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Abstract

We propose a novel dialogue modeling framework, the first-
ever nonparametric kernel functions based approach for dia-
logue modeling, which learns hashcodes as text representa-
tions; unlike traditional deep learning models, it handles well
relatively small datasets, while also scaling to large ones. We
also derive a novel lower bound on mutual information, used
as a model-selection criterion favoring representations with
better alignment between the utterances of participants in a
collaborative dialogue setting, as well as higher predictability
of the generated responses. As demonstrated on three real-life
datasets, including prominently psychotherapy sessions, the
proposed approach significantly outperforms several state-of-
art neural network based dialogue systems, both in terms of
computational efficiency, reducing training time from days or
weeks to hours, and the response quality, achieving an order
of magnitude improvement over competitors in frequency of
being chosen as the best model by human evaluators.

1 Introduction
1 Dialogue modeling and generation is an active research
area of great practical importance as it provides a solid basis
for building successful conversational agents in a wide range
of applications. However, despite recent successes of deep
neural dialogue models, the open dialog generation problem
is far from being solved (Li et al. 2017; Zhao, Lee, and
Eskenazi 2018; Wu et al. 2018; Zhang et al. 2018; Pandey et
al. 2018; Tao et al. 2018; Xing et al. 2018; Li et al. 2019).

Therefore, it is important to continue exploring novel
types of models and model-selection criteria, beyond today’s
deep neural dialogue systems, in order to better capture the
structure of different types of dialogues and to overcome
certain limitations of neural models, including dependence
on large training datasets, long training times, and difficul-
ties incorporating non-standard objective functions, among
others. Along those lines, in this paper, we propose a first-
ever nonparametric approach (Wasserman 2006), i.e. based
on convolution kernel similarity functions (Haussler 1999;
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1See an extended version of the paper here: arxiv.org/abs/1804.
10188

Mooney and Bunescu 2005; Scholkopf and Smola 2001),
for modeling and generation of dialogues.

Moreover, different applications may possess specific
properties which suit some approaches better than others.
In this work, one of the motivating applications is a fast-
growing area of (semi-)automated psychotherapy: easily ac-
cessible, round-the-clock psychotherapeutic services pro-
vided by a conversational agent. The importance of this
area cannot be underestimated: according to recent statistics,
mental health disorders affect one in four adult Americans,
one in six adolescents, and one in eight children; predicted
by the World Health Organization, by 2030 the amount of
worldwide disability and life loss attributable to depression
may become greater than for any other condition, including
cancer, stroke, heart disease, accidents, and war.

However, many people do not receive an adequate treat-
ment. One of the major factors here is limited availability of
mental health care professionals, as compared to the number
of potential patients; thus, automating at least some aspects
of the treatment is a promising direction.

One of the domain-specific challenges in automated ther-
apy is difficulty obtaining large training datasets which
are often necessary for neural dialogue models; this limi-
tation may require developing alternative approaches. An-
other domain-specific property of therapeutic dialogues,
which can potentially simplify dialogue generation, is the
classical pattern of relatively long patient’s utterances (up
to thousands of words) followed by much shorter thera-
pist’s responses. Therapist’s responses are often high-level,
generic statements, confirming and/or summarizing patient’s
responses; they can be viewed as semantic “labels” to be
predicted from patient’s “input samples”.

Furthermore, a therapy session is typically an example
of a collaborative dialogue, unlike debates, political argu-
ments, and so on. Indeed, a fundamental concept in psy-
chotherapy is the working alliance between the therapist and
the patient (Bordin 1979). The alliance involves the agree-
ment on the goals to be achieved and the tasks to be carried
out, and the bond, trust and respect to be established over
the course of the therapy. While an encompassing formal-
ization of working alliance is a challenging task, we propose
maximizing mutual information between the patient’s and
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Patient: Well I talked to a friend of mine
whom I think is promiscuous and she told
me about a man that came to see her at her
apartment. So I gave him my phone number.
I don't have any hang up about morals. I
don't know. I told a couple of my friends
about this. I must admit I'm a little shy
talking about it now.

Therapist: I see. You
mean it's embarrassing
to tell me about it.

Patient: I'm sitting here just thinking about
things. Should I think out loud?

Therapist: Sure. If you
want to.
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Figure 1: An intuitive illustration of the kernelized hashcodes based framework for dialog modeling. It involves three steps. In
the first step (top), we learn a hashing model to obtain hashcode representations of dialogue utterances; the objective behind
learning a hashing representation via maximizing the mutual information between a patient (left) and therapist (right) responses
is to find a compressed encoding of those responses which preserves the mutually relevant content while ignoring irrelevant
details; e.g., in the example above, we would expect a good representation model to capture the content highlighted in boldface
as essential to the conversation. In step 2 (bottom left), we train a ensemble of decision tree classifiers so as to infer hashcode
for a therapist response, given the hashcode representation of the corresponding patient utterance (input). In step 3 (bottom
right), having the inferred therapist hashcode, we map it to a textual response. One can choose a response from the training set
of therapist responses, the one for which its hashcode has low hamming distance w.r.t. the inferred therapist hashcode. Or, we
can generate a novel response using N-Grams based language modeling, generalized with kernelized hashing of N-Grams.
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therapist’s responses as a simple criterion helping us cap-
ture, to some extent, the dynamics of agreement expected
to develop in most therapies, and, more generally, in other
types of dialogues2. Furthermore, maximizing mutual infor-
mation between the patient’s and therapist’s can improve the
predictability of the latter from the former, thus facilitating
better dialogue generation.

Motivated by above considerations, we introduce here a
novel dialogue modeling framework, the first-ever nonpara-
metric approach for dialogue modeling, where responses are
represented as locality-sensitive kernelized hashcodes (Joly
and Buisson 2011; Garg et al. 2019b; 2019a), and the hash-
ing models are optimized using a novel mutual-information
lower bound, since exact mutual information computation
is intractable in high-dimensional spaces; one can also use
neural networks for learning the hashcode representations,
as we demonstrate in the experiments section. Using hash-
code representations allows for a more tractable way of pre-
dicting responses in a compressed, general representation
space instead of direct generation of textual responses. (Pre-
viously, kernelized hashcode representations were success-
fully applied in the prior works on information-extraction
(Garg et al. 2019b; 2019a).) Once the compressed represen-
tation of the response is inferred, any separately trained gen-
erative model can be plugged in to produce an actual tex-
tual response. See Fig. 1 for an illustration of the frame-
work. Note that separating response inference in the rep-
resentation space from the actual text generation increases
method’s flexibility, while mutual information criterion fa-
cilitates better alignment between the responses of two sub-
jects and higher predictability of the proper response. It is
also important to note that, while the psychotherapy domain
was our primary motivation, the proposed approach is gener-
ally applicable to a wider range of domains as demonstrated
in empirical section.

Overall, our key contributions include: (1) a novel generic
framework for dialogue modeling and generation using ker-
nelized locality sensitive hash functions; (2) a novel lower
bound on the Mutual Information (MI) between the hash-
codes of the responses from the two agents used as an op-
timization criterion for the locality sensitive hash functions;
(3) a language model to generate therapist responses, gener-
alizing from the traditional N-grams based language model-
ing approach via kernelized hashing of N-grams.

We provide an extensive empirical evaluation on three
different dialogue domains, from depression therapy to TV
show interviews and Twitter data, demonstrating advan-
tages of our approach when compared with the state-of-art
neural network based dialog systems, both in terms of the
higher quality of generated responses (especially on rela-
tively small datasets (thousands of samples), including ther-
apy sessions and Larry King TV interviews), as well as com-
putational efficiency, reducing the training time from days or

2Note that imbalanced response length between the two partici-
pants, as well as collaborative property, are shared with some other
types of dialogues, e.g., TV show interviews such as Larry King
dataset analyzed in this paper, where the guest of a show produces
long responses, with the host inserting relatively short comments
facilitating the interview.

even weeks (e.g. on near-million-sample Twitter dataset) to
a few hours.

2 Dialog Modeling via Hashcode

Representations

We now present a novel framework for dialogue modeling
using binary hash functions. We will refer to the two di-
alogue agents as to a patient and a therapist, respectively,
although the approach is generally applicable to a wider va-
riety of dialogue settings, as demonstrated later in the em-
pirical section on datasets such as TV show interviews and
Twitter dialogues.

2.1 Problem Formulation and Approach
Overview

We consider a dialogue dataset consisting of N sam-
ples, Spt = {Sp

i , S
t
i}Ni=1, where each sample is a pair

of a patient and a therapist responses, Sp
i and St

i , re-
spectively; we will also use the following notation: S̄ =
{Sp

1 , · · · , S
p
N , St

1, · · · , St
N}, Sp = {Sp

1 , · · · , S
p
N}, S

t =
{St

1, · · · , St
N}. Each response is a natural language struc-

ture which can be simply a text, or a text with part of speech
tags (PoS), or a syntactic/semantic parsing of the text.

Given response Sp
i , the dialogue generation task is to pro-

duce the response St
i . We approach this task as a three-stage

problem: first, we learn a representation model, based on lo-
cality sensitive hashing, which maps each text response Si

into some binary hashcode vector ci ∈ {0, 1}H ; second, we
train a classifier to infer the therapist’s hashcode ct∗i given
the patient’s hashcode cpi , so that the inference takes place
in the abstract representation space; hashcode representa-
tion aims at capturing, in a compressed form, the semantic
essence of the responses while leaving out irrelevant details;
finally, we produce a textual response based on the predicted
hashcode representation.

Our objective is to choose a hashcode-based text represen-
tation model so that consecutive responses of the dialogue
participants are maximally relevant to each other, as mea-
sured by the mutual information between the correspond-
ing hashcode representations; from another perspective, this
will also make the response of the second’s person more pre-
dictable given the first person’s response.

2.2 Background: Kernelized Locality Sensitive
Hashing

The main idea behind locality sensitive hashing is that, data
points which are similar to each other as per some features,
are assigned hashcodes within a short Hamming distance
to each other, and vice versa (Grauman and Fergus 2013;
Zhao, Lu, and Mei 2014; Wang et al. 2017). Such hashcodes
can be used as generalized representations of language struc-
tures, e.g. responses of dialogue participants. There are mul-
tiple hash functions proven to be locality sensitive (Wang et
al. 2017). Kernelized locality-sensitive hashing approaches
have also been developed (Kulis and Grauman 2009; Joly
and Buisson 2011), which are recently shown to be appli-
cable for learning representations of natural language (Garg
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et al. 2019b; 2019a). These techniques rely on a convolu-
tion kernel similarity function K(Si, Sj ;θ) defined for any
pair of structures Si and Sj with kernel parameters θ (Sri-
vastava, Hovy, and Hovy 2013; Mooney and Bunescu 2005;
Haussler 1999).

In order to construct hash functions for mapping textual
responses to hashcodes, we will first select from a train-
ing dataset a random subset of text structures (responses)
SR ⊂ S̄ of size |SR| = M , called a reference set. Further,
let hl(Si), l = 1, · · · , H , denote a set of H binary-valued
hash functions, and let h(Si) denote vector {hl(Si)}Hl=1.
The hashcode representation of response Si will be given
as ci = h(Si).

To generate a hash function hl(Si), for each bit l, we
first select a random subset SR

l ⊂ SR of the reference
set, |SR

l | = 2α. Next, we assign label 0 to α randomly se-
lected elements of SR

l , and label 1 to the remaining α ele-
ments of that set, creating an artificial binary-labeled train-
ing dataset 3, which can be now fed into any binary classi-
fier to learn a function hl(Si). We generate H such random
splits of the reference set, and learn the corresponding H bi-
nary classifiers, as hash functions. We also tried kernelized
k-nearest neighbor classifier (kNN), resulting into hashing
approach we refer to as LSH-RkNN.

Overall, to obtain a hashcode of a given response Si, we
must compute M kernel similarities, K(Si, Sj), ∀Sj ∈ SR.
For a limited size (M ) of the reference set SR, hashcodes
can be computed efficiently, with the computational cost lin-
ear in H; also, note that LSH techniques described above are
easily parallelizable.

Finally, our LSH-RLSTM model uses LSTM language
model for generating hashcodes; no reference set optimiza-
tion is required here, since LSTM easily handles large train-
ing datasets; however, other hyperparameters, including net-
work’s architecture, need to be optimized.

2.3 Learning Kernelized Hashcode
Representations for Dialog Modeling

Given that each specific hashing model described above in-
volves several model-selection choices, our task will be to
optimize those choices using the information-theoretic cri-
terion proposed below.

Optimizing LSH Model Parameters
As per the discussion of LSH above, an LSH model involves
the function lsh(.;θ,SR) for mapping text responses to
hashcodes: ci = lsh(Si;θ,S

R), where ci = h(Si) =
(hl(Si))

H
l=1, and where each hash function hl(.) is built

based on a random subset of SR using either a kernel (kNN,
SVM) or a neural network (LSTM) classifier. For the case
of kernel-based LSH, θ are the parameters of a convolu-
tion kernel similarity function K(Si, Sj). For neural hashing
(LSH-RLSTM), θ refers to the neural architecture hyperpa-
rameters (number of layers, the number of units in a layer,

3For a more sophisticated methodology to assign the artificial
binary labels, and to select the random subsets of SR, refer to the
recent work by (Garg et al. 2019a).

type of units, etc.); θ also includes LSH-specific parameters
such as α.

When learning LSH models on a training datset, the (hy-
per) parameters θ as well as the reference set SR will be op-
timized with respect to the information-theoretic objective
introduced below. Namely, for LSH-RkNN and LSH-RMM,
the kernel parameters θ are optimized via grid search. For
LSH-RLSTM, θ reflects the neural architecture, i.e. the
number of layers and the number of units in each layer, op-
timized by greedy search. Similarly, SR is also constructed
via a greedy algorithm.

Information-Theoretic Objective Function
The objective function for hashcode-based model selection
in dialog generation should (1) characterize the quality of
hashcodes as generalized/compressed representations of di-
alogue responses and (2) favor representation models lead-
ing to higher-accuracy response generation.

Mutual information I(Sp : St) between the dialog re-
sponses Sp (e.g, patient) and St (e.g., therapist) is a natu-
ral candidate objective as it implies higher predictability of
one response from another. Though, it is hard to compute
in practice as the joint distribution over all pairs of textual
responses is not available. However, we can attempt to ap-
proximate it using hashcode representations. If h(.) repre-
sents a function from the space of all statements to the hash-
ing code space, then the data processing inequality implies
that ∀h(.), I(Sp : St) ≥ I(h(Sp) : h(St)), and maximiz-
ing the quantity on the right can be more computationally
feasible.

Thus we will maximize the mutual information (MI) be-
tween the response hashcodes, over LSH model parameters;
it turns out that MI reflects both the inference accuracy as
well as the representation quality, as we will see below:

argmax
θ,SR

I(Cp : Ct); (1)

Cp = lsh(Sp;θ,SR), Ct = lsh(St;θ,SR) (2)

I(Cp : Ct) = H(Ct)−H(Ct|Cp) (3)

Herein, Cp and Ct are the multivariate binary random vari-
ables associated with the hashcodes of patient and therapist
responses, respectively. Minimizing the conditional entropy,
H(Ct|Cp), improves the predictive accuracy when infer-
ring therapist response hashcode, while maximizing the en-
tropy term, H(Ct), should ensure good quality of the hash-
codes as generalized representations of text responses; thus
MI objective satisfies both criteria stated at the beginning of
this section.

Mutual Information Lower Bound for Efficiency
Since computing mutual information between two high-
dimensional variables can be both computationally ex-
pensive and inaccurate if the number of samples is
small (Kraskov and Grassberger 2004; Walters-Williams
and Li 2009; Singh and Póczos 2014; Gao, Ver Steeg, and
Galstyan 2015), we develop a (novel) lower bound on the
mutual information which is easy to compute. For deriva-
tion details, see the supplementary material.
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Algorithm 1 Response Generation via Hashing of N-grams

Require: Therapist response sentences from the training set, St and their hashcodes, Ct; N-grams from the training set, Sg ,
and their hashcodes, Cg; an inferred therapist hashcode, ct∗.

1: St ← samplePrefix(ct∗,C
t, St) % sampling from therapist responses matching the inferred therapist hashcode.

2: while True do
3: Sg ← extractSuffixAsNgram(St)
4: cg ← computeHashcodeOfNgram(Sg)
5: wg ← inferNextToken(cg,Cg) % for an Ngram, there are tokens to follow as suffix along with the probabilities.

Tokens from all the relevant N-Grams in the training set, matched via hashcodes, are aggregated for sampling.
6: St ← appendTokenToResponse(St, wg)
7: ct ← computeHashcodeOfResponse(St)
8: f t ← computeLikelihood(ct, ct∗,C

t) % likelihood per the responses in training set matched via hashcodes, and
hamming distance w.r.t. the inferred hashcode.

9: if f t is high then
10: return St, f t % return the therapist response.
11: else if fg is very low then

12: St ← backtrack(St) % Some of the tokens in the suffix are removed from the response.
13: end if
14: end while

We will first introduce the information-theoretic quan-
tity called Total Correlation (Watanabe 1960), T C(C) =∑
j

H(Cj) − H(C), which captures non-linear correlation

among the dimensions of a random variable C; given an ad-
ditional random variable Y , T C(C : Y ) is defined as:

T C(C : Y ) = T C(C)− T C(C|Y ). (4)

Theorem 1 (Lower Bound on Mutual Information). Mu-
tual information between two random hashcode variables,
I(Cp : Ct), can be bounded from below as follows:

I(Cp : Ct) ≥
∑

j

H(Ct
j)− T C(Ct : Y ∗) +

∑

j

〈
log q(Ct

j |Cp)
〉
.

Herein, T C(Ct : Y ) describes Total Correlations within
Ct that can be explained by a latent variables representa-
tion Y ; q(Ct

j |Cp) is a proposal conditional distribution for
the jth bit of the hashcode Ct predicted using a probabilis-
tic classifier, like a Random Forest model.

As discussed in (Ver Steeg and Galstyan 2014), T C(Ct :
Y ∗) can be computed efficiently.

Note that the first two terms in the MI lower bound con-
tribute to improving the quality of hashcodes as response
representations, maximizing entropy of each hashcode bit
while discouraging redundancies between the bits, while the
last term containing conditional entropies aims at improving
inference of individual hashcode bits.

Moreover, one can use the proposed MI LB as an evalua-
tion metric of the dialog quality on test data, i.e. the align-
ment/relevance between the responses of two dialog agents.

Also, note that mutual information criterion has been
used previously to optimize kernelized hashcode represen-
tations for binary classification problems (Garg et al. 2019b;

2019a). The approximation of mutual information proposed
in those prior works are not applicable for dialog modeling.

We also use a normalized metric, dividing MI LB by an
upper bound on joint entropy,

H(Ct) =
∑

j

H(Ct
j)− T C(Ct) (5)

≤
∑

j

H(Ct
j)− T C(Ct : Y ∗). (6)

For T C(Ct|Y ∗) = 0, i.e. when a latent representation
Y ∗ is learned which explains all the Total Correlations in
Ct, the upper bound becomes equal to the entropy term;
practically, for the case of hashcodes, learning such a rep-
resentation should not be difficult, so the bound should be
tight.

Having learned a model to hash patient or therapist ut-
terances, we train a Random Forest classifier, or any clas-
sifier, to infer hashcode for a therapist response given the
input of a hashcode of a patient utterance, as illustrated in
Fig. 1. For mapping the inferred therapist hashcode to a
textual response, we have two choices. One simple choice,
which works well for therapeutic dialog like problems, is to
select a therapist response from the training set by matching
its hashcode w.r.t. the inferred hashcode. Second choice is
to generate a new response given the inferred hashcode, for
which we propose a novel approach in the following section.

2.4 Dialogue Generation with Kernelized
Hashing of N-grams

For generation of a therapist dialogue response, given the
input of its kernelized hashcode representation, we propose
a new language model by generalizing the traditional ap-
proach of N-grams language modeling with kernelized hash-
ing of N-grams. The fundamental problem with the tradi-
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Model Average Greedy Extrema
LSTM (Vinyals and Le 2015) 0.61±0.31 0.58±0.29 0.28±0.16

HRED(Serban et al. 2016a) 0.48±0.23 0.43±0.20 0.29±0.16

VHRED(Serban et al. 2017) 0.48±0.23 0.43±0.20 0.29±0.16
LSH-RkNN 0.60±0.37 0.58±0.34 0.37±0.24

LSH-RMM 0.56±0.38 0.53±0.33 0.31±0.23

LSH-RLSTM 0.64±0.37 0.51±0.28 0.28±0.19

(a) Depression Therapy Dataset

Average Greedy Extrema
0.51 0.39 0.37

0.50 0.38 0.36

0.53 0.40 0.38

0.61±0.17 0.40±0.13 0.25±0.09

0.61±0.17 0.41±0.13 0.25±0.09

0.60±0.18 0.39±0.13 0.24±0.09

(b) Twitter Dataset

Average Greedy Extrema
0.71±0.24 0.60±0.20 0.35±0.14

0.71±0.25 0.61±0.20 0.29±0.12

0.70±0.24 0.72±0.25 0.43±0.18

0.76±0.28 0.60±0.21 0.34±0.15

0.73±0.28 0.59±0.22 0.35±0.16

0.76±0.27 0.58±0.21 0.33±0.15

(c) Larry King Dataset

Table 1: Comparison between state-of-art neural network models (LSTM, HRED and VHRED) and the proposed hashing mod-
els (LSH-RkNN, LSH-RMM and LSH-RLSTM), on three datasets – Depression Therapy, Twitter, and Larry King data – using
word embedding-based similarity metrics between the actual and generated responses. Mean and standard deviation across
samples (response pairs) are reported for all metrics, for each test set except for Twitter results with prior art models (LSTM,
HRED, VHRED) - we used the numbers reported in (Serban et al. 2017), without rerunning the models; standard deviations
were not reported in that paper.

tional N-grams based language models is that the approach
is restricted to N-grams of short length (Pauls and Klein
2011; Bengio et al. 2003). As we increase the length of N-
grams, it becomes difficult to generalize the applicability of
N-grams from a training corpus to test settings due an ex-
plosion in the number of possible N-grams.

In light of the recent developments on learning kernel-
ized hashcode representations of natural language (Garg et
al. 2019b; 2019a), it is possible to generalize the existing N-
gram language models via kernelized hashing of N-grams.
While it is low probable to exactly match an N-gram of large
length w.r.t. the ones in a training corpus, it is feasible to find
a match for its hashcode representation. This is because N-
grams sharing relevant patterns are assigned same kernelized
hashcode. Along these lines, instead of N-grams, probabili-
ties are computed for hashcodes of N-grams per the occur-
rence statistics of N-grams assigned same hashcode, and so
it applies for the conditional probabilities, which gives us
the basic language model for generating therapist responses;
see the pseudo code in Alg. 1.

For hashing of N-grams, we use an unsupervised kernel-
ized hashing model; the supervised dialog hashing model,
that we proposed in the previous section, is used only for
hashing of dialogue utterances, not N-grams. In (Garg et
al. 2019a), an information theoretic approach for nearly-
unsupervised learning of kernelized representations is pro-
posed for information extraction task, that is easily extensi-
ble for unsupervised learning settings.

3 Empirical Evaluation

Several variants of the proposed hashing based dialog
model, using kNN, SVM or LSTM to build hashcodes,
respectively, were evaluated on three different datasets
and compared with three state-of-art dialog generation ap-
proaches of (Serban et al. 2017; 2016a) and (Vinyals and Le
2015). Besides several standard evaluation metrics adopted
by those approaches, we also report the model rankings ob-
tained by human evaluators via Amazon Mechanical Turk.

3.1 Experimental Setup

Datasets
The three datasets used in our experiments include (1) de-
pression therapy sessions, (2) Larry King TV interviews and
(3) Twitter dataset. The depression therapy dataset4 consists
of transcribed recordings of nearly 400 therapy sessions be-
tween multiple therapists and patients. Each patient response
St
i followed by therapist response Sp

i is treated as a single
sample; all such pairs, from all sessions, were combined into
one set of N=42000 samples. We select 10% of the data ran-
domly as a test set (4200 samples), and then perform an-
other random 90/10 split of the remaining 38,000 samples
into training and validation subsets, respectively. We follow
the experimental setup from prior work cited above when
comparing the respective neural network models with our
hashing based approaches: all models are trained only once
using the same training and validation datasets, and evalu-
ated on the same test set. However, for our hashing model
metrics introduced below, we average the estimates over 10
random subsets using 95% of test samples each time.

The Larry King dataset 5 contains transcripts of inter-
views with the guests of TV talk shows, conducted by Larry
King, the host. Similarly to the depression therapy dataset,
we put together all pairs of guest/host responses from 69
sessions into a single set of size 8200. The data are split into
training, validation and test subsets as described earlier.

Next, we experimented with the Twitter Dialogue Corpus
(Ritter, Cherry, and Dolan 2010). Considering the original
tweet and the following comments on it, in the same session,
the task is to infer the next tweet. Note that we consider all
utterances preceding that tweet as one long utterance, i.e.
as the first “response” SA

i , mapped to one hashcode, while
the next tweet is the second “response” SB

i , which is dif-
ferent from the approach of (Serban et al. 2017) we com-
pare with, where the previous utterances in a session are
explicitly viewed as a sequence. The number of tweet ses-

4https://alexanderstreet.com/products/counseling-and-
psychotherapy-transcripts-series

5http://transcripts.cnn.com/TRANSCRIPTS/lkl.html
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LSTM HRED VHRED LSH-RkNN LSH-RMM LSH-RLSTM
Appropriate (%) 3.7 8.6 9.5 28.7 24.1 25.4

Diverse (%) 0.7 9.3 0.7 35.1 13.2 41.1

(a) Depression Dataset

LSTM HRED VHRED LSH-RkNN LSH-RMM LSH-RLSTM
Appropriate (%) 5.3 3.9 5.3 31.7 25.6 28.3

Diverse (%) 3.3 13.3 0.0 36.7 10.0 36.7

(b) Larry King Dataset

Table 2: Human evaluation scores on (a) Depression dataset
(900 test samples) and (b) Larry King dataset (180 test sam-
ples).

sions (each viewed as a separate sample, i.e. {SA
i , S

B
i } pair

of responses), in training, validation, and test subsets are,
respectively, 749060, 93633, and 93633.

Task
For all datasets, the task is to train a model on a set of train-
ing samples, i.e. response pairs (SA

i , S
B
i ), where SA

i is a re-
sponse of person A, followed by the corresponding response
of a person B. Then each test sample is given as a response
of person A, and the task is to generate the response of a
person B.

Hashing Models
Step 1: Representation Learning. We evaluate three dif-
ferent hashing models: the first two, based on kernel lo-
cality sensitive hashing (KLSH) (Joly and Buisson 2011;
Garg et al. 2019b), are called LSH-RMM and LSH-RkNN,
and use, respectively, Max-Margin (SVM) classifier (with
C=1 parameter) or kNN classifier (k=1), to compute each
hash function. The third model, LSH-RLSTM, uses LSTM
for hash function computation. We use hashcode vectors of
dimensionality H=100. For LSH-RkNN and LSH-RMM, we
use as a reference set a random subset of M=300 samples
from the training dataset, to reduce the computational com-
plexity of training those models, but for LSH-RLSTM we
use the whole training dataset as a reference set. Parameters
θ for LSH models are obtained by maximizing the proposed
MI LB criterion.

Step 2: Hashcode prediction. We now map all responses,
of both participants A and B, in both training and test
sets, to the corresponding hashcodes using one of the above
hashcode-based representation models. Next, to predict the
response hashcode of a person B given a hashcode of a per-
son A, we train separate Random Forest (RF) classifiers
(each containing 100 decision trees) for each hashcode bit
(i.e. 100 such RF classifiers, since H=100).

Step 3: Textual response generation. Given a hashcode of
a response inferred by RF classifier above, mapping it to an
actual text can be performed in multiple ways; by default, we
find a match of the generated hashcode in the set of all hash-
codes corresponding to the person B responses in our train-
ing data as this approach is highly suitable for depression
therapy like dialogues. In addition, we also provide human
evaluation for generating new responses using the N-grams
hashing based language model proposed in Sec. 2.4.

Model MI LB (Shuffled) NMI LB HIA (Baseline)
LSH-RkNN 12.8±0.5 (6.1±0.2) 0.57 (0.27) 0.87±0.16 (0.82±0.18)

LSH-RMM 13.7±0.2 (-1.0±0.3) 0.39 (0.0) 0.68±0.10 (0.59±0.10)

LSH-RLSTM 20.3±0.3 (10.6±0.2) 0.76 (0.40) 0.82±0.19 (0.79±0.21)

(a) Depression Therapy Dataset

Model MI LB (Shuffled) NMI LB HIA (Baseline)
LSH-RkNN 17.3±0.1 (9.1±0.1) 0.75 (0.40) 0.85±0.18 (0.81±0.21)

LSH-RMM 23.4±0.2 (11.2±0.3) 0.71 (0.34) 0.80±0.14 (0.72±0.16)

LSH-RLSTM 41.9±0.1 (24.3±0.1) 0.83 (0.48) 0.69±0.16 (0.63±0.16)

(b) Twitter Dataset

Model MI LB (Shuffled) NMI LB HIA (Baseline)
LSH-RkNN 9.4±0.3 (5.1±0.3) 0.63 (0.34) 0.91±0.14 (0.89±0.16)

LSH-RMM 22.4±0.9 (4.5±1.2) 0.62 (0.13) 0.69±0.11 (0.59±0.10)

LSH-RLSTM 48.9±0.3 (28.4±0.5) 0.80 (0.47) 0.62±0.10 (0.54±0.07)

(c) Larry King Dataset

Table 3: Hashcode models quality as measured by the align-
ment between the hashcodes of person A and person B re-
sponses (mutual information lower bound and its normalized
version), as well as by the predictability of B’s responses
given A’s response.

Baseline: Neural Network Dialog Generation Models
We compare our dialog generation method with the state-
of-art VHRED approach of (Serban et al. 2017), as well as
with the two other approaches, HRED (Serban et al. 2016a),
and LSTM (Vinyals and Le 2015), also used as baselines in
the VHRED paper. We adopt the same hyperparameter set-
tings as those used in (Serban et al. 2017). For the Twitter
dataset, we compare with the results presented in the above
paper, while on the other two datasets, we train the above
models ourselves. The vocabulary size for the input is set
via grid search between values 1000 to 100000. The neural
network structures are chosen by an informal search over a
set of architectures and we set maximum gradient steps to
80, validation frequency to 500 and step-size decay for SGD
is 1e-4.

Evaluation Metrics
Embedding-based metrics. We compare our methods with
the state-of-art neural network approaches listed above us-
ing three word embedding-based topic similarity metrics -
embedding average, embedding greedy, and embedding ex-
trema (Liu et al. 2016), adopted by (Serban et al. 2017). Fol-
lowing the prior art, we used Google News Corpus to train
the embeddings. The mean and standard deviation statistics
for each metric are computed over 10 runs of the experiment,
as mentioned above.
Human evaluation. Using Amazon Mechanical Turk, we ob-
tained model rankings from 108 human readers (annotators).
For each test sample, we showed to the reader all responses
produced the six models evaluated here, in random order
for each instance, and without specifying which model pro-
duced which response. We asked the annotator to choose two
most appropriate responses; then, for each model, we com-
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LSTM HRED VHRED LSH-RkNN LSH-RkNN-Gen

Appropriate (%) 3.7 12.2 13.5 36.8 33.8

Diverse (%) 0.0 4.0 4.0 80 12.0

Table 4: Human evaluation scores on Depression
dataset (300 test samples) for our generative hashing
model (LSH-RkNN-Gen) w.r.t. the baseline models, and
our response selection based hashing model (LSH-RkNN).

puted across all test samples the percent of the readers who
voted for that model. Furthermore, in a separate session, we
also asked the person which model produced the most di-
verse responses; in this case we listed the model’s names
and associated responses.
Information-theoretic metrics. The second group of metrics
directly evaluates the quality of hashcodes obtained using
our models. For each method, we will report the proposed
MI lower bound (MI LB) from Theorem 1, as well as its nor-
malized version (NMI LB). For each of the metrics, higher
values mean better performance. We also report the hash-
code inference accuracy (HIA), i.e. the accuracy of predict-
ing hashcode bits of response B using RF classifiers. We also
obtain the baseline accuracy (Baseline), using a trivial clas-
sifier that always chooses the most-frequent class label.

3.2 Results

Computational Efficiency
First of all, we observed that the hashing models are much
more computationally efficient than the neural network ap-
proaches we compared with: it takes from several days (for
smaller datasets such as Depression therapy and Larry King
dataset containing about 42,000 and 8,200 samples) to more
than two weeks (on Twitter, with roughly 749,000 samples)
to train a neural network model, even on a 1000-core GPU,
whereas an LSH model is typically optimized within several
hours (e.g., less than 5-6 hours for Twitter), on a 16-core
CPU.

Embedding-based Metrics
Table 1 summarizes performance of all methods with re-
spect to the embedding-based metrics, with the best results
for each metric/column shown in boldface. Overall, the pro-
posed hashing approaches are quite competitive with the
neural net methods in terms of those metrics as well: on
all three datasets, our LSH methods always outperform their
competitors in terms of the average similarity metric (which
is the most intuitive among the three metrics in terms of re-
flecting the topic similarity between the true and system-
generated responses); moreover, our methods also achieve
best performance w.r.t. the greedy metric on Twitter dataset,
and w.r.t. extrema metric on the Depression dataset.

Human Evaluation
We also performed an extensive human evaluation of the di-
alog generation quality (as described earlier in section 5.1),
on two relatively smaller datasets, Depression and Larry
King. The results are shown in Table 2a and 2b, respec-
tively. The hashcode-based approaches considerably out-
perform the neural net models, by one-two orders of mag-

nitude, in terms of the responses being both more appropri-
ate and more diverse6. Amongst the three hashing models,
LSH-RkNN seem to be performing the best.

Further, we performed another human evaluation of LSH-
RkNN, for a comparison between response generation vs
response selection, and their comparison w.r.t. the baseline
neural models. As we observe in Tab. 4, both response se-
lection and response generation seem to give equally good
responses in terms of appropriateness, and significantly out-
perform the neural baselines. Low diversity of generated re-
sponses remains an issue, as also known to be the case for
neural models.

Information-theoretic Metrics
Next, we took a deep dive into evaluation of hashing ap-
proaches with respect to how well they actually model the
alignment between the responses; the results are summa-
rized in Table 3, presenting the mutual information lower
bound (MI LB), normalized MI LB, and hashcode infer-
ence accuracy (HIA) as discussed before; note that besides
presenting chance-level baseline classifier accuracy (i.e., se-
lecting the most-frequent class), we also present a similar
baseline for MI LB and NMI LB metrics, using randomly
permuted (shuffled) pairings between responses of person A
and person B. We now look at the difference between each
metric and its corresponding baseline, shown in parenthe-
sis, and highlight the largest, most significant differences be-
tween the means of both metrics in boldface.

Overall, LSH-RMM method appear to be the best on all
datesets in terms of most significant improvement over the
baseline in terms of normalized MI LB and prediction accu-
racy, although LSH-RLSTM is the best in term of the raw MI
LB on Twitter and Larry King datasets.

4 Related Work

Therapy chatbots, such as Woebot (Fitzpatrick, Darcy, and
Vierhile 2017) and similar systems, are becoming increas-
ingly popular; however, these agents have limited ability to
understand free text and have to resort to a fixed set of pre-
programmed responses to choose from (Di Prospero et al.
2017; Ly, Ly, and Andersson 2017; Schroeder et al. 2018;
Morris et al. 2018; Hamamura et al. 2018).

For dialogue modeling in general domains, several re-
cently proposed neural network based approaches are con-
sidered state-of-art (Serban et al. 2016b; 2017; Zhao, Lee,
and Eskenazi 2018; Tao et al. 2018; Li et al. 2019). How-
ever, those approaches usually require very large training
datasets, unavailable in many practical applications; further-
more, they are not typically explored in dialogue settings
such as therapy including very long responses (up to tens
of thousands of words). Also, evaluating the effectiveness of
the therapist’s response requires some notion of relevance
(e.g., mutual information) which goes beyond the standard
measures of its semantic features (Papineni et al. 2002;
Liu et al. 2016; Li and Jurafsky 2017; Lowe et al. 2017).

Unlike task-driven dialogue (Zhai and Williams 2014;
Wen et al. 2017; Althoff, Clark, and Leskovec 2016; Lewis

6See several examples in the extended version.
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et al. 2017; He et al. 2018), an immediate response qual-
ity metric may not be available in our settings, since the ef-
fect of therapy is harder to evaluate and multiple sessions
are often required to achieve the desired outcome. Atten-
tion to specific parts of the response, as well as background
knowledge, explored in neural network based dialogue mod-
eling (Kosovan, Lehmann, and Fischer 2017) can be helpful
in therapeutic dialogues; those aspects are, to some extent,
implicitly captured by learning the hashing models.

In (He et al. 2018), an approach is presented to a task-
driven (e.g., negotiation) dialogue which consists in map-
ping a response to an ordered list of rules, where each rule
represents a task-specific intent; this does not apply to our
more open-ended dialogues without the specific tasks.

Finally, there are multiple approaches for estimating mu-
tual information from data (Kraskov and Grassberger 2004;
Koeman and Heskes 2014). However, these estimators are
highly expensive in high-dimensional settings, and can be
quite inaccurate when the number of samples is small. There
is a recent approach of neural estimation of mutual informa-
tion on two high dimensional continuous variables, though
not applicable to discrete variables like hashcodes (Belghazi
et al. 2018). For discrete variables, theoretical analysis has
been limited to one dimensional case (Jiao et al. 2017).

5 Conclusions

This paper introduces a novel approach to dialogue mod-
eling where responses of both participants are represented
by kernelized hashcodes. Furthermore, a novel lower bound
on Mutual Information is derived and used as a hascode-
based model-selection criterion in order to facilitate a better
alignment in collaborative dialogue, as well as predictability
of responses. Our empirical results consistently demonstrate
superior performance of the proposed approach over state-
of-art neural network dialogue models in terms of both com-
putational efficiency and response quality. For next steps,
we plan to further improve the approach by choosing a bet-
ter response from a larger corpus, implement more sophis-
ticated hashcode-to-text generative models, and extend the
model to the dynamics of a dialogue beyond immediate re-
sponses. Additionally, we will exploit the vast literature on
operationalized assessment of several psychological quali-
ties such as the Beck Depression (Beck AT 1961) and Beck
Anxiety (Beck AT 1988) Inventories, as well as features of
dialogue such as the Working Alliance Inventory (Horvath
1986), in order to derive better hashcode representations and
predictive models. In this sense, we expect that the lessons
learned in richly evaluated therapy sessions can be extrapo-
lated, mutatis mutandis, beyond the realm of mental health.
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