
optimize the feature learning. The modality respective gap
(MRG) LM constraint is defined as follows:

LM = LI + LX + LV. (7)

Take infrared modality gap as an example, the combined
loss constraint is defined as:

LI =
1

M
(Lid

I + Ltri
I ), (8)

where

Lid
I = −

M∑

i=1

yilog(pi), (9)
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and

Ltri
I =

M∑

i=1

[α2 + max
j=1,··· ,M

yi=yj

D(f(Ii), f(Ij))

− min
k=1,··· ,M

yi �=yk

D(f(Ii), f(Ik))]+.
(10)

We set pi here to represent the classification outputs of the
image Ii, and yi to represent one-hot vector of label yi. LX

and LV can be defined analogously to LI. We set margin α2

to differentiate from the one used in LC since the difficulties
vary between inter-modality and intra-modality.

Optimization
The optimization of the proposed X-Infrared-Visible cross-
modal learning framework integrated with an X modality
could be directly conducted in an end-to-end manner, by cas-
cading LM and LC as follows:

L = LM + λLC . (11)

Here, λ is a trade-off hyperparameter for balancing the con-
tributions of the two modality gap constraints.

Experiments
In this section, we compare the performance of the proposed
method with other state-of-the-art methods and evaluate the
contribution of the key components.

Experimental Settings
Datasets. We perform experiments on two publicly available
datasets SYSU-MM01 and RegDB.

• SYSU-MM01 is a challenging, large-scale dataset ded-
icated to infrared-visible cross-modal person ReID, col-
lected by four visible cameras and two near-infrared
ones (Wu et al. 2017). It contains in total 30,071 visi-
ble images and 15,792 infrared images of 491 identities,
in which each identity is captured by one visible camera
and one near-infrared camera at least. We use the single-
shot all-search mode evaluation protocol (Wu et al. 2017),
since it is the most challenging mode and adopted in all
the comparative methods. The dataset is divided into a
training set with 395 identities and a testing set with 96
identities. The training set consists of 22,258 visible im-
ages and 11,909 infrared images, while the query set and
the gallery set contain 3,803 infrared images and 301 ran-
domly sampled visible images, respectively.

• RegDB is constructed by using a pair of aligned visi-
ble and infrared cameras (Nguyen et al. 2017). It con-
tains 412 identities with 10 visible images and 10 far-
infrared images for each one. Following (Ye et al. 2018a;
Wang et al. 2019c), we randomly split the dataset into two
halves, one for training and the other for testing. Training
set consists of 2,060 visible images and 2,060 infrared im-
ages. The same goes for testing set. Query set consists of
2,060 infrared images and gallery set contains 2,060 visi-
ble images.

Evaluation metrics. The Cumulative Matching Char-
acteristics (CMC) curve and the mean Average Precision
(mAP), as two standard evaluation metrics widely used
in infrared-visible cross-modal person ReID works, are
adopted in our experiments. For statistically stable results,
the evaluation procedure is repeated for 10 trials with ran-
domly sampled query and gallery sets, as (Ye et al. 2018a;
Feng, Lai, and Xie 2019; Wang et al. 2019c).

Implementation details. The proposed method is im-
plemented with PyTorch. We adopt the Adam optimizing
method and the initial learning rate is set to be 0.00035 with
warm-up strategy. The weight decay is set to be 0.0005. The
batch size M for each modality is set to be 48 on one sin-
gle TITAN Xp GPU, resulting a total mini-batch of 144. We
set the training epoch to 120. And the learning rate decays
at 40th and 70th epoch with a decay factor of 0.1. The mar-
gin parameter α1 in LC is set to be 0.5 while the margin
parameter α2 in LM is set to be 0.3. As this task focuses
more on cross-modal search, we set larger α1 to emphasis
cross modality constraints. The trade-off hyperparameter λ
between two modality constraints in Eq. 11 is set to be 0.1.

For a comprehensive comparison, we choose two back-
bone networks, ResNet-50 (He et al. 2016) and DenseNet-
121 (Huang et al. 2017), both pre-trained on Ima-
geNet (Deng et al. 2009), to validate our method. ResNet-50
is a modern choice to provide state-of-the-art performance in
person ReID (Wang et al. 2019a; 2019c; Luo et al. 2019). We
adopt a modified ResNet-50 architecture (Luo et al. 2019).
All training and testing images are re-scaled to a fixed size
of 256×128 for ResNet-50. To better demonstrate the effec-
tiveness of our each innovative component, we also perform
the ablation study using DenseNet-121, where all images are
re-scaled to a fixed size of 224× 224.

Comparison with State-of-the-art Methods
We evaluate our method with other state-of-the-art meth-
ods. The first two listed in Table 1 are introduced at length
in (Wu et al. 2017), which are the modifications of the
widely used IDE method (Zheng, Yang, and Hauptmann
2016) under IV-ReID protocol. The remaining methods are
dedicated to IV-ReID experimental settings as introduced
before, including Zero-Padding (Wu et al. 2017), TONE (Ye
et al. 2018a), HCML (Ye et al. 2018a), BDTR (Ye et al.
2018b), D-HSME (Hao et al. 2019), cmGAN (Dai et al.
2018), D2RL (Wang et al. 2019c), MSR (Feng, Lai, and Xie
2019) and AlignGAN (Wang et al. 2019a).

Table 1 lists the comparison results on the SYSU-MM01
and RegDB datasets. The results demonstrate that the pro-
posed approach for cross-modal person ReID outperforms
existing state-of-the-art methods by a great margin on
both two datasets. Compared with the state-of-the-arts, our
method achieves an absolute gain of 7.5% and 10% at
least in terms of rank 1 and mAP metric on SYSU-MM01
datasets. And our method outperforms other methods at least
5% and 7% in terms of rank 1 and mAP on RegDB dataset.
Specifically, we achieve 62.21% rank 1 and 60.18% mAP
accuracy on the RegDB dataset, and 49.92% rank 1 and
50.73% mAP accuracy on the SYSU-MM01 dataset.
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Table 1: Comparison results (%) with the state-of-the-art IV-ReID methods on RegDB and SYSU-MM01 datasets.

Approach RegDB SYSU-MM01
r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

One-stream (Wu et al. 2017) 13.11 32.98 42.51 14.02 12.04 49.68 66.74 13.67
Two-stream (Wu et al. 2017) 12.43 30.36 40.96 13.42 11.65 47.99 65.50 12.85

Zero-Padding (Wu et al. 2017) 17.75 34.21 44.35 18.90 14.80 54.12 71.33 15.95
TONE (Ye et al. 2018a) 16.87 34.03 44.10 14.92 12.52 50.72 68.60 14.42
HCML (Ye et al. 2018a) 24.44 47.53 56.78 20.80 14.32 53.16 69.17 16.16
BDTR (Ye et al. 2018b) 33.47 58.42 67.52 31.83 17.01 55.43 71.96 19.66

D-HSME (Hao et al. 2019) 50.85 73.36 81.66 47.00 20.68 62.74 77.95 23.12
cmGAN (Dai et al. 2018) - - - - 26.97 67.51 80.56 27.80
D2RL (Wang et al. 2019c) 43.40 66.10 76.30 44.10 28.90 70.60 82.40 29.20

MSR (Feng, Lai, and Xie 2019) 48.43 70.32 79.95 48.67 37.35 83.40 93.34 38.11
AlignGAN (Wang et al. 2019a) 57.90 - - 53.60 42.40 85.00 93.70 40.70

Our method 62.21 83.13 91.72 60.18 49.92 89.79 95.96 50.73

Table 2: Comparison with cmGAN, D2RL using same back-
bone on the SYSU-MM01 dataset.

Method r = 1 r = 10 r = 20 mAP
cmGAN 26.97 67.51 80.56 27.80
D2RL 28.90 70.60 82.40 29.20
Ours 33.28 77.05 88.27 33.76

Table 3: Comparison with AlignGAN using same backbone
on the SYSU-MM01 dataset.

Method r = 1 r = 10 r = 20 mAP
AlignGAN 42.40 85.00 93.70 40.70

Ours 44.12 83.57 92.04 44.22

Compared with the relevant GAN-based methods cm-
GAN, D2RL, and AlignGAN, the proposed X modality gen-
erator is not only more lightweight, also much more ef-
fective. Firstly, the generator in our method just has two
1 × 1 convolution layers, much less than the deep network
‘UNIT’ (over 20 layers) (Liu, Breuel, and Kautz 2017) in
D2RL. We also measure the processing FLOPs of the gen-
erator. For a 256 × 128 input image, the FLOPs of the gen-
erator are 0.0002G, which is trivial compared with the fol-
lowing feature extractor (2.7G). As shown in Table 2 and
Table 3, our method improves a lot with same backbone
as cmGAN, D2RL, and AlignGAN used respectively. With
modified high baseline network in (Luo et al. 2019), our
method continuously improves the mAP and rank 1 accu-
racy to 50.73% and 49.92% on the SYSU-MM01 dataset.

Ablation Study
In this subsection, we evaluate the proposed components in-
troduced before in detail on the large-scale SYSU-MM01
dataset. Some intermediate results are provided as follows
to illustrate how much each of them contributes to the final
significant performance. We use some acronyms for better
illustration. Specifically, X is short for X modality and CMG
is short for cross modality gap constraints.

• Baseline: Baseline model is trained using LV + LI.

Table 4: Ablation study on the SYSU-MM01 dataset.
ResNet-50

Method r = 1 r = 10 r = 20 mAP
Baseline 38.39 81.65 90.84 40.62

Baseline+X 45.57 86.45 94.27 47.03
Baseline+X+CMG 49.92 89.79 95.96 50.73

DenseNet-121
Method r = 1 r = 10 r = 20 mAP
Baseline 38.67 81.66 90.18 39.68

Baseline+X 41.29 82.41 91.08 41.09
Baseline+X+CMG 48.20 88.57 94.84 48.01

• Baseline+X: This model is integrated with the proposed
X modality, and is trained using LV + LI + LX.

• Baseline+X+CMG: The proposed whole framework is
optimized with final integrated loss function L as Eq. 11.

We adopt two commonly used backbone model ResNet-
50 and DenseNet-121, to evaluate each component we pro-
vided. As shown in Table 4, the effectiveness of each com-
ponent is clearly revealed. The learned X modality improves
the baseline model with 3-7% rank 1 and 2-7% mAP accu-
racy on the SYSU-MM01 dataset. And the cross modality
gap constraint continuously improves the model with X 4-
7% rank 1 accuracy and 3-7% mAP performance. Our self-
supervised X modality has significantly eased the learning
difficulties in cross-modal matching just with a lightweight
network and slight costs.

Discussions
A closer look at X. We statistically analyze the average
single-color-channel intensity of all pixels inside an image
over the training images of the SYSU-MM01 and RegDB
datasets. Fig. 3 shows the histograms computed from the
natural visible images and the X modality images of the
two datasets, respectively. The statistics of the three color
channels of natural visible images are analogous. However,
the ‘R’ channel in the X images has much higher intensity
than ‘G’ and ‘B’. As shown in Fig. 4, compared with natu-
ral visible images, the X images appear much ‘redder’ and
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(a) “Visible” of SYSU-MM01 (b) “X” of SYSU-MM01

(c) “Visible” of RegDB (d) “X” of RegDB

Figure 3: Histograms of average single-colour-channel in-
tensity of all pixels inside an image over the training sets
of SYSU-MM01 and RegDB. They are computed from vis-
ible and X images respectively. Red, green, and blue his-
tograms represent the corresponding ‘R’, ‘G’, and ‘B’ chan-
nels. (Best viewed in color.)

Visible Modality X Modality Infrared Modality

Figure 4: Visualization of the three modalities. (Best viewed
in color.)

thus have longer wavelength from the viewpoint of elec-
tromagnetic radiation. Conversely, when compared with in-
frared images, the X images look more colorful and thus the
wavelength shorten. As a result, the proposed method finally
learns a ‘new’ modality with an intermediate wavelength be-
tween visible and infrared light. With the X, cross-modal
learning becomes much easier as it is avoided to deal with
the gap between the visible and the infrared modalities in-
dependently. As shown in Fig. 1, cross-modal matching can
be more easily performed with the feature learned with X
modality than normal IV-ReID baseline model.

It is interesting to evaluate the performance of several spe-
cial cases of the X modality generator g. The comparison re-
sults are reported in Table 5, where ‘Mean’ refers to channel-
wise average of visible images, ‘Gray’ refers to gray in-
formation extracted from visible images, ‘V’ refers to the
lightness channel V information of visible images in HSV
colour space and ‘Y’ refers to the Y channel information of
visible images in YCbCr colour space. The extracted one-
channel information is expanded three times in channel di-
mension and fed into the weight-sharing feature learner. As
discussed in digital camera sensors works (Fredembach and
Süsstrunk 2008), in creating ‘pleasing’ images, the ‘V’ and
‘Y’ channel information show closer performance as near in-

Table 5: Performance of special cases of ‘X’ using ResNet-
50 model on the SYSU-MM01 dataset.

Method r = 1 r = 10 r = 20 mAP
Baseline+Mean 41.73 83.89 92.04 44.27
Baseline+Gray 40.34 82.66 91.07 42.92

Baseline+V 44.61 84.40 93.51 46.49
Baseline+Y 43.69 84.52 93.28 45.86
Baseline+X 45.57 86.45 94.27 47.03
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Figure 5: Performance of rank 1 and mAP accuracy with re-
spect to the hyperparameter λ on the SYSU-MM01 dataset.

frared information. Similarly, the comparison results in Ta-
ble 5 show that ‘V’ and ‘Y’ channel information are better
than ‘Mean’ and ‘Gray’ information in helping to match in-
frared images with visible ones. The proposed lightweight
generator clearly outperforms all special cases.

Parameter influence. We evaluate the influence of the
trade-off hyperparameter λ between modality respective gap
constraint LM and cross modality gap constraint LC used in
Eq. 11. The LM is easier than LC in terms of convergence.
While the target of the IV-ReID task is to learn cross-modal
matching and narrow the cross modality gap. Fig. 5 shows
the performance of rank 1 and mAP based on modified
ResNet-50 with SYSU-MM01 dataset by varying the param-
eter λ. We could find that cross-modal person ReID perfor-
mance varies when the trade-off hyperparameter changes.
And there exists a suitable value to balance the LM and LC .
LM helps convergence of the model and LC helps the cross-
modal information learning.

Conclusion
This paper focuses on the infrared-visible cross-modal per-
son re-identification task. To mitigate the inherent modal-
ity gap between the infrared and visible modalities, we pro-
pose a new X-Infrared-Visible (XIV) cross-modal learning
framework with an adjoint and auxiliary X modality. Con-
cretely, we design a lightweight generator to siphon off
knowledge from the visible and infrared modalities, and out-
put the X modality images. Then, a weight-sharing deep fea-
ture learner is provided to extract cross-modal features and
classification outputs in a joint manner. We optimize the gen-
erator and feature learner directly with the devised modal-
ity respective gap (MRG) constraint and cross modality
gap (CMG) constraint in an end-to-end manner. Experimen-
tal results on two publicly available infrared-visible cross-
modal person re-identification datasets SYSU-MM01 and
RegDB demonstrate the superiority of the proposed three-
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mode cross-modal learning approach.
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Fredembach, C., and Süsstrunk, S. 2008. Colouring the
near-infrared. In CIC, volume 2008, 176–182. Society for
Imaging Science and Technology.
Gomez, L.; Patel, Y.; Rusinol, M.; Karatzas, D.; and Jawa-
har, C. V. 2017. Self-supervised learning of visual features
through embedding images into text topic spaces. In CVPR.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NIPS, 2672–2680.
Hao, Y.; Wang, N.; Li, J.; and Gao, X. 2019. Hsme: Hyper-
sphere manifold embedding for visible thermal person re-
identification. In AAAI, volume 33, 8385–8392.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017. Densely connected convolutional networks. In
CVPR, 4700–4708.
Jungling, K., and Arens, M. 2010. Local feature based per-
son reidentification in infrared image sequences. In 2010
7th IEEE International Conference on Advanced Video and
Signal Based Surveillance, 448–455. IEEE.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 1097–1105.
Liu, M.-Y.; Breuel, T.; and Kautz, J. 2017. Unsupervised
image-to-image translation networks. In NIPS, 700–708.
Luo, H.; Gu, Y.; Liao, X.; Lai, S.; and Jiang, W. 2019. Bag of
tricks and a strong baseline for deep person re-identification.
In CVPR Workshops, 0–0.

Ma, Z.; Wei, X.; Hong, X.; and Gong, Y. 2019. Bayesian
loss for crowd count estimation with point supervision. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 6142–6151.
Nguyen, D.; Hong, H.; Kim, K.; and Park, K. 2017. Person
recognition system based on a combination of body images
from visible light and thermal cameras. Sensors 17(3):605.
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