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Abstract

Nowadays model uncertainty has become one of the most im-
portant problems in both academia and industry. In this paper,
we mainly consider the scenario in which we have a common
model set used for model averaging instead of selecting a sin-
gle final model via a model selection procedure to account for
this model’s uncertainty in order to improve reliability and ac-
curacy of inferences. Here one main challenge is to learn the
prior over the model set. To tackle this problem, we propose
two data-based algorithms to get proper priors for model av-
eraging. One is for meta-learner, the analysts should use his-
torical similar tasks to extract the information about the prior.
The other one is for base-learner, a subsampling method is
used to deal with the data step by step. Theoretically, an upper
bound of risk for our algorithm is presented to guarantee the
performance of the worst situation. In practice, both methods
perform well in simulations and real data studies, especially
with poor quality data.

1 Introduction

It is very common in practice that the distributions gener-
ating the observed data are described more adequately by
multiple models. A standard procedure to make the infer-
ence is that, according to some criteria, such as model pre-
dictive ability, model fitting ability and many different in-
formation criteria a best model is chosen and assumed as the
true model. After selection, all the inferences and conclu-
sions are made based on the assumption.

However, the drawbacks of this approach exist. The se-
lection of one particular model may lead to riskier decisions
since it ignores the model uncertainty. In other words, if we
choose a wrong model, the consequence will be disastrous.
Moral-Benito (2015) already pointed out the concern, “From
a pure empirical viewpoint, model uncertainty represents a
concern because estimates may well depend on the particu-
lar model considered.” Therefore, combining multiple mod-
els to reduce the model uncertainty is very desirable.

As an alternative strategy, combining multiple models
which is called model averaging enables researchers to draw

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4198

conclusions based on the whole universe of candidate mod-
els. In particular, researchers estimate all the candidate mod-
els and then compute a weighted average of all the esti-
mates. There are two different approaches to model averag-
ing in the literature, including Frequentist Model Averaging
(FMA) and Bayesian Model Averaging (BMA). Frequentist
approaches focus on improving prediction and use weighted
mean of estimates from different models while Bayesian ap-
proaches focus on the probability that a model is true and
consider priors and posteriors for different models.

The FMA approach does not consider priors, so the cor-
responding estimators depend solely on data. For its sim-
plicity, the FMA approach has received some attention over
last decade. See Yang (2001), Leung and Barron (2006),
Hansen (2007) and a detailed review Wang, Zhang, and
Zou (2009) for reference.

Leamer (1978) suggested to use Bayesian inference to
reduce the model uncertainty as a framework and pointed
out the importance of the fragility of regression analy-
sis to arbitrary decisions about the choice of control vari-
ables. Bayesian Model Averaging considers model uncer-
tainty through the prior distribution. The model posteriors
are obtained by Bayes’ theorem, and therefore allow for
combined estimation and prediction. Compared with the
FMA approaches, there are a huge literature on the use of
BMA in statistics.

Influenced by Leamer (1978), most works were concen-
trated on the linear models only. Raftery (1996) extended
in generalized linear models by providing a straightforward
approximation. For more details, refer to a landmark review
Moral-Benito (2015) on BMA.

The Bayesian approaches have the advantage of using
arbitrary domain knowledge through a proper prior. How-
ever, as commented by Hjort and Claeskens (2003), how
to set prior probabilities and how to deal with the pri-
ors when they are in conflict with each other are still
problems. The PAC-Bayes framework, first formulated by
Mcallester (1999), was proposed to take the priors into
account. In the beginning, most researches assumed that
loss functions were bounded. For detailed information, see
Catoni (2007). For unbounded loss, Catoni (2004) provided
a result under exponential moment assumptions. In last



decade, it has been widely developed. Different types of
PAC-Bayes bounds were presented under various assump-
tions, for example, Seeger (2002), Seldin and Tishby (2010),
Guedj, Alquier, and others (2013), Alquier, Ridgway, and
Chopin (2016), Griinwald and Mehta (2016), Catoni (2016),
Lugosi, Mendelson, and others (2019), and Alquier and
Guedj (2018). And, many distribution-dependent priors are
used to derive tighter PAC-Bayes bounds such as Lever,
Laviolette, and Shawe-Taylor (2013), Oneto, Anguita, and
Ridella (2016), Dziugaite and Roy (2018) and Rivasplata
et al. (2018). Here, we must distinguish between obtaining
the tighter bounds by distribution-dependent priors and us-
ing part of the data to meta-learn a prior and the rest to learn
the function.

Note that for getting the posterior distribution of the
weights, Ye, Yang, and Yang (2016) gave a method with-
out choosing a proper prior. For meta-learning the prior,
some meta-learners (Finn, Abbeel, and Levine 2017; Li et
al. 2017; Amit and Meir 2018) are limited to their use of
gradient. Amit and Meir (2018) provided an extended PAC-
Bayes bound for learning the proper priors. Nevertheless, it
involved reusing of the data which increased the probability
of overfitting, and they gave an implementation only for the
normal distribution of the weights.

In this paper, we propose a specific risk bound under our
settings and two data-based methods for adjusting the pri-
ors in PAC-Bayes framework. And, two practical algorithms
are given accordingly. The main contributions of this work
are the following. First, when the historical data existed,
we use similar old tasks to extract the mutual knowledge
with the current task for adjusting the priors. Second, a se-
quential batch sampling method is proposed to deal with
the base-learner for learning posterior by subsampling with
the rules made by researchers. Third, two theoretical risk
bounds are provided for these two situations respectively.
Fourth, empirical demonstration shows that the proposed
meta-methods have excellent performances in the numerical
studies.

The remainder of this paper is organized as follows. In
Section 2, an upper bound for the averaging model and a
practical historical data related algorithm are established for
obtaining a better prior. In case that there is no historical
data, Section 3 proposes another method called a sequential
batch sampling algorithm to adjust the prior step by step. I1-
lustrative simulations including regression and classification
tasks given in Section 4 show that our algorithms will lead
to more effective prediction. We further apply the proposed
methods to two real datasets and confirm the higher predic-
tion accuracy of the minimizing risk bound method. Some
proofs of theories are delegated to the full paper (Huang et
al. 2019).

2 Learning the Prior in Meta-Learner

In a traditional supervised learning task, the learner needs to
find an optimal model (or hypothesis) to fit the data, and then
uses the learned model to make predictions. In the Bayesian
approach, various models are allowed to fit the data. In par-
ticular, the learner needs to learn an optimal model distri-
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bution over the candidate models, and then uses the learned
model distribution to make predictions.

More specifically, in a supervised learning task, we are
given a set S = {(x;,y;)}"; of i.i.d. samples drawn from
an unknown distribution D over X x ), ie., (x;,vy;) ~
D. The goal is to find a model i in the candidate model
set H, a set of functions mapping features (feature vec-
tor) to responses, that minimizes the expected loss func-
tion E(, )~ pL(h,x,y), where L is a bounded loss function.
Without loss of generality, we assume L is bounded by [0, 1].
Note that this assumption is often used in the beginning
of the PAC-Bayes framework. This paper uses McAllester’s
bound, so this assumption is necessary. Note that our proce-
dure can use other, possibly tighter bounds. In other words,
under different regularization conditions, it can be replaced
by many other PAC-type bounds as long as the assump-
tion matches the corresponding PAC bound. In the Bayesian
framework, a distribution () over H is the purpose instead
of searching a specific optimal model h € H. Therefore,
the goal turns to finding the optimal model distribution @,
which minimizes Ej,~qE, )~ pL(h, z,y). Then one could
weighted average the models over H to make predictions,
namely, § = Ej.oh(z). More generally, we further assume
that the candidate model set H consists of K classes of mod-
els M, My,..., Mg with H = Uszl M,. Each model
class My, is associated with a probability wy, and for each
model class My, there is a distribution @ over My. For
example, a model class M, could be a group of models ob-
tained from the Lasso method, and the hyper-parameter A
in Lasso follows a distribution ). Another common exam-
ple is that M, is a group of neural networks with a certain
architecture, and the hyperparameters of neural networks
follow a joint distribution Q. In this way, the total distri-
bution over H can be written as £ = (w,Q1,...,QK),
where w consists of wy,...,wx with ||w||; = 1. The
goal of the learning task is to find an optimal distribution
&, the posterior of h, which minimizes the expected risk
R(§, D) := EpeE(yy)~pL(h,x,y), and then the predic-
tion is made by § = Epch(z) = S0 [wy, - Bnog, h(2)].

Since sample distribution D is unknown, the expected
risk R(¢,D) cannot be computed directly. Therefore, it
is usually approximated by the empirical risk R(g ,S) =
Enme X0, yoyes L(hsxi,y:)/|S| in practice, and & is
learned by minimizing the empirical risk R(¢,S). When
the sample size is large enough, it would be a good ap-
proximation. However, in many situations, we do not have
so much data, which may lead to large difference between
them. Thus, using the empirical risk R(¢, S) to approximate
the expected risk R(&, D) is not appropriate any longer.

We first study the difference between the empirical risk
R(&,S) and the expected risk R(¢, D). Based on the liter-

ature (Mcallester 1999), we can obtain an upper bound of
their difference which is stated as the following lemma.

Lemma 1 Let €9 be a prior distribution over H that must
be chosen before observing the samples, and let § € (0,1).
Then with probability at least 1 — 0, the following inequality



holds for all posterior distributions & over H,

R(¢,D) < R(&,S)

., [KLGwlet) + S wKL@iIe)) +1ng
2(n—1) ’

where n is the cardinality of sample set S, and KL(+||-) is

the Kullback-Leibler (KL) divergence between two distribu-

tions".

ey

According to the above lemma, it is clear that only when
the sample size n is large, the difference R(£, D) — R(&, S)

can be guaranteed to be small. Thus, minimizing R(, S)
may not lead to the minimizer of R(¢, D), which matches
our intuition. To avoid the risk of the approximation, one
can minimize the upper bound of the expected risk R(¢, D)

in stead of using the empirical risk R(§ ,,S) as an approxima-
tion. In particular, we denote the right hand side of Eq.(1) by
R(&,£9,S). Then one can learn the model distribution & by
minimizing R(&, €9, S). Intuitively, such choice of ¢ for the
learning task makes the worst case best.

Lemma 1 also indicates that the prior £° plays an impor-
tant role. Since the choice of £ balances the tradeoff between
the empirical risk R(¢, S) and the regularization term, if the
prior £ is far away from the true optimal model distribution
&*, the posterior £ will also be bad. The best situation for op-
timizing the posterior £ is that the prior £° exactly equals to
the true optimal model distribution £*. Then, the regulariza-
tion term disappears. In other words, if there is a good prior
€% which is close to £*, the upper bound R(&, €%, S) will be
small. However, without any prior knowledge, one can only
use data to help obtain a better prior. The naive method is di-
rectly using the non-informative prior as £° for minimizing
R(£,£9,9) to get the posterior &.

When the extra data of historical tasks has been collected,
the learner has the chance to learn a good prior for more
reliable inferences. In order to get a good prior, it is help-
ful to extract the mutual knowledge from similar tasks. Fig-
ure 1 schematically illustrates this process. In particular,
there are m sample tasks 74, ..., T, i.i.d. generated from
an unknown task distribution 7. For each sample task 73,
a sample set .S; with n; samples is generated from an un-
known distribution D;. Without ambiguity, we use notation
£(£9,9) to denote the posterior under the prior £° after ob-
serving the sample set S. Note that, the proposed meta-
learner still works if the base-learner of getting the posterior
is replaced by other popular methods. The quality of a prior
€Y is measured by Ep,-Eg . pm R(E(E°, S;i), D;). Thus,
the expected loss we want to minimize is

R(gov 7_) = ED&,N‘FESiwD?’: R(f(fo, Sl)v DZ)

The above expected risk cannot be computed directly for
the unknown distribution D;, thus the following empirical
risk is used to estimate it:

. 1 X . , o
R(go’ Slv o Sm) _ % ZR(g(go’ S;trmn)’ Sl_valzdatwn)’
i=1

P(z)

'KL(P||P°) is defined as Eq~p In 555
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Tasks T';, i=1,...,.m

Training data

Obtain posterior ¢;
which is also the
candidate prior

|

Evaluate the
weight w; for
each candidate

l

Return the prior " = Y%, w;é;

‘ Non-informative prior }—'

*—i Validation data

Figure 1: Illustration of the meta-learning process.

where each sample set S; is divided into a training set Sf“””
and a validation set Syaetidation,

Consider the regression setting for task 7. Suppose the
true model is

yr = fr(xr) + or(zr) - er,

where fr: R — R is the function to be learned, the er-
ror term er is assumed to be independent of x7 and has a
known probability density ¢(t),t € R with mean 0 and a
finite variance. The unknown function o (x7) controls the
variance of the error at X = xp. There are ny i.i.d. sam-
ples {(z7,, yr,:)}iT, drawn from an unknown joint distri-
bution of (z7,yr). Assume that there is a candidate model
set H, each of which is a function mapping features (feature
vector) to response, i.e., h € H: R? — R. To take the in-
formation of the old tasks, which can reflect the importance
of each h € H, the following Algorithm 1 (meta-learner) is
proposed.

This algorithm is based on the cross-validation frame-
work. First, using 7; to obtain the candidate priors &; by any
Bayesian procedure, for example minimizing the PAC bound
introduced in Lemma 1 with non-informative prior. Cross-
validation determines the importance of the priors. The j-th
task is divided into two parts randomly. The first part is used
to learn the posterior with the prior &;. The second part is to
evaluate the performance of the posterior by its likelihood
function. This evaluation is inspired by Raftery (1995). To
simplify the determination of the weights, Raftery (1995)
proposed a frequentist approach to BMA. The Bayes’ theo-
rem was replaced by the Schwarz asymptotic approximation
which could be viewed as using maximized likelihood func-
tion as the weights of the candidate models. The ¢ on the
denominator of E? makes the weight larger if the model is
accurate. This procedure repeats many times for each pair
(i, 7). Their averages reveal the importance of the priors. In
the end, the £* is obtained by weighted averaging them all.
The property of this algorithm can be guaranteed by Lemma
2

The following regularization conditions are assumed for



Algorithm 1 Historical Data Related Algorithm

1: for: =1tomdo

2:  Using T; to obtain ; by the same Bayesian procedure
in base-learner with non-informative prior.

3: end for

4: fori = 1tomdo
5. Randomly split the data S; into two parts
Si(ln), (Tio, Yira )y for training and
2)’ ; S
Sg n), = (%40 yi’a)z;n;H for validation.

6. for éachj #ido

. : : 7 My 4 (1)
7 Obtain estimates fjm,',- (z, S”L: ) 8! (z, Sln;)
with prior §;.
8: Evaluate predictions on 55273, and compute

Ya—F 1 (Tia)
n; gimg
Ha_n§+1q< 6. (@ia) )

Z;n;+1&j7n§ (#ia)

E; =

9: end for

10: end for

11: Repeat the random data segmentation more times and
average the weights E7 after normalization to get
w (j # i).

12: Average all the w§z)(j # 1) from i = 1 to m to obtain
the final weights w;.

13: The prior learned for a new task is {* = Z?; w;i&;.

the results. First, ¢ is assumed to be a known distribution
with 0 and variance 1.

(C1) The functions f and o are uniformly bounded, i.e.,
sup, |[f(z)] K A< ocand 0 < m < o(zx) < M <
oo for constants A, m and M.

(C2) The error distribution ¢ satisfies that for each 0 < sg <
1 and t¢ > 0, there exists a constant B such that

G
/q(x)l )

forallsogsgsgl and —tg <t <tp.

p(d) < B((1—s)% + %)

(C3) The risks of the estimators for approximating f and o>
decrease as the sample size increases.

For the condition (C1), note that, when we deal
with k-way classification tasks, the responses belong to
{1,2,...,k} which is bounded obviously. Moreover, if the
input space is a finite region which often happens in real
datasets, most common functions are bounded uniformly.
The constants A, m, M are involved in the derivation of the
risk bounds, but they can be unknown in practice when we
implement the Algorithm 1. The condition (C2) is satisfied
by Gaussian, ¢ (with the degree of freedom larger than two),
double-exponential, and so on. The condition (C3) usually
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holds for a good estimating procedure, like consistent esti-
mators. An estimator is called consistent if the expected risk
tends to zero when experimental size tends to infinity.

Lemma 2 Assume three regularization conditions are satis-
fied. The loss function L(h,x,y) = |y — h(x)|? and o, is
known. Then, the combined prior £* as given above satisfies

. . Ch
R(§",7) < 1rj1f (Zi# "

z;ﬁ—n) D (m = m)R(E;, Dz-)),
IV T iy

with probability at least 1 — §, where the constant Cy,Co
depend on the regularization conditions.

+

Note that we assume a known o, just for simplifying the
expression. It has a more general version for unknown o,.
The proof is given briefly with unknown o, in Supplemen-
tary Materials.

In this general prove, it can be seen that, (i) Variance esti-
mation is also important for the Algorithm 1. Even if a pro-
cedure estimates fr very well, a bad estimator of o can
substantially reduce its weight in the final estimator. (i1) Un-
der the condition (C3), the risks of a good procedure for
estimating fr and o usually decrease as the sample size
increases. The influence of the number of testing points n
is quite clear. Smaller n/ decreases the first penalty term but
increases the main terms that involve the risks of each j.
(iii)) Lemma 2 reveals the vital property that if one alterna-
tive model is consistent, the combined model will also have
the consistency.

If Algorithm 1 is used to obtain the prior from multi-tasks,
we could get the following theorem theoretically by simply
combining Lemmas 1 and 2. See Huang et al. (2019) for the
detailed proofs.

Theorem 1 Assume conditions (Cl1), (C2) and (C3) are sat-
isfied. The loss function L(h,z,y) = |y — h(z)|? and o,
is known. Then, the combined posterior £* as given above
satisfies

R ) <inf | =0
J Zi;&j (n; — ”1)
e S -l | R(ELSP)
Zi;ﬁj(ni —n;) it O

N KL(w}|w;) + 35y wieKL(Q; 4 |Qjk) + In

2(1%’ — ].)
with probability at least 1 — 9, where the constant Cy, C de-
pend on the regularization conditions, 7 is the initial prior
which should be non-informative prior and & is the mini-

mizer of Eq.(1) with &° = & and S = 51-(173'.'

The major contribution of Theorem 1 is that it implies a
simple consequence on consistency. The penalty for adapta-
tion (the first term in RHS of Theorem 1) is basically of or-
der 1/n, which is negligible for nonparametric rates. Thus,



Algorithm 2 Sequential Batch Sampling Algorithm

1: Obtain a sample set B; from the sample space X x Y
by a initial space-filling design.

2: Get the posterior &; based on the sample set B; by min-
imizing the risk bound with non-informative prior.

3: fori=2tobdo

Search next sample set B; (|B;| = nyp) with the

large volatility under the current posterior §;_1, i.e.,

(& -1, B;) > 7; where =y is a given constant vector.

5:  Get the posterior &; based on the sample set B; by

minimizing the risk bound with the prior &; ;.
6: end for
7. The final posterior is &.

for any bounded regression function, the combined model
performs asymptotically as well as any model in the candi-
date model set H. The detailed expression refers to Corol-
lary 1 in Yang (2000). Further, even if the underlying true
model is not in the candidate set, the combined model may
still be able to approach the true model, e.g, there exists a
sequence of models in the set approaching an optimal one.

For classification tasks, one-hot response is used which
means the i-th response y; in the model is a vector describ-
ing the probability of each class. The loss function still uses
>, lyi—s||? to maintain consistency with the regression
case. The prediction of a new observation z* is to choose
the class with the largest probability in y*. Thus, we do not
need to change the condition in Theorem 1, but just change
the response to be one-hot for classification. Consequently,
the results for regression still hold for classification.

Besides the [5 risk that we consider, other performance
measures (e.g., cross entropy loss which is used in our last
experiment with the MNIST dataset or hinge loss) are useful
from both theoretical and practical points of view. It is thus
of interest to investigate whether similar adaptation proce-
dures exist for other loss functions and if not, what prices
are one needs to pay for adaptation, which we leave for fu-
ture work.

3 Adjusting the Prior in Base-Learner

In this section, we will discuss how to adjust the prior of
models if there is no information from extra similar tasks.

In the following, we consider an iterative procedure of
adjusting the prior in the base-learner. In each round, the
learner can sample the data according to the prior distribu-
tion in the current round. Such iterative procedure updates
the prior step by step. Ultimately, compared with dealing
the whole data at once, this procedure of adjusting prior
leads to a smaller upper bound. Moreover, it also gives an
opportunity to choose some good sample sets for reduc-
ing the volatility of the estimators which is measured by
v(&, D) = E,Ey,(h(z) —Eph(x))?. The function 9(¢, B) =
157 2wen En(h(x) — Eph(x))? is defined to measure the
volatility of the posterior £ at the sample set B. The com-
plete algorithm for sequential batch sampling is shown in
Algorithm 2.

For Algorithm 2, we do not handle the whole data at
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(a) Nonuniform design (b) Uniform design

Figure 2: The illustration for uniform space-filling design.

once. Instead, the data is processed in b steps. First, a space-
filling design is used as initial experiment points to reduce
the probability of overfitting caused by the unbalanced sam-
pling. Traditional space-filling design aims to fill the input
space with design points that are as “uniform” as possible
in the input space. The uniformity of space-filling design is
illustrated in Figure 2. For next steps, uncertain points are
needed to be explored. And, the uncertainty is measured by
the volatility v. Hence, the batch with large volatility will be
chosen. Note that if we set a huge v, we will just explore a
small region of the input space.

The setting of - refers to (Zhou et al. 2018). However,
in practice, it is found that this parameter v does not mat-
ter much, since the results are similar with a wide range of
~. This procedure helps to reduce the variance of the esti-
mator which is proved in (Zhou et al. 2018) by sequential
sampling. Furthermore, it also helps to adjust the prior in
each step which is called learning the prior. The proposition
is stated below.

Proposition 1 For i = 1,2,...,b, let B, = S, £ is
the minimizer of the RHS of Eq.(1) with non-informative
prior £° and &; obtained by Algorithm 2, then we have
R(&b?&b*la S) S R(§*7 507 S)

The above proposition can be understood straightfor-
wardly. First, since we adjust the prior through the data
step by step, the final prior &1 is better than the non-
informative prior. Consequently, it receives the smaller ex-
pected risk. Second, we choose the sample sets sequentially
with large volatility to do experiments in order to reduce un-
certainty. The performance of SBS (Sequential Batch Sam-
pling) method is also demonstrated in Section 4.

4 Experiments

In this section, some examples are shown to illustrate the
procedure of Algorithms 1 and 2. The method of minimizing
the upper bound in Lemma 1 with non-informative prior is
denoted by RBM (Risk Bound Method). First, we begin with
linear regression models which has the same setting in Ye,
Yang, and Yang (2016). Hence, their method called SOIL is
under the comparison. The optimization for RHS of Eq.(1)
in our algorithms is dealt by gradient descend. R package
“SOIL” is used to obtain the results of the SOIL method.

4.1 Synthetic Dataset
Example 1 The simulation data {(x;,y;)}"_, is generated
Jfor the RBM from the linear model y; = 1 + m?ﬁ + o¢q,



where ¢; ~ N(0,1), o € {1,5} and z; ~ Ny4(0,X). For
each element S;; of ©, Xy = pl'™l (i # j)or1 (i =
j) with p € {0,0.9}. The sequential batch sampling has b

steps, and each step uses n/b samples following Algorithm
2.

All the specific settings for parameters are summarized
in Table 1, and the confidence level § in Lemma 1 is
set to 0.01. The Mean Squared Prediction Error (MSPE)
E.|f(z) — f(2)|? and volatility defined in the base-learner
are compared. They are obtained by sampling 1000 sam-
ples from the same distribution and computing their em-
pirical MSPE  |f(z) — f()]2/10% and volatility. For
each model setting with a specific choice of the parameters
(p, o), we repeat 100 times and compute the average empir-
ical value. The comparison among RBM, SOIL and SBS is
shown in Tables 2, 3 and 4.

The volatility of SOIL method is the smallest and very
close to zero. This phenomenon shows that SOIL is focused
on a few models, even just one model when the volatility
equals to zero. Consequently, its MSPE is larger than other
two methods. SBS as a modification of RBM has similar re-
sults with RBM when ¢ is small. However, when o is large,
SBS performs much better than RBM. In this situation, the
information of data is easily covered by big noises. Hence, a
good prior which can provide more information is vital for
this procedure.

Table 1: Simulation settings of Example 1.

Model n d b A3

1 50 8 5 (3,1.5,0,0,2,0,0,0)

2 150 50 5 (1,2,3,2,0.75,0,...,0)7

3 50 50 5 (1,1/2,1/3,1/4,1/5,1/6,0,...,0)

Table 2: Comparison among RBM, SOIL and SBS for
Model 1 of Example 1.

Model T (p,0) (0,1) (0,5 (09,1) (09,5)
RBM 2.03 4823 3.1 53.83

MSPE  SOIL 2.13 5321 2.17 53.21
SBS 171 14.08 325  26.40
RBM 1.64 347 131 0.49

Volatility SOIL 0 0 0.002 0
SBS 161 741 1.03 0.42

Next example considers the same comparison but in non-
linear models. In last example, the alternative models in-
clude the true model, but now the true non-linear model is
approximated by many linear models.

Example 2 The simulation data {(x;,y;)}32, is generated
for the RBM from the non-linear models

1. y; =1 +sin(z;1) + cos(x; 2) + &,

2.y, =1+ sin(xm + 331'72) + &5,

where €; ~ N(0,1), and x; ~ Ns(0,I). The sequential
batch sampling has 5 steps, and each step uses 10 samples
following Algorithm 2.
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Table 3: Comparison among RBM, SOIL and SBS for
Model 2 of Example 1.

Model2  (p,0) (0,1) (0,5 (09,1) (0.9,5)
RBM 197 4626 146 35.97
MSPE  SOIL 201 5023 196  49.78
SBS 193 38.69 1.38 12.92
RBM 160 272 338 748
Volatility SOIL 0 0 0.001  0.01
SBS 146 867 3.35 6.74

Table 4: Comparison among RBM, SOIL and SBS for

Model 3 of Example 1.

Model3  (p,0) (0,1) (0,5) (0.9,1) (0.9,5)
RBM 1.67 42.06 1.24 38.51

MSPE SOIL 1.99 4980 1.93 47.99
SBS 1.65 27.32 1.23 29.44
RBM 027 154 0.74 3.39

Volatility SOIL 0 0 0.02 0.36
SBS 029 047 0.77 4.06

The results of Example 2 are listed in Table 5. Mostly, it
is similar with the results of Example 1. The difference is
that the volatility of SOIL becomes large when the model is
completely non-linear. Using linear models to fit non-linear
model obviously increases the model uncertainty, since none
of the fitting models is correct.

Table 5: Comparison among RBM, SOIL and SBS of Exam-
ple 2.

Model 1  Model 2
RBM 1.26 1.54
MSPE SOIL 1.42 1.80
SBS 1.23 1.47
RBM 0.1 0.11
Volatility SOIL  0.07 0.02
SBS 0.11 0.14

The final example is under the situation that the data
has been already collected. Hence, we cannot use the SBS
method to get the data. However, we have the extra data of
many old similar tasks. In particular, we have the data of
Example 1. Now, the new task is to fit a new model.

Example 3 The data of Example 1 with (p,o) = (0,1) is
given. The new task data {(x;,v;)}?°, is generated from
the linear model y; = 1 + a:fﬂ + og;, where g, ~ N(0, 1),
o € {1,2,3,4,5}, B = {1,-1,0,0,0.5,0,...,0} and
T4 ~ Nl()(o, I)

The method described in Algorithm 1 is denoted by HDR
(Historical Data Related). The results in Figure 3 show the
high consistency with the last two examples. When o is
small, the different priors lead to similar result since the cur-
rent data has key influence. However, when o is large, the
difference between RMB and HDR is huge. The reason is
that the current data has been polluted by the strong noise.



HDR

—6e— RBM

MSPE

1 2 3 4 5
sigma

Figure 3: Comparison among RBM, SOIL and HDR of Ex-
ample 3.

Hence, a good prior can provide the vital information about
the model distribution.

4.2 Real-World Dataset

Here, we apply the proposed methods to two real datasets,
BGS data and Bardet data, which are also used in Ye, Yang,
and Yang (2016).

First, the BGS data is with small d and from the Berkeley
Guidance Study (BGS) by Tuddenham and Snyder (1954).
The dataset records 66 boys’ physical growth measures
from birth to eighteen years. Following Ye, Yang, and
Yang (2016), we consider the same regression model. The
response is age 18 height and the factors include weights at
ages two (WT2) and nine (WT9), heights at ages two (HT2)
and nine (HT9), age nine leg circumference (LG9) and age
18 strength (ST18).

Second, for large d, the Bardet data collects tissue sam-
ples from the eyes of 120 twelve-week-old male rats. For
each tissue, the RNAs of 31,042 selected probes are mea-
sured by the normalized intensity valued. The gene inten-
sity values are in log scale. Gene TRIM32, which causes
the Bardet-Biedl syndrome, is the response in this study.
The genes that are related to it are investigated. A screening
method (Huang, Ma, and Zhang 2008) is applied to the orig-
inal probes. This screened dataset with 200 probes for each
of 120 tissues is also used in Ye, Yang, and Yang (2016).

Both cases are data-given cases that we can’t use sequen-
tial batch sampling method. For the different setting of d,
we assign corresponding similar historical data for two real
datasets. The data of model 1 in Example 1 for the BGS
data with small d. The data of model 3 in Example 1 for the
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Bardet data with large d.

We randomly sample 10 rows from the data as the test
set to calculate empirical MSPE and volatility. The results
are summarized in Table 6. From Table 6, we can see that
both RBM and HDR have smaller MSPE than SOIL. How-
ever, HDR does not perform much better than RBM. This
can be explained intuitively as follows. In theory, the his-
torical tasks and the current task are assumed that they come
from the same task distribution. But in practice, how to mea-
sure the similarity between tasks is still a problem. Hence,
an unrelated historical dataset may provide less information
for the current prediction.

Table 6: Comparison among RBM, SOIL and HDR in real
data.

BGS  Bardet

RBM 13.54 0.0054

MSPE SOIL 16.74 0.0065
HDR 13.06 0.0050

RBM 1.99 0.0013

Volatility SOIL 0.43 0.0013
HDR 1.84 0.0012

4.3 Classification Tasks

In this section, the performance of our HDR method for clas-
sification tasks is demonstrated. Here, we use the same im-
age classification example in Amit and Meir (2018). The hy-
pothesis class is the set of neural networks including the ar-
chitecture given in Amit and Meir (2018) and other CNN
architectures provided in Keras. Different architectures are
weighted by the parameter w. And, the distribution @); is to
characterize the hyperparameter of the i-th architecture. The
cross-entropy loss is used.

The task environment is constructed based on augmenta-
tions of the MINIST dataset (LeCun 1998). Each task is cre-
ated by a permutation of the image pixels. We randomly pick
100, 200 and 300 pixel swaps, and find that they have similar
results. Thus we just show the results with 200 pixel swaps.
For the meta-learner, it is trained by the meta-training tasks
each with 50000 training samples and 10000 validation sam-
ples. For a new task with fewer training samples and 10000
test samples, we randomly sample 2000 training samples 20
times, and compare the average test error percentage of dif-
ferent learning methods. ‘95% CI” in Table 7 means the 95%
confidence interval. MLAP represents the method in Amit
and Meir (2018), and different subscripts mean that different
PAC bounds are used. The Model-Agnostic-Meta-Learning
(Finn, Abbeel, and Levine 2017) is denoted by MAML. See
Amit and Meir (2018) for detailed settings of the example.

Table 7 summarizes the results for the permuted pixels
environment with 200 pixel swaps and 10 training tasks. We
find that the best results are obtained by our HDR method.
Note that for classification tasks, the weighted prediction
is for the one-hot response. Hence, the prediction can be
viewed as picking the largest probability among all the mod-
els not just in one model. Consequently, model averaging



Table 7: Comparisons of different learning methods on 20
test tasks of classification.

METHOD ERROR 95% CI
MLAP, 34 0.18
MLAPg 3.54 0.2
MLAPp;, 749 4.03
MLAPyp  3.52 0.17
MAML 3.77 0.8
HDR 0.72 0.0003

used in classification has much better performance than re-
gression cases.

We also investigate whether the number of training tasks
affects the error rate of the predictions on the new test tasks,
and find that it is improved a lot if the meta-learner is used.
But, the number of training tasks does not has significant
effect.
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