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Tübingen, Germany

{wolfgang.fuhl, gjergji.kasneci, wolfgang.rosenstiel, enkelejda.kasneci}@uni-tuebingen.de

Abstract

We present an alternative layer to convolution layers in con-
volutional neural networks (CNNs). Our approach reduces
the complexity of convolutions by replacing it with binary
decisions. Those binary decisions are used as indexes to con-
ditional distributions where each weight represents a leaf in a
decision tree. This means that only the indices to the weights
need to be determined once, thus reducing the complexity of
convolutions by the depth of the output tensor. Index compu-
tation is performed by simple binary decisions that require
fewer cycles compared to conventionally used multiplica-
tions. In addition, we show how convolutions can be replaced
by binary decisions. These binary decisions form indices in
the conditional distributions and we show how they are used
to replace 2D weight matrices as well as 3D weight tensors.
These new layers can be trained like convolution layers in
CNNs based on the backpropagation algorithm, for which we
provide a formalization.
Our results on multiple publicly available data sets show that
our approach performs similar to conventional neuronal net-
works. Beyond the formalized reduction of complexity and
the improved qualitative performance, we show the runtime
improvement empirically compared to convolution layers.

Introduction and Related Work

Conditioning CNNs is a modern approach to reducing run-
time which is typically achieved by activating only parts of
the models or by pursuing the scalability of model complex-
ity (Shazeer et al. 2017; Ioannou et al. 2016; Chen et al.
2018) to reduce computational costs without compromising
accuracy. Recent approaches even reduce the complexity of
convolution layers (Keskin and Izadi 2018) without affect-
ing the accuracy. This paper describes a new approach for
the practical implementation of conditional neural networks
using conditional distributions and binary decisions. Similar
to (Keskin and Izadi 2018), we replace convolutional lay-
ers to reduce computational complexity with the addition of
indexing by simple binary decisions. We show analytically
and empirically the reduction of the computational runtime
on the basis of public data sets as well as the retention or
increase of the accuracy of the model.
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There are four main categories of Conditional Neural Net-
works:
1 Neural Networks that use loss functions for optimizing

decision parameters.
2 Probabilistic approaches that learn a selection of experts.
3 Neural networks with decision tree architectures.
4 Replacement layers for the convolutions, which map hier-

archical decision graphs conditionally to the input feature
space.
The first category uses non-differentiable decision func-

tions where the parameters for these are learned by an ad-
ditional loss function. A loss function which maximizes the
distances of the subcluster was presented in (Xiong et al.
2015). The path loss function is used in (Baek, Kim, and
Kim 2017). This is based on the purity of the data activation
with respect to its class label distribution. The information
gain is used in (Bicici, Keskin, and Akarun 2018) to learn an
evaluation function which allows to activate paths through
the network.

In the second category, probabilistic approaches are pur-
sued. Weights are assigned to each branch and treated as
a sum over a loss function (Ioannou et al. 2016). A simi-
lar approach is followed in (Shazeer et al. 2017). The main
difference is that a very high number of branches per layer
is considered and the best k branches are followed in the
training phase as well as in the test phase. Another approach
trains two neural networks where one provides the decision
probability at the output and the second network performs
the classification (Kontschieder et al. 2015). Both nets are
trained jointly.

In the third category, the architecture of the neural net-
work is similar to a decision tree. Randomized multi-layer
perceptrons are used in (Rota Bulo and Kontschieder 2014)
as branch accounts and trained together with the entire net.
An alternative architecture is presented in (Denoyer and Gal-
linari 2014). Here, each account in a net has three possi-
ble subsequent nodes. The selection of the following node
is done via an evaluation function which is learned via the
REINFORCE algorithm (Denoyer and Gallinari 2014). In
(Wang, Aggarwal, and Liu 2017), partitioning features are
learned which make it possible to train the whole network
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Figure 1: The left part depicts a decision tree. The decisions are true or false evaluations and the tree structure is complete and
balanced. The middle part replaces the tree with a simple binary number and indexes a weight of a distribution. The distribution
and its indices are shown on the right. Each value in the distribution corresponds to one leaf of the decision tree (left).

with the backpropagation algorithm. The architecture of the
network corresponds to that of a binary decision tree. Each
node in this network represents a splitting and has therefore
exactly two outputs where only one can be active at a time
(Wang, Aggarwal, and Liu 2017).

The fourth and last category includes approaches that rep-
resent new layers in a neural network. Spatial transformation
networks (Jaderberg et al. 2015) learn a transformation of
the input tensor, which simplifies further processing in the
network. In general this is a uniform representation of the
input tensor which can be understood as spatial alignment.
Since the accuracy of a mesh depends not only on the in-
put, but also on the filters in convolution layers, (Jia et al.
2016) introduces a layer that learns to generate optimal fil-
ters based on the input. This layer consists of a small neural
network with convolution and transposed convolution lay-
ers. A further possibility for the conditional adaptation of
neural networks is the configuration of the weights over a
temporal course as it was realized in (Holden, Komura, and
Saito 2017) over a phase function. The authors of (Holden,
Komura, and Saito 2017) used a Catmull-Rom spline as
phase function which can also be replaced by a neural net-
work. The additive component analysis (Murdock and De la
Torre 2017) however tries to realize a non-linear dimension
reduction by an approximation of additive functions. This
is also defined as a fully connected layer and can be con-
nected and trained in several layers. An approach based on
this are the SplineNets (Keskin and Izadi 2018) which assign
a new interpolated value to a learned spline via the response
of a learned filter in the previous layer. This spline makes
the function differentiable and several of these layers one
behind the other can be understood as a topological graph.

Our novel approach is based on the idea of SplineNets
(Keskin and Izadi 2018) to reduce convolutional complexity
by simply mapping input characteristics to interpolated val-
ues. In addition, we simplify index generation with the gen-
eral idea of binary neural networks (Courbariaux, Bengio,
and David 2015). For this we use conditional distributions
like random ferns (Bosch, Zisserman, and Munoz 2007).
The indices are determined based on simple larger, smaller

comparisons between input values. These indices are used to
select weights from several distributions and multiply them
by the input values. The indices itself are the evaluation of
the decision tree and the selected weight is the leaf node.
This means that we consider both the values in the distribu-
tions and the input and output values as probabilities. This
allows us to train the whole new layer with the backpropa-
gation algorithm together with the whole net, as well as to
connect several layers in series. The reduction of the com-
putation complexity comes like with SplineNets (Keskin and
Izadi 2018) by the indexing which has to be calculated only
once and not like with convolution layers, where a new con-
volution has to be calculated for each filter. In addition, our
layer does not have to learn function parameters or perform
expensive multiplications to generate the indices.

Due to the conditional weights which are trained holisti-
cally in one layer, our approach belongs to category 4. Since
the indices generation is based on comparisons and random
ferns (Bosch, Zisserman, and Munoz 2007) represent a con-
cretisation of random forests (Breiman 2001), our approach
also belongs to category 3. This means that it is a hybrid
approach which is formalized as an independent layer but
contains decision tree structures.

Our contributions in this work are:
1 A new layer that selects leaf weights based on binary de-

cisions.
2 The approximation of filters for index generation by bi-

nary decisions.
3 A differentiable formal definition of the forward execu-

tion which is suitable for the backpropagation algorithm.
4 Analytical and empirical evaluation of the quality and

runtime improvement compared to CNNs.

Methodology

The Figure 1 shows the core concept of our process. Ran-
dom Ferns are binary decisions that are linked to conditional
weights (see Figure 1). The binary decisions themselves rep-
resent the conditions. This means that it is a decision tree.
Since each binary decision is always evaluated, the structure

3883



Figure 2: The functionality of the decision trees compared to a convolution. Like the convolution itself, an input window (I) is
moved over the input tensor. In the upper part you can see the convolution which multiplies the weights (C) by the values in I
and adds them up. In the lower part the decision tree is evaluated and the weight is multiplied by the central input value (0).

of this tree is arbitrary under the condition that each decision
function must be contained once in each path, which makes
the decision tree a balanced tree.

P (PD|I(k) > I(j), ∀j, k ∈ BD, j �= k) (1)
Equation 1 describes the evaluation of such a decision tree

or Fern. I is the input tensor, PD the distribution (see Fig-
ure 1) and BD the indices of the comparisons. To use this
decision tree now like a convolution the indices in BD re-
fer only to values in an input window which is moved over
the whole input tensor (see Figure 2). To combine several of
these decision trees, the weights are multiplied. In the case
of Equation 1, this would be the centered input values at
the current window position making it easy to determine the
derivative and thus the gradient. Another simplification of
Equation 1 is to compare all positions in BD using only the
central value (see Figure 2). This simplifies the back propa-
gation of the error.

I(0) ∗ P (PD|I(0) > I(j), ∀j ∈ BD) (2)
This leads to Equation 2 which describes the evaluation of

the decision tree for an input window. In the case of convolu-
tions, this input window is not necessarily two dimensional,
but also a tensor of weights. This tensor is represented by
several distributions. Each depth value of the input tensor
has its own distribution as with convolutions, where each
depth uses its own two-dimensional weight matrix (see Fig-
ure 3).

This means that in the case of decision trees, each input
depth has its own decision tree in the sense of its own dis-
tribution. For Equation 2 this means that each depth of the
input tensor Ii with depth z indexes its own distribution PDi

over the same indexes BD.

z−1∑

i=0

Ii(0) ∗ P (PDi|Ii(0) > Ii(j), ∀j ∈ BD) (3)

Equation 3 describes the calculation where it has to be
taken into account that each depth performs a multiplication

Figure 3: The use of multiple decision trees to process one
input tensor. The indices of the comparisons (BD) are the
same for all distributions (PD) which are different.

with the central value and at the end, as with convolutions,
the sum of all multiplications is computed. This summation
makes it easier to determine the gradients for each distri-
bution because there are no multiplicative dependencies be-
tween the distributions.

The next step describes the layer depth of the decision
trees so that these decision trees can now also be used like
convolution layers in neural networks (see Figure 4). As in
the previous step, the same indexes BD are used for all lay-
ers but different distributions PDl,i are used for each layer.
The reason for this is that the complexity of the calculation
is reduced compared to convolutions.

Complexity: The calculation of a convolution layer with
the input tensor t and n-times the convolution window c re-
quires tx ∗ ty ∗ tz ∗ n ∗ cx ∗ cy multiplications and addi-
tions. The decision trees, on the other hand, only have to
determine the indices once, so that n = 1 can be set, thus
reducing the complexity by the output depths. In addition,
the multiplications are replaced by simple larger or smaller
comparisons and a multiplication. From this it follows that
tx∗ty∗tz∗|BD| comparisons are performed and tx∗ty∗tz∗n
multiplications and additions.

Ol =

z−1∑

i=0

Ii(0) ∗ P (PDl,i|Ii(0) > Ii(j), ∀j ∈ BD) (4)

To extend Equation 3 in this respect, each individual out-
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Figure 4: The use of different decision trees in multiple layers where the used indexes BD are the same. Each output layer is
represented as its own color (red, blue, green, turquoise).

Figure 5: Using the inception architecture for training the
decision trees. The indexes BDk are different for each color
(red, green, blue) and are processed in parallel. Each of these
index sets uses a distribution for each depth of the input ten-
sor, as shown in Figure 3. The three index sets shown corre-
spond to the output of one depth of the output layer. In the
case of multiple output layers, the inception architecture is
used as shown in Figure 4.

put layer Ol must be assigned a set of distributions PDl,i.
Equation 4 describes this change, but it is important to make
sure that every tree uses the same BD indexes.

A disadvantage of the approach presented so far is that
the size of the distributions grows exponentially 2|BD|. This
means that the memory requirements can very quickly reach
the limits of modern computers and the numerical calcula-
tion of very small numbers in large distributions can become
too inaccurate. Another disadvantage of large distributions,
i.e. a large number of binary comparisons, is that the proba-
bility that an index will be used during training decreases the
larger the distribution is. For a convolution of the size 5× 5
a distribution size of 224 would be needed, which contains

all comparisons with the central value. In order to make it
possible to use several small distributions and still make it
possible to cover larger input windows, we use the idea of
inception architecture (Szegedy et al. 2015). This means that
different index sets BDk with depth b associated with differ-
ent distributions PDl,i,k are aggregated in an output tensor.
In our implementation we used the summation per layer.

Ol =

b−1∑

k=0

z−1∑

i=0

Ii(0) ∗ P (PDl,i,k|Ii(0) > Ii(j),

∀j ∈ BDk)

(5)

Equation 5 describes the complete forward propagation
per output layer of the presented new method for training
decision trees in neural networks. All binary decision sets
BD, with amount of sets b are used to compute the index for
the assigned distributions PDl,i,k. The sum of all selected
weights in PDl,i,k multiplied with their corresponding input
value Ii(0) is calculated for each input window and written
into the output tensor Ol. The bias term itself is omitted in
the formulas to simplify them but is used as in conventional
convolution layers.

The backward propagation of the error occurs inversely to
the forward propagation. This means that as with convolu-
tion layers, a convolution with the error tensor takes place
for each input value of the input tensor.

ERRIi =

b−1∑

k=0

L−1∑

l=0

ERROl(i) ∗ P (PDl,i,k|

Ii(0) > Ii(j), ∀j ∈ BDk)

(6)

Equation 6 describes the back propagation where L is the
depth of the output tensor. Thus each value of the input layer
i is assigned the sum of the errors ERROl(i) multiplied
by the indexed weights PDl,i,k. In addition, for each value
participated in the binary decisions the error is added divided
by the size of the used binary decision set BDk (Equation 7).
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Figure 6: All index patterns (BD) used in our experiments.
TI1 consists of four comparisons and the resulting distri-
bution size of 24. TI2 is the full approximation of a 3 × 3
convolution with distribution size 28. TI3 is a pattern which
uses the inception technique and consists of six distributions.
Each pattern in TI3 has the same color and consists therefore
out of four indexes. The full parameter size for one TI3 pat-
tern is 6 ∗ (24).

ERRIi(j, k)+ =

L−1∑

l=0

ERROl(i) ∗ P (PDl,i,k|

Ii(0) > Ii(j), ∀j ∈ BDk)/|BDk|
(7)

Equation 7 is calculated for each index j in each used
binary decision set BDk and sums the error over the out-
put tensor of the depth L. The division by the record size
|BDk| results in an equal share of the error being assigned
to each index. This is due to the fact that the participation in
the resulting error is independent of the binary value of the
evaluation from the decision function.

Grad(PDl,i,k) =

L−1∑

l=0

Ii(0) ∗ ERROl(i) (8)

To determine the gradient, only the derivation between the
generated error and the input needs to be considered. This is
described in Equation 8 and shows that only the central value
of the input window and the output value are required. For
the binary decision functions, the derivation is 0, since these
are independent of the weights in the distribution.

Experiments

Figure 6 shows the used index patterns for our evaluations.
We used the models LeNet-5 (LeCun et al. 1998) with rec-
tifier linear units (ReLu) instead of the hyperbolic tangent
function and the deep residual model with depth 16 (ResNet-
16) and 34 (ResNet-34). In both models (ResNet-16 and
ResNet-34) we used a batch normalization block after each
convolution or decision tree layer. The LeNet-5 model was
used in the comparison on the MNIST (LeCun et al. 1998)
dataset with the index patterns TI2 and TI3 (Figure 6).
The ResNet-34 was used for the comparison on the CI-
FAR10 (Krizhevsky and Hinton 2009) dataset with the TI1
pattern. As an alternative evaluation for image classification
we used landmark regression. Therefore, we compared the
decision trees with convolutions on the 300W (Zhu and Ra-
manan 2012) dataset using the ResNet-16 and the TI1 pat-
terns.

The general idea behind our experiments is not to surpass
the state-of-the-art, but to compare decision trees with con-
volutions in the same architecture. For this purpose we tried
to get as close as possible to the results of the state-of-the-
art with simple means and to design the training process for
convolutions and decision trees in the same way.

MNIST consists of 70,000 hand written digits and has
therefore ten classes. Each image has a resolution of 28×28
pixels and is provided as gray scale image. The training set
contains 60,000 and the test set 10,000 images. This data
set is size-normalized and centered and represents a sub-
set of the larger NIST dataset. As evaluation metric the
classification accuracy (Correct Classification

Test set size ) is used. We
only report the best result as it is done for the state-of-the-
art (Wan et al. 2013; Cireşan, Meier, and Schmidhuber 2012;
Sato, Nishimura, and Yokoi 2015).

CIFAR10 consists of 60,000 color images with ten differ-
ent categories. Each image has a resolution of 32×32 pixels
and is provided in the RGB format. The training set con-
tains 50,000 and the test set 10,000 images. As evaluation
metric the classification accuracy (Correct Classification

Test set size ) is
used. We only report the best result as it is done for the
state-of-the-art (Graham 2014; Springenberg et al. 2014;
Mishkin and Matas 2015).

300W is an aggregation of multiple datasets (LFPW (Bel-
humeur et al. 2013), HELEN (Le et al. 2012), AFW (Zhu
and Ramanan 2012) and XM2VTS (Messer et al. 1999)).
The training set consists of 3,148 face images from the
LFPW and HELEN dataset. For the test set 689 images are
provided. Each image has 68 annotated landmarks (Sagonas
et al. 2013). In the evaluation the test set is separated into
three categories the full set, the challenging set (iBUG, 135
images) and the common set (LFPW and HELEN, 554 im-
ages). As evaluation metric we used the normalized mean
errors (NME) which corresponds to the average distance be-
tween detected and annotated landmark, normalized by the
pixel distance between both eye centers. This is the same
evaluation procedure as the state-of-the-art (Feng et al. 2018;
Dong et al. 2018; Ren et al. 2016).

Training parameters for MNIST: We used the Adam op-
timizer (Kingma and Ba 2014) with the first momentum set
to 0.9 and the second momentum set to 0.999. Weight de-
cay was set to 5 ∗ 10−4 for the convolutions and to 10−8 for
the decision trees. The batch size was set to 400 and each
batch was always balanced in terms of available classes.
This means that in each batch each class was represented
40 times. The initial learning rate was set to 10−2 and re-
duced by 10−1 after each 100 epochs until it reached 10−4.
For the learning rate of 10−4 we continued the training for
additional 1000 epochs and selected the best result. For data
augmentation we used random noise in the range of 0-30%
of the image resolution.
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Training parameters for CIFAR10: We used the Adam
optimizer (Kingma and Ba 2014) with the first momentum
set to 0.9 and the second momentum set to 0.999. Weight
decay was set to 5 ∗ 10−5 for the convolutions and to 10−10

for the decision trees. The batch size was set to 50 with the
same batch balancing approach as for the MNIST dataset.
For CIFAR this means each batch consisted of five exam-
ples per class. The initial learning rate was set to 10−2 and
reduced by 10−1 after each 500 epochs until it reached 10−5.
For the learning rate of 10−5 we continued the training for
additional 1000 epochs and selected the best result. For data
augmentation we used random cropping of 24× 24 patches,
random color offsets, random color distortion, flipping the
image horizontally and vertically as well as random noise
in the range of 0-20% of the image resolution. Additionally,
we overlayed patches of the same class with an intensity of
up to 20%.

Training parameters for 300W: All images where re-
sized to 80 × 80 pixels. We used the Adam opti-
mizer (Kingma and Ba 2014) with the first momentum set
to 0.9 and the second momentum set to 0.999. Weight de-
cay was set to 5 ∗ 10−4 for the convolutions and to 10−8

for the decision trees. The batch size was set to 30. All 20
iterations an evaluation of the landmark accuracy was per-
formed for the test and the training set. The accuracy on the
training set was used to balance the batches. This was done
by splitting the training set into three categories. The first
category are the most inaccurate 20%. For the second cat-
egory we used the range between the first category and the
most inaccurate 50%. The last category is the range between
the second category and the most inaccurate 80%. For each
batch we selected ten examples out of each category. The
initial learning rate was set to 10−6 and increased by 101 af-
ter each 100 epochs until it reached 10−4. For the learning
rate of 10−4 we continued the training for additional 1000
epochs. Afterwards, we reduced the learning rate after each
100 epochs by 10−1 until we reached 10−7 and stopped the
training. For data augmentation we used random noise in
the range of 0-20% of the image resolution. The image and
landmarks where randomly shifted by up to 20% of the im-
age resolution into each direction. Additionally, we added
randomly Gaussian blur (σ = [1.0, 1.3]). For occlusions we
overlayed up to three boxes and filled them either with a
fixed random value or a random value for each pixel in the
box. We also randomly changed the contrast of the image in
the range [-40, 40].

Hardware and implementation: For training and evalu-
ation we used two different hardware setups. For LeNet-5
we used a desktop PC with an Intel i5-4570 CPU (3.2 GHz),
16 GB DDR4 RAM, NVIDIA GTX 1050Ti GPU with 4GB
RAM and Windows 7 64 bit operating system. The second
hardware setup was used for the ResNet models since those
require more GPU RAM. Therefore, we used a server with
an Intel i9-9900K CPU (3.6 GHz), 64 GB DDR4 RAM, two
RTX 2080ti GPUs with 11.2GB RAM each and an Windows
8.1 64 bit operating system. We implemented the decision

tree layer in C++ on the CPU and in CUDA on the GPU. The
implementation was integrated into the DLIB (King 2009)
framework which uses CUDNN functions. An implementa-
tion for Tensorflow (Abadi et al. 2016) and Torch (Collobert,
Bengio, and Mariéthoz 2002) is also planned since those are
currently the most popular frameworks.

Table 1: Comparison between the proposed decision tree
layers and convolutions on the MNIST dataset in terms of
classification accuracy. As index patterns for the decision
tree we used TI2 and TI3. The current sate-of-the-art is
shown in gray.

Method Result

LeNet-5(TI2) 99.23
LeNet-5(TI3) 99.48
LeNet-5(Conv.) 99.37
(Wan et al. 2013) 99.79
(Cireşan, Meier, and Schmidhuber 2012) 99.77
(Sato, Nishimura, and Yokoi 2015) 99.77

Table 1 shows the results of our adapted Le-Net5 model.
As can be seen the TI2 and TI3 pattern (Figure 6) perform
similar to the convolutions. The TI2 pattern is an approx-
imation of a 3 × 3 convolution and achieves a classifica-
tion accuracy of 99.23%. In comparison to this the 5 × 5
convolutions as used in the LeNet-5 model achieve an ac-
curacy of 99.37% which is an improvement of 0.14%. Ap-
proximating the 5 × 5 convolutions with the TI3 pattern
and the inception technique achieves 99.48. If the runtime
is also considered (Table 4), it can be seen that the use of
the decision trees requires only one third of the computing
time in comparison to the convolutions (evaluation on only
one CPU core). A disadvantage of the decision trees, on the
other hand, is the increased memory consumption. In the
case of the LeNet-5 model, both convolution layers require
((1∗5∗5∗6)+6)+((6∗5∗5∗16)+16) = 2572 parameter
(Input ∗ Conv ∗ Output + Bias). The TI2 pattern needs
((1 ∗ 1 ∗ 256 ∗ 6) + 6) + ((6 ∗ 1 ∗ 256 ∗ 16) + 16) = 26134
parameters and the TI3 pattern needs ((1 ∗ 6 ∗ 16 ∗ 6)+6)+
((6 ∗ 6 ∗ 16 ∗ 16)+16) = 9814 (Input ∗ Inceptionwidth ∗
Distributionsize ∗Output+Bias).

Table 2: Comparison between the proposed decision tree
layers and convolutions on the CIFAR10 dataset in terms
of classification accuracy. As index patterns for the deci-
sion tree we used TI1. The current sate-of-the-art is shown
in gray.

Method Result

ResNet-34(TI1) 92.20
ResNet-34(Conv.) 91.12
(Graham 2014) 96.53
(Springenberg et al. 2014) 95.59
(Mishkin and Matas 2015) 94.16

Table 2 shows the comparison between the TI1 pattern
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and the convolutions using the ResNet-34 model. As can
be seen both achieve classification accuracies above 90%.
The TI1 pattern performs slightly better in comparison to
the convolutions (1.08 improvement). Comparing the run-
time (Table 4) of both approaches it can be seen that the
decision trees are significantly faster to compute (6.77ms
vs 18.1ms). The memory consumption for one distribution
of the TI1 pattern is 16 floats, for one convolution 9 floats
(3 × 3). This means that the parameters of the model are
almost doubled while the runtime is only one third.

Table 3: Comparison between the proposed decision tree
layers and convolutions on the CIFAR10 dataset in terms
of average normalized mean error on the 300W dataset. As
index patterns for the decision tree we used TI1. The current
sate-of-the-art is shown in gray.

Method Comm. Challe. Full

ResNet-16(TI1) 3.64 6.81 4.26
ResNet-16(Conv.) 3.69 6.76 4.29
SANGT (Dong et al. 2018) 3.34 6.60 3.98
SANOD (Dong et al. 2018) 3.41 7.55 4.24
ResNet-50 (Feng et al. 2018) 3.01 6.01 3.60
CNN-6/7 (Feng et al. 2018) 3.27 7.18 4.10
LAB (8-stack) (Wu et al. 2018) 3.42 6.98 4.12
3DDFA (Zhu et al. 2016) 6.15 10.59 7.01
LBF (Ren et al. 2016) 4.95 11.98 6.32
SDM (Xiong and De la Torre 2013) 5.60 15.40 7.52

Table 3 shows the results for landmark regression using
the ResNet-16 model. As can be seen the convolutions and
the decision trees achieve nearly the same result. We used
the same pattern (TI1) as for the CIFAR10 classification
which means that the memory consumption of the decision
trees is nearly twice as high as for the convolutions. The run-
time in contrast is halved (4,64ms vs 10.76ms).

Table 4: Runtime comparison for different models and index
patterns in milliseconds. For the convolutions we used the
CUDNN implementation with the best selected algorithm.

Model Input HW Runtime

LeNet-5 (TI2) 28× 28× 1 1 CPU Core 0.18ms
LeNet-5 (TI3) 28× 28× 1 1 CPU Core 0.36ms
LeNet-5 (Conv.) 28× 28× 1 1 CPU Core 0.83ms
ResNet-34 (TI1) 32× 32× 3 GPU 1050ti 6.77ms
ResNet-34 (Conv.) 32× 32× 3 GPU 1050ti 18.1ms
ResNet-16 (TI1) 80× 80× 3 GPU 1050ti 4.64ms
ResNet-16 (Conv.) 80× 80× 3 GPU 1050ti 10.76ms

Table 4 shows an overview of all runtimes of the models
used using convolution and decision trees. All runtime eval-
uations were performed on a single CPU core (Intel i5-4570)
or an NVIDIA 1050ti GPU to ensure reproducibility and to
simplify the comparison to other hardware environments.

Conclusions and Discussions

We presented a novel approach for training decision trees in
neural network architectures using the back propagation al-
gorithm and showed that it is possible to achieve the same
results as with convolutions. Classification and a regression
experiment where conducted on publicly available datasets.
The improved runtime of the decision trees was estimated
theoretically and empirically shown for different models
against the high performance CUDNN implementation from
NVIDIA. From an industrial point of view, reducing the
runtime while maintaining or even improving the predictive
quality is a desirable improvement. In contrast to the run-
time, the increased memory consumption is a disadvantage.
Further research should investigate the use of indexing sets
with different depths and the reduction of the decision trees
to only necessary paths. Here the authors see further oppor-
tunities for the reduction of the computation time and the
memory consumption. In addition, the decision trees could
also be extended to only use binary weights as it is done in
binary convolution neuronal networks (Courbariaux, Ben-
gio, and David 2015). This would reduce the runtime and
memory consumption.
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