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Abstract

Recent progress in the field of reinforcement learning has
been accelerated by virtual learning environments such
as video games, where novel algorithms and ideas can
be quickly tested in a safe and reproducible manner. We
introduce the Google Research Football Environment, a
new reinforcement learning environment where agents are
trained to play football in an advanced, physics-based 3D
simulator. The resulting environment is challenging, easy
to use and customize, and it is available under a permissive
open-source license. In addition, it provides support for
multiplayer and multi-agent experiments. We propose three
full-game scenarios of varying difficulty with the Football
Benchmarks and report baseline results for three commonly
used reinforcement algorithms (IMPALA, PPO, and Ape-X
DQN). We also provide a diverse set of simpler scenarios
with the Football Academy and showcase several promising
research directions.

Introduction

The goal of reinforcement learning (RL) is to train smart
agents that can interact with their environment and solve
complex tasks (Sutton and Barto 2018). Real-world appli-
cations include robotics (Haarnoja et al. 2018), self-driving
cars (Bansal, Krizhevsky, and Ogale 2018), and control
problems such as increasing the power efficiency of data
centers (Lazic et al. 2018). Yet, the rapid progress in this
field has been fueled by making agents play games such
as the iconic Atari console games (Bellemare et al. 2013;
Mnih et al. 2013), the ancient game of Go (Silver et al.
2016), or professionally played video games like Dota 2
(OpenAI 2019) or Starcraft II (Vinyals et al. 2017). The rea-
son for this is simple: games provide challenging environ-
ments where new algorithms and ideas can be quickly tested
in a safe and reproducible manner.

While a variety of reinforcement learning environments
exist, they often come with a few drawbacks for research,
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Figure 1: The Google Research Football Environment
(github.com/google-research/football) pro-
vides a novel reinforcement learning environment where
agents are trained to play football in an advance, physics
based 3D simulation.

which we discuss in detail in the next section. For exam-
ple, they may either be too easy to solve for state-of-the-
art algorithms or require access to large amounts of com-
putational resources. At the same time, they may either be
(near-)deterministic or there may even be a known model
of the environment (such as in Go or Chess). Similarly,
many learning environments are inherently single player by
only modeling the interaction of an agent with a fixed en-
vironment or they focus on a single aspect of reinforcement
learning such as continuous control or safety. Finally, learn-
ing environments may have restrictive licenses or depend on
closed source binaries.

This highlights the need for a RL environment that is not
only challenging from a learning standpoint and customiz-
able in terms of difficulty but also accessible for research
both in terms of licensing and in terms of required computa-
tional resources. Moreover, such an environment should ide-
ally provide the tools to a variety of current reinforcement
learning research topics such as the impact of stochasticity,
self-play, multi-agent setups and model-based reinforcement
learning, while also requiring smart decisions, tactics, and
strategies at multiple levels of abstraction.
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(a) Kickoff (b) Yellow card (c) Corner kick

Figure 2: The Football Engine is an advanced football simulator that supports all the major football rules such as (a) kickoffs
(b) goals, fouls, cards, (c) corner kicks, penalty kicks, and offside.

Contributions In this paper, we propose the Google Re-
search Football Environment, a novel open-source reinforce-
ment learning environment where agents learn to play one
of the world’s most popular sports: football (a.k.a. soccer).
Modeled after popular football video games, the Football
Environment provides a physics-based 3D football simula-
tion where agents have to control their players, learn how to
pass in between them and how to overcome their opponent’s
defense in order to score goals. This provides a challeng-
ing RL problem as football requires a natural balance be-
tween short-term control, learned concepts such as passing,
and high level strategy. As our key contributions, we
• provide the Football Engine, a highly-optimized game en-

gine that simulates the game of football,
• propose the Football Benchmarks, a versatile set of bench-

mark tasks of varying difficulties that can be used to com-
pare different algorithms,

• propose the Football Academy, a set of progressively
harder and diverse reinforcement learning scenarios,

• evaluate state-of-the-art algorithms on both the Football
Benchmarks and the Football Academy, providing an ex-
tensive set of reference results for future comparison,

• provide a simple API to completely customize and define
new football reinforcement learning scenarios, and

• showcase several promising research directions in this en-
vironment, e.g. the multi-player and multi-agent settings.

Motivation and Other Related Work

There are a variety of reinforcement learning environments
that have accelerated research in recent years. However, ex-
isting environments exhibit a variety of drawbacks that we
address with the Google Research Football Environment:

Easy to solve. With the recent progress in RL, many com-
monly used scenarios can now be solved to a reasonable de-
gree in just a few hours with well-established algorithms.
For instance, ∼50 commonly used Atari games in the Ar-
cade Learning Environment (Bellemare et al. 2013) are rou-
tinely solved to super-human level (Hessel et al. 2018). The
same applies to the DeepMind Lab (Beattie et al. 2016), a
navigation-focused maze environment that provides a num-
ber of relatively simple tasks with a first person viewpoint.

Computationally expensive. On the other hand, training
agents in recent video-game simulators often requires sub-
stantial computational resources that may not be available to
a large fraction of researchers due to combining hard games,
long episodes, and high-dimensional inputs (either in the
form of pixels, or hand-crafted representations). For exam-
ple, the StarCraft II Learning Environment (Vinyals et al.
2017) provides an API to Starcraft II, a well-known real-
time strategy video game, as well as to a few mini-games
which are centered around specific tasks in the game.

Lack of stochasticity. The real-world is not determinis-
tic which motivates the need to develop algorithms that can
cope with and learn from stochastic environments. Robots,
self-driving cars, or data-centers require robust policies that
account for uncertain dynamics. Yet, some of the most popu-
lar simulated environments – like the Arcade Learning Envi-
ronment – are deterministic. While techniques have been de-
veloped to add artificial randomness to the environment (like
skipping a random number of initial frames or using sticky
actions), this randomness may still be too structured and
easy to predict and incorporate during training (Machado
et al. 2018; Hausknecht and Stone 2015). It remains an
open question whether modern reinforcement learning ap-
proaches such as self-imitation generalize from the deter-
ministic setting to stochastic environments (Guo et al. 2018).

Lack of open-source license. Some advanced physics
simulators offer licenses that may be subjected to restrictive
use terms (Todorov, Erez, and Tassa 2012). Also, some envi-
ronments such as StarCraft require access to a closed-source
binary. In contrast, open-source licenses enable researchers
to inspect the underlying game code and to modify environ-
ments if required to test new research ideas.

Known model of the environment. Reinforcement learn-
ing algorithms have been successfully applied to board
games such as Backgammon (Tesauro 1995), Chess (Hsu
2004), or Go (Silver et al. 2016). Yet, current state-of-the-art
algorithms often exploit the fact that the rules of these games
(i.e., the model of the environment) are specific, known and
can be encoded into the approach. As such, this may make
it hard to investigate learning algorithms that should work in
environments that can only be explored through interactions.
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Single-player. In many available environments such as
Atari, one only controls a single agent. However, some mod-
ern real-world applications involve a number of agents un-
der either centralized or distributed control. The different
agents can either collaborate or compete, creating additional
challenges. A well-studied special case is an agent compet-
ing against another agent in a zero sum game. In this set-
ting, the opponent can adapt its own strategy, and the agent
has to be robust against a variety of opponents. Coopera-
tive multi-agent learning also offers many opportunities and
challenges, such as communication between agents, agent
behavior specialization, or robustness to the failure of some
of the agents. Multiplayer environments with collaborative
or competing agents can help foster research around those
challenges.

Other football environments. There are other available
football simulators, such as the RoboCup Soccer Simula-
tor (Kitano et al. 1995; 1997), and the DeepMind MuJoCo
Multi-Agent Soccer Environment (Liu et al. 2019). In con-
trast to these environments, the Google Research Football
Environment focuses on high-level actions instead of low-
level control of a physics simulation of robots (such as in the
RoboCup Simulation 3D League). Furthermore, it provides
many useful settings for reinforcement learning, e.g. the
single-agent and multi-agent settings as well as single-player
and multiplayer player modes. Google Research Football
also provides ways to adjust difficulty, both via a strength-
adjustable opponent and via diverse and customizable sce-
narios in Football Academy, and provides several specific
features for reinforcement learning research, e.g., OpenAI
gym compatibility, different rewards, different representa-
tions, and the option to turn on and off stochasticity.

Other related work. Designing rich learning scenarios is
challenging, and resulting environments often provide a use-
ful playground for research questions centered around a spe-
cific reinforcement learning set of topics. For instance, the
DeepMind Control Suite (Tassa et al. 2018) focuses on con-
tinuous control, the AI Safety Gridworlds (Leike et al. 2017)
on learning safely, whereas the Hanabi Learning Environ-
ment (Bard et al. 2019) proposes a multi-agent setup. As a
consequence, each of these environments are better suited
for testing algorithmic ideas involving a limited but well-
defined set of research areas.

Football Engine

The Football Environment is based on the Football Engine,
an advanced football simulator built around a heavily cus-
tomized version of the publicly available GameplayFootball
simulator (Schuiling 2017). The engine simulates a com-
plete football game, and includes the most common football
aspects, such as goals, fouls, corners, penalty kicks, or off-
sides (see Figure 2 for a few examples).

Supported Football Rules. The engine implements a full
football game under standard rules, with 11 players on each
team. These include goal kicks, side kicks, corner kicks,

both yellow and red cards, offsides, handballs and penalty
kicks. The length of the game is measured in terms of the
number of frames, and the default duration of a full game
is 3000 (10 frames per second for 5 minutes). The length of
the game, initial number and position of players can also be
edited in customized scenarios (see Football Academy be-
low). Players on a team have different statistics1, such as
speed or accuracy and get tired over time.

Opponent AI Built-in Bots. The environment controls
the opponent team by means of a rule-based bot, which
was provided by the original GameplayFootball simulator
(Schuiling 2017). The difficulty level θ can be smoothly
parameterized between 0 and 1, by speeding up or slow-
ing down the bot reaction time and decision making. Some
suggested difficulty levels correspond to: easy (θ = 0.05),
medium (θ = 0.6), and hard (θ = 0.95). For self-play, one
can replace the opponent bot with any trained model.

Moreover, by default, our non-active players are also con-
trolled by another rule-based bot. In this case, the behav-
ior is simple and corresponds to reasonable football actions
and strategies, such as running towards the ball when we are
not in possession, or move forward together with our active
player. In particular, this type of behavior can be turned off
for future research on cooperative multi-agents if desired.

State & Observations. We define as state the complete
set of data that is returned by the environment after actions
are performed. On the other hand, we define as observation
or representation any transformation of the state that is pro-
vided as input to the control algorithms. The definition of
the state contains information such as the ball position and
possession, coordinates of all players, the active player, the
game state (tiredness levels of players, yellow cards, score,
etc) and the current pixel frame.

We propose three different representations. Two of them
(pixels and SMM) can be stacked across multiple consecu-
tive time-steps (for instance, to determine the ball direction),
or unstacked, that is, corresponding to the current time-step
only. Researchers can easily define their own representa-
tions based on the environment state by creating wrappers
similar to the ones used for the observations below.

Pixels. The representation consists of a 1280× 720 RGB
image corresponding to the rendered screen. This includes
both the scoreboard and a small map in the bottom middle
part of the frame from which the position of all players can
be inferred in principle.

Super Mini Map. The SMM representation consists of
four 72× 96 matrices encoding information about the home
team, the away team, the ball, and the active player respec-
tively. The encoding is binary, representing whether there is
a player or ball in the corresponding coordinate.

Floats. The floats representation provides a compact en-
coding and consists of a 115-dimensional vector summariz-
ing many aspects of the game, such as players coordinates,
ball possession and direction, active player, or game mode.

1Although players differ within a team, both teams have exactly
the same set of players, to ensure a fair game.
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Actions. The actions available to an individual agent
(player) are displayed in Table 1. They include standard
move actions (in 8 directions), and different ways to kick
the ball (short and long passes, shooting, and high passes
that can’t be easily intercepted along the way). Also, play-
ers can sprint (which affects their level of tiredness), try to
intercept the ball with a slide tackle or dribble if they posses
the ball. We experimented with an action to switch the ac-
tive player in defense (otherwise, the player with the ball
must be active). However, we observed that policies tended
to exploit this action to return control to built-in AI behav-
iors for non-active players, and we decided to remove it from
the action set. We do not implement randomized sticky ac-
tions. Instead, once executed, moving and sprinting actions
are sticky and continue until an explicit stop action is per-
formed (Stop-Moving and Stop-Sprint respectively).

Rewards. The Football Engine includes two reward func-
tions that can be used out-of-the-box: SCORING and
CHECKPOINT. It also allows researchers to add custom re-
ward functions using wrappers which can be used to inves-
tigate reward shaping approaches.

SCORING corresponds to the natural reward where each
team obtains a +1 reward when scoring a goal, and a −1 re-
ward when conceding one to the opposing team. The SCOR-
ING reward can be hard to observe during the initial stages
of training, as it may require a long sequence of consecu-
tive events: overcoming the defense of a potentially strong
opponent, and scoring against a keeper.

CHECKPOINT is a (shaped) reward that specifically ad-
dresses the sparsity of SCORING by encoding the domain
knowledge that scoring is aided by advancing across the
pitch: It augments the SCORING reward with an additional
auxiliary reward contribution for moving the ball close to
the opponent’s goal in a controlled fashion. More specifi-
cally, we divide the opponent’s field in 10 checkpoint re-
gions according to the Euclidean distance to the opponent
goal. Then, the first time the agent’s team possesses the ball
in each of the checkpoint regions, the agent obtains an ad-
ditional reward of +0.1. This extra reward can be up to +1,
i.e., the same as scoring a single goal. Any non-collected
checkpoint reward is also added when scoring in order to
avoid penalizing agents that do not go through all the check-
points before scoring (i.e., by shooting from outside a check-
point region). Finally, checkpoint rewards are only given
once per episode.

Accessibility. Researchers can directly inspect the game
by playing against each other or by dueling their agents.
The game can be controlled by means of both keyboards and
gamepads. Moreover, replays of several rendering qualities
can be automatically stored while training, so that it is easy
to inspect the policies agents are learning.

Stochasticity. In order to investigate the impact of ran-
domness, and to simplify the tasks when desired, the envi-
ronment can run in either stochastic or deterministic mode.
The former, which is enabled by default, introduces several

Figure 3: Number of steps per day versus number of con-
current environments for the Football Engine on a hexa-core
Intel Xeon W-2135 CPU with 3.70GHz.

types of randomness: for instance, the same shot from the
top of the box may lead to a different number of outcomes.
In the latter, playing a fixed policy against a fixed opponent
always results in the same sequence of actions and states.

API & Sample Usage. The Football Engine is out of the
box compatible with the widely used OpenAI Gym API
(Brockman et al. 2016). Below we show example code that
runs a random agent on our environment.

import gfootball.env as football_env

env = football_env.create_environment(
env_name=’11_vs_11_stochastic’,
render=True)

env.reset()
done = False
while not done:

action = env.action_space.sample()
observation, reward, done, info = \

env.step(action)

Technical Implementation & Performance. The Foot-
ball Engine is written in highly optimized C++ code, allow-
ing it to be run on commodity machines both with GPU and
without GPU-based rendering enabled. This allows it to ob-
tain a performance of approximately 140 million steps per
day on a single hexacore machine (see Figure 3).

Table 1: Action Set

Top Bottom Left Right
Top-Left Top-Right Bottom-Left Bottom-Right

Short Pass High Pass Long Pass Shot
Keeper Rush Sliding Dribble Stop-Dribble

Sprint Stop-Moving Stop-Sprint Do-Nothing
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Figure 4: Average Goal Difference on the Football Benchmarks for IMPALA, PPO and Ape-X DQN with both the SCORING
and CHECKPOINT rewards. Error bars represent 95% bootstrapped confidence intervals. Results for GRF v1.x

Football Benchmarks

The Football Engine is an efficient, flexible and highly cus-
tomizable learning environment with many features that lets
researchers try a broad range of new ideas. To facilitate fair
comparisons of different algorithms and approaches in this
environment, we also provide a set of pre-defined bench-
mark tasks that we call the Football Benchmarks. Similar
to the Atari games in the Arcade Learning Environment, in
these tasks, the agent has to interact with a fixed environment
and maximize its episodic reward by sequentially choosing
suitable actions based on observations of the environment.

The goal in the Football Benchmarks is to win a full
game2 against the opponent bot provided by the engine. We
provide three versions of the Football Benchmarks that only
differ in the strength of the opponent AI as described in the
last section: the easy, medium, and hard benchmarks. This
allows researcher to test a wide range of research ideas under
different computational constraints such as single machine
setups or powerful distributed settings. We expect that these
benchmark tasks will be useful for investigating current sci-
entific challenges in reinforcement learning such as sample-
efficiency, sparse rewards, or model-based approaches.

Experimental Setup

As a reference, we provide benchmark results for three state-
of-the-art reinforcement learning algorithms: PPO (Schul-
man et al. 2017) and IMPALA (Espeholt et al. 2018) which
are popular policy gradient methods, and Ape-X DQN (Hor-
gan et al. 2018), which is a modern DQN implementation.
We run PPO in multiple processes on a single machine,
while IMPALA and DQN are run on a distributed cluster
with 500 and 150 actors respectively.

In all benchmark experiments, we use the stacked Super
Mini Map representation and the same network architecture.
We consider both the SCORING and CHECKPOINT rewards.
The tuning of hyper-parameters is done using easy scenario,
and we follow the same protocol for all algorithms to ensure
fairness of comparison. After tuning, for each of the six con-
sidered settings (three Football Benchmarks and two reward
functions), we run five random seeds and average the results.

2We define an 11 versus 11 full game to correspond to 3000
steps in the environment, which amounts to 300 seconds if rendered
at a speed of 10 frames per second.

For the technical details of the training setup and the used ar-
chitecture and hyperparameters, we refer to the Appendix.

Results

The experimental results3 for the Football Benchmarks are
shown in Figure 4. It can be seen that the environment
difficulty significantly affects the training complexity and
the average goal difference. While the easy benchmark can
be solved by all methods relatively quickly, the medium and
especially hard benchmarks are significantly more difficult.
The medium benchmark can be beaten by IMPALA with
500M training steps (albeit only barely with the SCORING
reward) while PPO and Ape-X DQN in the considered
setting do not appear to achieve a positive reward. The
hard benchmark is even harder with only IMPALA with the
CHECKPOINT reward and 500M training steps achieving a
positive score. We observe that the CHECKPOINT reward
function appears to be helpful for speeding up the training
for policy gradient methods but does not seem to benefit
Ape-X DQN as the performance is similar with both the
CHECKPOINT and SCORING reward functions. We conclude
that the Football Benchmarks provide interesting reference
problems for research and that there remains a large head-
room for progress, in particular in terms of performance and
sample efficiency on the harder benchmarks.

Football Academy

Training agents for the Football Benchmarks can be chal-
lenging. To allow researchers to quickly iterate on new
research ideas, we also provide the Football Academy: a di-
verse set of scenarios of varying difficulty. These 11 scenar-
ios (see Figure 5 for a selection) include several variations
where a single player has to score against an empty goal
(Empty Goal Close, Empty Goal, Run to Score), a number of
setups where the controlled team has to break a specific de-
fensive line formation (Run to Score with Keeper, Pass and
Shoot with Keeper, 3 vs 1 with Keeper, Run, Pass and Shoot
with Keeper) as well as situations commonly found in foot-
ball games (Corner, Easy Counter-Attack, Hard Counter-
Attack). Using a simple API, researchers can also easily
define their own scenarios and train agents to solve them.

3All results in this paper are for the versions v1.x of the GRF.
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(a) Empty Goal Close (b) Run to Score (c) 11 vs 11 with Lazy Opponents

(d) 3 vs 1 with Keeper (e) Pass and Shoot (f) Easy Counter-attack

Figure 5: Example of Football Academy scenarios.

Experimental Results

Based on the same experimental setup as for the Football
Benchmarks, we provide experimental results for SCOR-
ING reward4 for both PPO and IMPALA for the Football
Academy scenarios in Figures 6 and 7. We note that the max-
imum average scoring performance is 1 (as episodes end
in the Football Academy scenarios after scoring) and that
scores may be negative as agents may score own goals and
as the opposing team can score in the Corner scenario.

The experimental results indicate that the Football
Academy provides a set of diverse scenarios of different dif-
ficulties suitable for different computational constraints. The
scenarios where agents have to score against the empty goal
(Empty Goal Close, Empty Goal, Run to Score) appear to be
very easy and can be solved both PPO and IMPALA with
both reward functions using only 1M steps. As such, these
scenarios can be considered “unit tests” for reinforcement
learning algorithms where one can obtain reasonable results
within minutes or hours instead of days or even weeks. The
remainder of the tasks includes scenarios for which both
PPO and IMPALA appear to require between 5M to 50M
steps for progress to occur (with minor differences between
the SCORING and CHECKPOINT) rewards). These harder
tasks may be used to quickly iterate on new research ideas on
single machines before applying them to the Football Bench-
marks (as experiments should finish within hours or days).
Finally, the CORNER appears to be the hardest scenario (pre-
sumably as one has to face a full squad and the opponent is
also allowed to score).

Promising Research Directions
In this section we briefly discuss a few initial experiments
related to three research topics which have recently become

4For CHECKPOINT reward results, please see the Appendix in
https://arxiv.org/abs/1907.11180

quite active in the reinforcement learning community: self-
play training, multi-agent learning, and representation learn-
ing for downstream tasks. This highlights the research po-
tential and flexibility of the Football Environment.

Multiplayer Experiments

The Football Environment provides a way to train against
different opponents, such as built-in AI or other trained
agents. Note this allows, for instance, for self-play schemes.
When a policy is trained against a fixed opponent, it may ex-
ploit its particular weaknesses and, thus, it may not general-
ize well to other adversaries. We conducted an experiment to
showcase this in which a first model A was trained against a
built-in AI agent on the standard 11 vs 11 medium scenario.
Then, another agent B was trained against a frozen version
of agent A on the same scenario. While B managed to beat
A consistently, its performance against built-in AI was poor.
The numerical results showing this lack of transitivity across
the agents are presented in Table 2.

Table 2: Average goal difference ± one standard deviation
across 5 repetitions of the experiment.

A vs built-in AI 4.25± 1.72
B vs A 11.93± 2.19
B vs built-in AI −0.27± 0.33

Multi-Agent Experiments

The environment also allows for controlling several players
from one team simultaneously, as in multi-agent reinforce-
ment learning. We conducted experiments in this setup with
the 3 versus 1 with Keeper scenario from Football Academy.
We varied the number of players that the policy controls
from 1 to 3, and trained with Impala.
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Figure 6: Average Goal Difference on Football Academy for IMPALA with SCORING reward.

Figure 7: Average Goal Difference on Football Academy for PPO with SCORING reward.

Table 3: Scores achieved by the policy controlling 1, 2 or 3
players respectively, after 5M and 50M steps of training.

Players controlled 5M steps 50M steps

1 0.73± 0.06 0.79± 0.05
2 0.04± 0.04 0.90± 0.04
3 0.02± 0.02 0.93± 0.05

As expected, training is initially slower when we control
more players, but the policies seem to eventually learn more
complex behaviors and achieve higher scores. Numerical re-
sults are presented in Table 3.

Representation Experiments

Training the agent directly from raw observations, such as
pixels, is an exciting research direction. While it was suc-
cessfully done for Atari, it is still an open challenge for most
of the more complex and realistic environments. In this ex-
periment, we compare several representations available in
the Football Engine. Pixels gray denotes the raw pixels from
the game, which are resized to 72 × 96 resolution and con-
verted to grayscale. While pixel representation takes signif-
icantly longer time to train, as shown in Table 4, learning

Table 4: Average goal advantages per representation.

Representation 100M steps 500M steps

Floats 1.56± 0.24 5.31± 2.59
Pixels gray −0.43± 0.09 8.64± 0.62
SMM 7.57± 1.06 10.04± 1.43
SMM stacked 6.84± 1.02 12.19± 1.12

eventually takes place (and it actually outperforms hand-
picked extensive representations like ‘Floats’). The results
were obtained using Impala with Checkpoint reward on the
easy 11 vs. 11 benchmark.

Conclusions

In this paper, we presented the Google Research Football
Environment, a novel open-source reinforcement learning
environment for the game of football. It is challenging and
accessible, easy to customize, and it has specific function-
ality geared towards research in reinforcement learning.
We provided the Football Engine, a highly optimized
C++ football simulator, the Football Benchmarks, a set of
reference tasks to compare different reinforcement learning
algorithms, and the Football Academy, a set of progressively
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harder scenarios. We expect that these components will
be useful for investigating current scientific challenges
like self-play, sample-efficient RL, sparse rewards, and
model-based RL.

Acknowledgement

We wish to thank Lucas Beyer, Nal Kalchbrenner, Tim Sal-
imans and the rest of the Google Brain team for helpful dis-
cussions, comments, technical help and code contributions.
We would also like to thank Bastiaan Konings Schuiling,
who authored and open-sourced the original version of this
game.

Hyperparameters & Architectures

For our experiments, we used three algorithms (IMPALA,
PPO, Ape-X DQN) that are described below. The model ar-
chitecture we use is inspired by Large architecture from (Es-
peholt et al. 2018) and is depicted in Figure 8. Based on the
”Representation Experiments”, we selected the stacked Su-
per Mini Map as the default representation used in all Foot-
ball Benchmarks and Football Academy experiments. In ad-
dition we have three other representations.

For each of the six considered settings (three Football
Benchmarks and two reward functions), we run five random
seeds for 500 million steps each. For Football Academy, we
run five random seeds in all 11 scenarios for 50 million steps.

Hyperparameter search For each of IMPALA, PPO and
Ape-X DQN, we performed two hyperparameter searches:
one for SCORING reward and one for CHECKPOINT reward.
For the search, we trained on easy difficulty. Each of 100 pa-
rameter sets was repeated with 3 random seeds. For each al-
gorithm and reward type, the best parameter set was decided
based on average performance – for IMPALA and Ape-X
DQN after 500M, for PPO after 50M. After the search, each
of the best parameter sets was used to run experiments with
5 different random seeds on all scenarios. Ranges that we
used for the procedure can be found in Table 7 for IMPALA,
Table 8 for PPO and Table 9 for DQN.

IMPALA Importance Weighted Actor-Learner Architec-
ture (Espeholt et al. 2018) is a highly scalable algorithm that
decouples acting from learning. Individual workers commu-
nicate trajectories of experience to the central learner, in-
stead of sending gradients with respect to the current policy.
In order to deal with off-policy data, IMPALA introduces
an actor-critic update for the learner called V-trace. Hyper-
parameters for IMPALA are presented in Table 7.

PPO Proximal Policy Optimization (Schulman et al.
2017) is an online policy gradient algorithm which opti-
mizes the clipped surrogate objective. In our experiments we
use the implementation from the OpenAI Baselines (Dhari-
wal et al. 2017), and run it over 16 parallel workers. Hyper-
parameters for PPO are presented in Table 8.
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Figure 8: Architecture used for IMPALA and PPO experi-
ments. For Ape-X DQN, a similar network is used but the
outputs are Q-values.

Ape-X DQN Q-learning algorithms are popular among re-
inforcement learning researchers. Accordingly, we include a
member of the DQN family in our comparison. In particular,
we chose Ape-X DQN (Horgan et al. 2018), a highly scal-
able version of DQN. Like IMPALA, Ape-X DQN decou-
ples acting from learning but, contrary to IMPALA, it uses a
distributed replay buffer and a variant of Q-learning consist-
ing of dueling network architectures (Wang et al. 2016) and
double Q-learning (Van Hasselt, Guez, and Silver 2016).

Several hyper-parameters were aligned with IMPALA.
These includes unroll length and n-step return, the number
of actors and the discount factor γ. For details, please refer
to the Table 9.

Table 5: Benchmark results for SCORING reward.

MODEL EASY MEDIUM HARD

PPO @20M 1.34± 0.94 −0.71± 0.07 −1.11± 0.13
PPO @50M 2.75± 1.31 −0.49± 0.14 −1.08± 0.19
IMPALA @20M −0.35± 0.08 −0.79± 0.06 −1.16± 0.11
IMPALA @500M 7.79± 2.05 0.61± 0.58 −0.39± 0.12
DQN @20M −0.56± 0.17 −1.14± 0.34 −1.39± 0.13
DQN @500M 6.52± 0.37 −0.64± 0.21 −1.07± 0.14

Table 6: Benchmark results for CHECKPOINT reward.

MODEL EASY MEDIUM HARD

PPO @20M 3.26± 1.57 −0.29± 0.17 −0.81± 0.11
PPO @50M 5.53± 1.82 −0.25± 0.37 −0.81± 0.28
IMPALA @20M −0.52± 0.05 −0.94± 0.13 −1.34± 0.05
IMPALA @500M 12.40± 0.63 4.49± 0.51 1.66± 0.24
DQN @20M −0.49± 0.66 −1.35± 0.22 −1.63± 0.34
DQN @500M 6.52± 0.45 −0.09± 0.19 −0.47± 0.05
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Table 7: IMPALA: ranges used during the hyper-parameter search and the final values used for experiments with scoring and
checkpoint rewards.

Parameter Range Best - Scoring Best - Checkpoint

Action Repetitions 1 1 1
Batch size 128 128 128
Discount Factor (γ) {.99, .993, .997, .999} .993 .993
Entropy Coefficient Log-uniform (1e−6, 1e−3) 0.00000521 0.00087453
Learning Rate Log-uniform (1e−5, 1e−3) 0.00013730 0.00019896
Number of Actors 500 500 500
Optimizer Adam Adam Adam
Unroll Length/n-step {16, 32, 64} 32 32
Value Function Coefficient .5 .5 .5

Table 8: PPO: ranges used during the hyper-parameter search and the final values used for experiments with scoring and
checkpoint rewards.

Parameter Range Best - Scoring Best - Checkpoint

Action Repetitions 1 1 1
Clipping Range Log-uniform (.01, 1) .115 .08
Discount Factor (γ) {.99, .993, .997, .999} .997 .993
Entropy Coefficient Log-uniform (.001, .1) .00155 .003
GAE (λ) .95 .95 .95
Gradient Norm Clipping Log-uniform (.2, 2) .76 .64
Learning Rate Log-uniform (.000025, .0025) .00011879 .000343
Number of Actors 16 16 16
Optimizer Adam Adam Adam
Training Epochs per Update {2, 4, 8} 2 2
Training Mini-batches per Update {2, 4, 8} 4 8
Unroll Length/n-step {16, 32, 64, 128, 256, 512} 512 512
Value Function Coefficient .5 .5 .5

Table 9: DQN: ranges used during the hyper-parameter search and the final values used for experiments with scoring and
checkpoint rewards.

Parameter Range Best - Scoring Best - Checkpoint

Action Repetitions 1 1 1
Batch Size 512 512 512
Discount Factor (γ) {.99, .993, .997, .999} .999 .999
Evaluation ε .01 .01 .01
Importance Sampling Exponent {0., .4, .5, .6, .8, 1.} 1. 1.
Learning Rate Log-uniform (1e−7, 1e−3) .00001475 .0000115
Number of Actors 150 150 150
Optimizer Adam Adam Adam
Replay Priority Exponent {0., .4, .5, .6, .7, .8} .0 .8
Target Network Update Period 2500 2500 2500
Unroll Length/n-step {16, 32, 64, 128, 256, 512} 16 16

Numerical Results for the Football
Benchmarks

In this section we provide for comparison the means and std
values of 5 runs for all algorithms in Football Benchmarks.
Table 5 contains the results for the runs with SCORING re-
ward while Table 6 contains the results for the runs with
CHECKPOINT reward. Those numbers were presented in the

main paper in Figure 4.
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