
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Semi-Supervised Learning for Maximizing the Partial AUC

Tomoharu Iwata, Akinori Fujino, Naonori Ueda
NTT Communication Science Laboratories, Kyoto, Japan

{tomoharu.iwata.gy, akinori.fujino.yh, naonori.ueda.fr}@hco.ntt.co.jp

Abstract

The partial area under a receiver operating characteristic
curve (pAUC) is a performance measurement for binary clas-
sification problems that summarizes the true positive rate with
the specific range of the false positive rate. Obtaining classi-
fiers that achieve high pAUC is important in a wide variety
of applications, such as cancer screening and spam filtering.
Although many methods have been proposed for maximizing
the pAUC, existing methods require many labeled data for
training. In this paper, we propose a semi-supervised learn-
ing method for maximizing the pAUC, which trains a classi-
fier with a small amount of labeled data and a large amount
of unlabeled data. To exploit the unlabeled data, we derive
two approximations of the pAUC: the first is calculated from
positive and unlabeled data, and the second is calculated from
negative and unlabeled data. A classifier is trained by maxi-
mizing the weighted sum of the two approximations of the
pAUC and the pAUC that is calculated from positive and
negative data. With experiments using various datasets, we
demonstrate that the proposed method achieves higher test
pAUCs than existing methods.

1 Introduction

The area under a receiver operating characteristic (ROC)
curve (AUC) is widely used for performance measure-
ment with binary classification problems (Bradley 1997;
Huang and Ling 2005). The ROC curve is the true positive
rate (TPR) as a function of the false positive rate (FPR).
By maximizing the AUC, we can obtain a classifier that
achieves high average TPRs over all FPR values from zero
to one (Brefeld and Scheffer 2005; Wang and Tang 2009;
Ding et al. 2015; Ying, Wen, and Lyu 2016; Han and Zhao
2010; Zhou, Lai, and Yen 2009; Zhao et al. 2011).

In many applications, we would like to achieve a high
TPR with a specific FPR range. For example, in cancer
screening applications, maintaining a low FPR is important
if we are to eliminate unnecessary and costly biopsies (Baker
and Pinsky 2001). In a spam detection system, we can accept
only a low FPR if we are to prevent legitimate emails from
being identified as spam. In such applications, a partial AUC
(pAUC) is more appropriate than an AUC. The pAUC is the
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partial area under the ROC curve with a specific FPR range
as shown in Figure 1(a). Many methods for maximizing
the pAUC have been proposed (Komori and Eguchi 2010;
Ricamato and Tortorella 2011; Narasimhan and Agarwal
2013a; 2013b; Ueda and Fujino 2018; Wang and Chang
2010). However, existing pAUC maximization methods re-
quire many labeled data for training, which are expensive to
prepare.

In this paper, we propose a semi-supervised learning
method for maximizing the pAUC to achieve a high pAUC
with a small amount of labeled data and a large amount of
unlabeled data. Unlabeled data are usually easier to prepare
than labeled data. To exploit unlabeled data, we define the
unlabeled positive rate (UPR), which is the probability that
the decision function score of unlabeled data is higher than a
threshold. We then derive two approximations of the pAUC
from the partial area under the curves of the UPR and the
TPR or FPR: the first is calculated from positive and unla-
beled data, and the second is calculated from negative and
unlabeled data.

A classifier is trained by maximizing the weighted sum
of the two approximations of the pAUC and the pAUC that
is calculated from positive and negative data. For classifiers,
the proposed method can use any differentiable functions,
such as logistic regression and neural networks. Although
several semi-supervised methods for AUC maximization
have been proposed (Fujino and Ueda 2016; Sakai, Niu, and
Sugiyama 2018; Kiryo et al. 2017), they are inapplicable to
pAUC maximization. The main contributions of this paper
are as follows:

1. We derive two approximations of the pAUC that are cal-
culated using unlabeled data (Section 4).

2. We propose a semi-supervised learning method for max-
imizing the pAUC based on the approximations of the
pAUC (Section 5). Our work is the first attempt for semi-
supervised pAUC maximization to our knowledge.

3. We empirically demonstrate that the proposed method
performs better than existing supervised and semi-
supervised methods using various datasets for anomaly
detection (Section 6).
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2 Preliminaries

Let x ∈ RD be a D-dimensional feature vector, and y ∈
{±1} be a binary class label. Decision function s : RD → R
outputs a score for classification, where the score is used to
estimate the class label by, ŷ = sign(s(x)−h), where h is a
threshold and sign(·) is the sign function; sign(A) = +1
if A ≥ 0 and sign(A) = −1 otherwise. The true posi-
tive rate of threshold h is defined by the probability that the
score of positive data is higher than threshold h, TPR(h) =∫∞
−∞ fP(s)I(s > h)ds, where fP(s) is the score distribution

of positive data, and I(·) is the indicator function; I(A) = 1
if A is true and I(A) = 0 otherwise. Similarly, the false
positive rate of threshold h is defined by the probability
that the score of negative data is higher than threshold h,
FPR(h) =

∫∞
−∞ fN(s)I(s > h)ds, where fN(s) is the score

distribution of negative data. The AUC is the area under the
curve of TPR(h) against FPR(h) with varying threshold h,
and it is calculated by

AUC =

∫ 1

0

TPR(FPR−1(u))du

=

∫ ∞

−∞

∫ ∞

−∞
fP(s)fN(s

′)I(s > s′)dsds′, (1)

where FPR−1(u) = inf{h ∈ R|FPR(h) ≤ u} (Cortes
and Mohri 2004). The AUC is the probability that scores
sampled from the positive distribution are higher than those
from the negative distribution.

The partial AUC (pAUC) between α and β, where 0 ≤
α < β ≤ 1, is the normalized partial area under the curve
of TPR against FPR where the FPR is between α and β as
follows,

pAUC(α, β) =
1

β − α

∫ β

α

TPR(FPR−1(u))du

=
1

β − α

∫ FPR−1(α)

FPR−1(β)

∫ ∞

−∞
fP(s)fN(s

′)I(s > s′)dsds′.

= E[I(s(xP) > s(xN))], (2)

where E[·] represents the expectation, xP is a sample from
the positive data distribution, and xN is a sample from the
negative data distribution with the FPR between α and β.
Figure 1(b) illustrates how the pAUC is calculated using
positive and negative data.

Given a set of positive samples P = {xP
m}MP

m=1 and a set
of negative samples N = {xN

m}MN
m=1, an empirical pAUC is

calculated by

p̂AUC(α, β) =
1

(β − α)MPMN

×
∑

xP
m∈P

[
(jα − αMN)I(s(x

P
m) > s(xN

(jα)))

+

jβ∑
j=jα+1

I(s(xP
m) > s(xN

(j)))

+ (βMN − jβ)I(s(x
P
m) > s(xN

(jβ+1)))
]
, (3)

(a) (b)

Figure 1: (a) pAUC(α, β): Partial area under the curve of
the true positive rate against the false positive rate between
α and β. (b) pAUC(α, β) is calculated by the probability
that the score of a positive sample is higher than that of a
negative sample that lies between α and β when sorted by
its score.

where jα = �αMN�, jβ = �βMN	, and xN
(j) denotes the

negative sample in N ranked in the jth position among
negatives in a descending order of scores s(x) (Dodd and
Pepe 2003; Narasimhan and Agarwal 2013a). The empiri-
cal pAUC is the empirical probability that positive samples
have higher scores than negative samples that are ranked be-
tween jα and jβ . The computational complexity of calculat-
ing Eq.(3) is O(MN logMN + (β − α)MPMN), where the
first term is for sorting MN negative samples, and the second
term is for comparing MP positive samples and (β−α)MN

negative samples in the second term.

3 Problem formulation

Assume that we are given a set of positive samples P =
{xP

m}MP
m=1, a set of negative samples N = {xN

m}MN
m=1, and a

set of unlabeled samples U = {xU
m}MU

m=1. We would like to
obtain a decision function that has a high pAUC with given
α and β for unseen samples.

We assume that the positive ratio of unlabeled samples
θP is known. When labeled and unlabeled data are gen-
erated from the same distribution p(x, y), θP can be eas-
ily estimated by using the empirical positive probability
with the labeled data. When labeled and unlabeled data
are generated from different distributions, θP can be es-
timated by using methods described in (Saerens, Latinne,
and Decaestecker 2002; Iyer, Nath, and Sarawagi 2014;
Du Plessis and Sugiyama 2014).

4 Partial AUC with unlabeled data

In this section, we derive two approximations of the pAUC
that are calculated using unlabeled data. Intuitively speak-
ing, we sort unlabeled data by their scores, consider unla-
beled data with specific ranges as positive or negative, and
approximate the pAUC using the estimated positive or neg-
ative data. Figure 2 shows an overview of the calculation
of the two approximated pAUCs that use positive, negative
and unlabeled data, which is explained in detail in this sec-
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(a) (b)

Figure 2: (a) Approximated pAUC with positive and unla-
beled data is calculated by the probability that the score of
a positive sample is higher than that of an unlabeled sam-
ple between θP + αθN and θP + βθN when sorted by its
score, where θP is the positive probability of unlabeled data,
θN = 1 − θP is the negative probability of unlabeled data.
(b) Approximated pAUC with negative and unlabeled data is
calculated by the probability that the score of an unlabeled
sample between 0 and θP is higher than that of a negative
sample between α and β.

tion as follows: We first define the unlabeled positive rate
(UPR) and the classifier with the threshold using the UPR
in Section 4.1. Then, in Section 4.2, we derive an approxi-
mated pAUC that is calculated using positive and unlabeled
data by considering the partial area under the curve of the
TPR against the UPR. Similarly, in Section 4.3, we derive
another approximated pAUC that is calculated using nega-
tive and unlabeled data by considering the partial area under
the curve of the UPR against the FPR.

4.1 Unlabeled positive rate

We newly define unlabeled positive rate of threshold h,
UPR(h), as the probability that the score of unlabeled data
is higher than threshold h in a similar way to the TRP and
FPR as follows,

UPR(h) =

∫ ∞

−∞
fU(s)I(s > h)ds, (4)

where fU(s) = θPfP(s) + θNfN(s) is the score distribution
of unlabeled data, θP is the positive probability of unlabeled
data, θN = 1 − θP is the negative probability of unlabeled
data, and 0 ≤ θP, θN ≤ 1.

Given score s, we estimate the class label of unlabeled
data with threshold h = UPR−1(θP) as follows,

ŷ(s) =

{
+1 s > UPR−1(θP),

−1 otherwise,
(5)

where UPR−1(θ) = inf{h ∈ R|UPR(h) ≤ θ}, and
UPR−1(θP) is the threshold when the UPR is θP. With this
threshold, the probability that unlabeled data are classified as
positive becomes θP from the definition of the UPR in Eq.(4)
as follows,

∫∞
−∞ fU(s)I(ŷ(s) = 1)ds =

∫∞
−∞ fU(s)I(s >

Figure 3: Top: Unlabeled score distribution fU(s). Middle:
By splitting the unlabeled score distribution at threshold
h = UPR−1(θP), we obtain the estimated positive score
distribution, f̂P(s) (red), and the estimated negative score
distribution, f̂N(s) (blue). Bottom: Unlabeled positive rate.

UPR−1(θP))ds = θP. When the classifier in Eq.(5) is as-
sumed, unlabeled data with scores higher than the threshold,
s > UPR−1(θP), are classified as positive, and unlabeled
data with scores lower than the threshold s ≤ UPR−1(θP),
are classified as negative. Therefore, with (5), we obtain esti-
mates of the positive and negative score distributions, f̂P(s)
and f̂N(s), by the split of the score distribution of the unla-
beled data fU(s) at s = UPR−1(θP) as follows,

fU(s) ≈
{
θPf̂P(s) if s > UPR−1(θP),

θNf̂N(s) otherwise,
(6)

which is illustrated in the top and middle of Figure 3.
Since the area of the unlabeled score distribution fU(s)

between UPR−1(θP) and UPR−1(θP + αθN) is αθN as in
the middle of Figure 3, the area of the estimated negative
score distribution f̂N(s) ≈ fU(s)

θN
between UPR−1(θP) and

UPR−1(θP + αθN) is α. In addition, there are no estimated
negative data f̂N(s) = 0 if s > UPR−1(θP) from Eq.(6).
Therefore, the score when the UPR is θP + αθN is the same
as the score when the estimated FPR is α as follows,

UPR−1(θP + αθN) = F̂PR
−1

(α), (7)

where F̂PR is the false positive rate with an estimated neg-
ative score distribution f̂N(s). Similarly, the score when the
UPR is θP + βθN is the same as the score when the FPR is
β as follows,

UPR−1(θP + βθN) = F̂PR
−1

(β). (8)

The relationship between the estimated negative score distri-
bution and the UPR is illustrated in the middle and bottom of
Figure 3. With Eqs.(7) and (8), the unlabeled data between
θP + αθN and θP + βθN are assumed to be negative data
between α and β.
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(a) (b)

Figure 4: (a) pAUCPU(θP + αθN, θP + βθN): Partial area
under the curve of the true positive rate against the unla-
beled positive rate between θP + αθN and θP + βθN. (b)
pAUCNU((0, θP), (α, β)): Partial area under the curve of
the unlabeled positive rate against the false positive rate be-
tween α and β of the false positive rate and between 0 and
θP of the unlabeled positive rate.

4.2 Partial AUC with positive and unlabeled data

We define pAUCPU(α
′, β′), which is the normalized par-

tial area under the curve of TPR(h) against UPR(h) with
varying threshold h where UPR(h) is between α′ and β′, as
follows,

pAUCPU(α
′, β′) =

1

β′ − α′

×
∫ UPR−1(α′)

UPR−1(β′)

∫ ∞

−∞
fP(s)fU(s

′)I(s > s′)dsds′, (9)

which is calculated with positive and unlabeled distribu-
tions. Then, the partial area between α′ = θP + αθN and
β′ = θP + βθN becomes an approximation of the pAUC as
follows,

pAUCPU(θP + αθN, θP + βθN) =
1

(β − α)θN

×
∫ UPR−1(θP+αθN)

UPR−1(θP+βθN)

∫ ∞

−∞
fP(s)fU(s

′)I(s > s′)dsds′

≈
∫

̂FPR
−1

(α)

̂FPR
−1

(β)

∫ ∞

−∞
fP(s)θNf̂N(s

′)I(s > s′)dsds′

× 1

(β − α)θN
≈ pAUC(α, β), (10)

where we used Eqs.(7), (8) and fU(s) ≈ θNf̂N(s) if
s ≤ UPR−1(θP) in Eq.(6). An example of pAUCPU(θP +
αθN, θP + βθN) is shown in Figure 4(a). pAUCPU(θP +
αθN, θP + βθN) is the probability that scores sampled from
positive data are higher than those of unlabeled data ranked
between the θP+αθN and θP+βθN ratios with a descending
order of scores.

4.3 Partial AUC with negative and unlabeled data

We define pAUCNU((γ, η), (α
′, β′)), which is the normal-

ized partial area under the curve of UPR(h) against FPR(h)

for different values of h where FPR(h) is between α′ and
β′ and UPR(h) is between γ and η, as follows,

pAUCNU((γ, η), (α
′, β′)) =

1

(β′ − α′)(η − γ)

×
∫ FPR−1(α′)

FPR−1(β′)

∫ UPR−1(γ)

UPR−1(η)

fU(s)fN(s
′)I(s > s′)dsds′,

(11)

which is calculated with negative and unlabeled distribu-
tions. Then, the partial area between (γ, η) = (0, θP) and
(α′, β′) = (α, β) becomes an approximation of the pAUC
as follows,

pAUCNU((0, θP), (α, β)) =
1

θP(β − α)

×
∫ FPR−1(α)

FPR−1(β)

∫ ∞

UPR−1(θP)

fU(s)fN(s
′)I(s > s′)dsds′

≈
∫ FPR−1(α)

FPR−1(β)

∫ ∞

UPR−1(θP)

θPf̂P(s)fN(s
′)I(s > s′)dsds′

× 1

θP(β − α)
≈ pAUC(α, β), (12)

where we used fU(s) = θPf̂P(s) if s > UPR−1(θP)
in Eq.(6), and the start of the integration interval of vari-
able s, UPR−1(θP), can be −∞ since f̂P(s) = 0 if s ≤
UPR−1(θP). An example of pAUCNU((0, θP), (α, β)) is
shown in Figure 4(b). pAUCNU((0, θP), (α, β)) is the prob-
ability that scores of unlabeled data ranked between the 0
and θP ratios are higher than those from negative data ranked
between the α and β ratios.

The pAUC can be also approximated using only unlabeled
data by assuming that unlabeled samples between 0 and θP
are positive and those between θP + αθN and θP + βθN are
negative when sorted by their scores. However, this approxi-
mated pAUC is not useful for training a classifier since their
labels are estimated by the classifier to be trained. On the
other hand, the approximated pAUCs with positive/negative
and unlabeled data used in the proposed method are based
on true positive/negative data.

5 Partial AUC maximization using unlabeled

data

The empirical estimate of the partial area under the curve of
the TPR against the UPR in Eq.(10) is given by

p̂AUCPU(θP + αθN, θP + βθN) =
1

(β − α)θNMPMU

×
∑

xP
m∈P

[
(kᾱ − ᾱMU)I(s(x

P
m) > s(xU

(kᾱ)))

+

kβ̄∑
k=kᾱ+1

I(s(xP
m) > s(xU

(k)))

+ (β̄MU − kβ̄)I(s(x
P
m) > s(xU

(kβ̄+1)))
]
, (13)
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where ᾱ = θP + αθN, β̄ = θP + βθN, kᾱ = �ᾱMU�, kβ̄ =

�β̄MU	, and xU
(k) denotes the unlabeled sample ranked in

the kth position among unlabeled samples U in a descend-
ing order of scores. p̂AUCPU(θP + αθN, θP + βθN) is cal-
culated from positive and unlabeled data. The computational
complexity of calculating Eq.(13) is O(MU logMU + (β −
α)θNMPMU), where the first term is for sorting MU unla-
beled samples, and the second term is for comparing MP

positive samples and (β − α)θNMU unlabeled samples in
the second term.

The empirical estimate of the partial area under the curve
of the UPR against the FPR in Eq.(12) is given by

p̂AUCNU((0, θP), (α, β)) =
1

(β − α)θPMUMN

×
[
(jα − αMN)

kθP∑
k=1

I(s(xU
(k)) > s(xN

(jα)))

+

kθP∑
k=1

jβ∑
j=jα+1

I(s(xU
(k)) > s(xN

(j)))

+ (βMN − jβ)

kθP∑
k=1

I(s(xU
(k)) > s(xN

(jβ+1)))

+ (θPMU − kθP)

jβ∑
j=jα+1

I(s(xU
(kθP

+1)) > s(xN
(j)))

+(θPMU−kθP)(βMN−jβ)I(s(x
U
(kθP

+1))>s(xN
(jβ+1)))

]
,

(14)

where kθP = �θPMU	. p̂AUCNU((0, θP), (α, β)) is cal-
culated from negative and unlabeled data. Figure 5 illus-
trates terms in Eq.(14). The computational complexity of
calculating Eq.(14) is O(MU logMU +MN logMN + (β −
α)θNMUMN), where the first and second terms are for sort-
ing MU unlabeled and MN negative samples, respectively,
and the third term is for comparing θPMU unlabeled sam-
ples and (β − α)MN negative samples at the second term.

We learn the decision function by maximizing the em-
pirical pAUCs. For the decision function, we can use any
differentiable functions, such as logistic regression models
and neural networks. To make the empirical pAUCs differ-
entiable, we used sigmoid function σ(A) = 1

1+exp(−A) in-
stead of indicator function I(A) in empirical pAUCs, which
is often used for a smooth approximation of the indicator
function. For example, the second term in Eq.(3) is approx-
imated by I(s(xP

m) > s(xN)) ≈ σ(s(xP
m) − s(xN)). Let

p̃AUC(α, β) indicate the approximation of p̂AUC(α, β)
smoothed by the sigmoid function. Our objective function
to be maximized is

L = λ1p̃AUC(α, β) + λ2p̃AUCPU(θP + αθN, θP + βθN)

+ λ3p̃AUCNU((0, θP), (α, β)), (15)

where the first term is the smoothed empirical pAUC with
positive and negative data in Eq.(3), the second term is the

Figure 5: The empirical partial area under the curve of
the unlabeled positive rate against the false positive rate,
p̂AUCNU((0, θP), (α, β)), in Eq.(14).

smoothed empirical pAUC with positive and unlabeled data
in Eq.(13), the third term is the smoothed empirical pAUC
with negative and unlabeled data in Eq.(14), and λ1, λ2, λ3

are hyperparameters, λ1, λ2, λ3 ≥ 0,
∑3

i=1 λi = 1. The
hyperparameters can be tuned with validation data. When
λ1 = 1, λ2 = λ3 = 0, the proposed method corresponds
to a supervised pAUC maximization method. We can ro-
bustly approximate the partial AUC by using unlabeled data
as well as labeled data. The proposed method is applicable
even when only positive (negative) and unlabeled data are
available since the second (third) term requires only positive
(negative) and unlabeled data. In this sense, the proposed
method is related to methods for learning from positive
and unlabeled data (Du Plessis, Niu, and Sugiyama 2015;
Lee and Liu 2003; Li and Liu 2003; Elkan and Noto 2008)
although they are not for pAUC maximization.

6 Experiments

6.1 Data

We evaluated the effectiveness of the proposed method
by using the following nine datasets for anomaly detec-
tion (Campos et al. 2016) 1: Annthyroid, Cardiotocogra-
phy, InternetAds, KDDCup99, PageBlocks, Pima, Spam-
Base, Waveform and Wilt, where the feature vector dimen-
sionalities were 21, 21, 1555, 79, 10, 8, 57, 21 and 5, respec-
tively. For each dataset, we used 50 labeled and 300 unla-
beled samples for training, 50 labeled samples for validation,
and the remaining samples for testing, where the positive ra-
tio was set at 0.1. For each dataset, we randomly sampled
30 training, validation and test data sets, and calculated the
average pAUC over the 30 sets.

6.2 Comparing methods

We compared the proposed semi-supervised learning
method for maximizing pAUC with the following seven
methods: CE, MA, MPA, ST, SS, SSR, pSS and pSSR.

1The datasets were obtained from http://www.dbs.ifi.lmu.de/
research/outlier-evaluation/DAMI/.
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Table 1: Test pAUCs with (a) α = 0, β = 0.1, (b) α = 0, β = 0.3 and (c) α = 0.1, β = 0.2. Values in bold typeface are not
statistically different (at 5% level) from the best performing method in each row according to a paired t-test. The bottom row
shows the average test pAUC over all datasets, and values in bold typeface indicate the method that achieved the best.

(a) pAUC(0.0, 0.1)
CE MA MPA ST SS SSR pSS pSSR Ours

Annthyroid 0.227 0.236 0.384 0.357 0.399 0.422 0.258 0.457 0.388
Cardiotocography 0.464 0.473 0.493 0.494 0.420 0.450 0.467 0.393 0.527
InternetAds 0.540 0.570 0.565 0.632 0.496 0.464 0.527 0.446 0.580
KDDCup99 0.880 0.868 0.874 0.890 0.837 0.832 0.867 0.802 0.884
PageBlocks 0.528 0.518 0.593 0.596 0.599 0.599 0.553 0.568 0.598
Pima 0.057 0.118 0.188 0.189 0.179 0.130 0.127 0.118 0.206
SpamBase 0.408 0.438 0.461 0.469 0.422 0.393 0.435 0.416 0.484
Waveform 0.270 0.253 0.288 0.283 0.268 0.281 0.305 0.226 0.306
Wilt 0.100 0.195 0.594 0.549 0.648 0.403 0.260 0.703 0.681

Average 0.386 0.408 0.493 0.496 0.474 0.442 0.422 0.459 0.517

(b) pAUC(0.0, 0.3)
CE MA MPA ST SS SSR pSS pSSR Ours

Annthyroid 0.442 0.436 0.517 0.494 0.516 0.445 0.428 0.506 0.503
Cardiotocography 0.680 0.705 0.698 0.701 0.661 0.665 0.686 0.637 0.725
InternetAds 0.664 0.697 0.695 0.723 0.629 0.631 0.621 0.590 0.672
KDDCup99 0.949 0.941 0.944 0.956 0.929 0.914 0.943 0.904 0.961
PageBlocks 0.679 0.677 0.717 0.724 0.746 0.744 0.729 0.753 0.727
Pima 0.255 0.324 0.387 0.383 0.384 0.364 0.327 0.346 0.355
SpamBase 0.698 0.690 0.691 0.691 0.663 0.627 0.662 0.617 0.687
Waveform 0.624 0.619 0.598 0.628 0.571 0.548 0.595 0.500 0.609
Wilt 0.326 0.440 0.813 0.780 0.803 0.687 0.539 0.790 0.845

Average 0.591 0.614 0.673 0.675 0.656 0.625 0.614 0.627 0.676

(c) pAUC(0.1, 0.2)
CE MA MPA ST SS SSR pSS pSSR Ours

Annthyroid 0.480 0.469 0.526 0.512 0.537 0.459 0.454 0.456 0.510
Cardiotocography 0.729 0.750 0.752 0.760 0.697 0.685 0.746 0.601 0.761
InternetAds 0.697 0.734 0.729 0.734 0.611 0.637 0.663 0.558 0.724
KDDCup99 0.982 0.977 0.982 0.986 0.967 0.956 0.973 0.963 0.988
PageBlocks 0.713 0.718 0.751 0.740 0.784 0.782 0.776 0.708 0.763
Pima 0.294 0.353 0.388 0.404 0.425 0.404 0.376 0.337 0.447
SpamBase 0.764 0.760 0.775 0.774 0.713 0.688 0.727 0.623 0.768
Waveform 0.708 0.695 0.626 0.634 0.536 0.594 0.683 0.522 0.654
Wilt 0.341 0.462 0.700 0.691 0.854 0.714 0.567 0.858 0.865

Average 0.634 0.658 0.692 0.693 0.681 0.658 0.663 0.625 0.720
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Figure 6: Test pAUCs with α = 0, β = 0.1 obtained by the proposed method with different hyperparameters λ1, λ2, λ3 =
1− λ1 − λ2. X-axis is hyperparameter λ1, y-axis is λ2, and a darker color indicates a better test pAUC.
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The CE, MA and MPA methods are supervised learning
methods. The CE method learns neural network parameters
by minimizing the cross entropy loss. The MA and MPA
methods learn parameters by maximizing the smoothed em-
pirical AUC and pAUC, respectively.

The ST method is a self-training based semi-supervised
learning method for maximizing the pAUC. With the ST
method, at each step, the neural network is (re)trained by
maximizing the smoothed empirical pAUC using labeled
data, and then some unlabeled samples are added to the
labeled data by assigning labels using the neural network,
where unlabeled samples with high positive/negative proba-
bilities are selected to be added.

The SS and SSR methods are semi-supervised learning
methods for maximizing the AUC, where the SS method
does not need to estimate the positive ratio (Xie and Li
2018), and the SSR method is based on positive-unlabeled
learning (Sakai, Niu, and Sugiyama 2018). The pSS and
pSSR methods are semi-supervised learning methods for
maximizing the pAUCs, where the pAUC is calculated by
pAUC(α, β) = AUC−pAUC(0, α)−pAUC(β, 1). In par-
ticular, the pSS and pSSR methods calculate the AUC in the
same way as the SS and SSR methods using labeled and un-
labeled samples, respectively, and derive the pAUC(α, β)
by subtracting pAUC(0, α) and pAUC(β, 1), which are es-
timated using labeled samples, from the AUC. With the SSR
and pSSR methods, we used non-negative estimators (Kiryo
et al. 2017).

For decision functions s(x) with all the methods includ-
ing our proposed method, we used the same neural net-
work architecture, which was a three-layer feed-forward
neural network with 32 hidden units and rectified linear units
(ReLU) for the activation functions. We optimized the neu-
ral network parameters using ADAM (Kingma and Ba 2015)
with a learning rate of 0.1 and a batch size of 1,024. The
empirical AUC and pAUC were calculated using samples
in each batch for training. The weight decay parameter was
set at 10−3. The hyperparameters of the proposed, SS, SSR,
pSS and pSSR methods were selected from 0,0.2,0.4,0.6,0.8
and 1 using the validation pAUC. With the ST method, the
number of unlabeled samples to be labeled for each step is
tuned from {5, 10, 15, 20, 25} using the validation pAUC,
where the number of epochs for each retraining step was
100. The validation pAUC was also used for early stopping
with all methods, where the maximum number of training
epochs was 3,000. We implemented all the methods based
on PyTorch (Paszke et al. 2017).

6.3 Results

Table 1 shows test pAUCs with three different pairs of α and
β. The proposed method achieved the performance that was
not statistically different from the best performing method in
most cases. The test pAUC with MPA was higher than that
with the other supervised methods, i.e., CE and MA, since
MPA directly optimized the pAUC. MA was better than
CE because the AUC is more closely related to the pAUC
than the cross entropy loss. On average, the performance
of ST was slightly better than MPA, but it was worse than
the proposed method especially when (α, β) were (0, 0.1)

and (0.1, 0.2). ST decisively assigns partial unlabeled data
with a high confidence score to positive or negative, which
changes the negative score distribution and makes it diffi-
cult to identify negative samples where the false positive
rate is between α and β. Besides, ST treats assigned unla-
beled data and labeled data equally. On the other hand, the
proposed method provisionally assigns all unlabeled data
to positive or negative, and treats assigned unlabeled data
and labeled data unequally. These differences resulted in the
better performance of the proposed method than ST. By us-
ing unlabeled data, the semi-supervised methods that maxi-
mize the AUC, i.e., SS and SSR, often performed better than
the supervised MA method. However, they performed worse
than the proposed method since they maximize the AUC
but not the pAUC. The semi-supervised methods that max-
imize the pAUC, i.e., pSS and pSSR, sometimes performed
worse than MPA, SS and pSSR. This would be because the
pAUC estimated by pSS and pSSR, which subtracted the
estimated pAUCs from the estimated AUC, was not accu-
rate. On the other hand, the proposed method achieved a ro-
bust pAUC estimation by sorting unlabeled data with their
scores. The average computational time for training with the
proposed method on the InternetAds dataset, which had the
largest feature vector dimensionality and took the longest
time among the nine datasets, was 29.3 seconds on comput-
ers with 2.60GHz CPUs.

Figure 6 shows the test pAUC with α = 0, β = 0.1 when
using the proposed method with different hyperparameters
λ1, λ2, λ3 = 1 − λ1 − λ2. The best hyperparameter set-
ting differed across datasets. The proposed method achieved
good performance by selecting the hyperparameters using
validation data.

7 Conclusion

In this paper, we derived two approximations of the par-
tial AUC that are calculated using unlabeled data, and pro-
posed a semi-supervised learning method for pAUC maxi-
mization that trains a classifier robustly by maximizing the
two approximated partial AUCs as well as the partial AUC
using labeled data. We confirmed experimentally that our
proposed method performed better than existing methods.
For future work, we would like to evaluate the proposed
method with different types of applications, such as anomaly
detection (Yamanaka et al. 2019), and different types of
classifiers, such as tree-based methods (Levatić et al. 2017;
2018).
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Semi-supervised trees for multi-target regression. Informa-
tion Sciences 450:109–127.
Li, X., and Liu, B. 2003. Learning to classify texts using
positive and unlabeled data. In IJCAI, volume 3, 587–592.
Narasimhan, H., and Agarwal, S. 2013a. A structural SVM
based approach for optimizing partial AUC. In International
Conference on Machine Learning, 516–524.
Narasimhan, H., and Agarwal, S. 2013b. SVM pAUC tight:
a new support vector method for optimizing partial AUC
based on a tight convex upper bound. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 167–175. ACM.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop.
Ricamato, M. T., and Tortorella, F. 2011. Partial AUC max-
imization in a linear combination of dichotomizers. Pattern
Recognition 44(10-11):2669–2677.
Saerens, M.; Latinne, P.; and Decaestecker, C. 2002. Adjust-
ing the outputs of a classifier to new a priori probabilities: a
simple procedure. Neural Computation 14(1):21–41.
Sakai, T.; Niu, G.; and Sugiyama, M. 2018. Semi-supervised
AUC optimization based on positive-unlabeled learning.
Machine Learning 107(4):767–794.
Ueda, N., and Fujino, A. 2018. Partial AUC maxi-
mization via nonlinear scoring functions. arXiv preprint
arXiv:1806.04838.
Wang, Z., and Chang, Y.-C. I. 2010. Marker selection via
maximizing the partial area under the ROC curve of linear
risk scores. Biostatistics 12(2):369–385.
Wang, R., and Tang, K. 2009. Feature selection for maxi-
mizing the area under the ROC curve. In International Con-
ference on Data Mining Workshops, 400–405. IEEE.
Xie, Z., and Li, M. 2018. Semi-supervised AUC optimiza-
tion without guessing labels of unlabeled data. In Thirty-
Second AAAI Conference on Artificial Intelligence.
Yamanaka, Y.; Iwata, T.; Takahashi, H.; Yamada, M.; and
Kanai, S. 2019. Autoencoding binary classifiers for super-
vised anomaly detection. In PRICAI, 647–659.
Ying, Y.; Wen, L.; and Lyu, S. 2016. Stochastic online AUC
maximization. In Advances in Neural Information Process-
ing Systems, 451–459.
Zhao, P.; Hoi, S. C.; Jin, R.; and YANG, T. 2011. Online
AUC maximization. In International Conference on Ma-
chine Learning.
Zhou, L.; Lai, K. K.; and Yen, J. 2009. Credit scoring mod-
els with AUC maximization based on weighted SVM. In-
ternational Journal of Information Technology & Decision
Making 8(04):677–696.

4246


