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Abstract

Graph embedding techniques allow to learn high-quality fea-
ture vectors from graph structures and are useful in a variety
of tasks, from node classification to clustering. Existing ap-
proaches have only focused on learning feature vectors for
the nodes and predicates in a knowledge graph. To the best
of our knowledge, none of them has tackled the problem of
directly learning triple embeddings. The approaches that are
closer to this task have focused on homogeneous graphs in-
volving only one type of edge and obtain edge embeddings by
applying some operation (e.g., average) on the embeddings
of the endpoint nodes. The goal of this paper is to introduce
Triple2Vec, a new technique to directly embed knowledge
graph triples. We leverage the idea of line graph of a graph
and extend it to the context of knowledge graphs. We intro-
duce an edge weighting mechanism for the line graph based
on semantic proximity. Embeddings are finally generated by
adopting the SkipGram model, where sentences are replaced
with graph walks. We evaluate our approach on different real-
world knowledge graphs and compared it with related work.
We also show an application of triple embeddings in the con-
text of user-item recommendations.

1 Introduction

In the last years, learning graph representations using low-
dimensional vectors has received attention as viable support
to various (machine) learning tasks, from node classification
to clustering (Cai, Zheng, and Chang 2018). Approaches like
DeepWalk (Perozzi, Al-Rfou, and Skiena 2014), node2vec
(Grover and Leskovec 2016) and their variants strive to find
node embeddings that preserve structural relations in the
embedding space. These approaches only focus on homo-
geneous graphs including only one type of edge. Another
strand of research focused on embedding nodes in knowl-
edge graphs (aka heterogeneous information networks) char-
acterized by several distinct types of nodes and edges
(Wang et al. 2017). Notable approaches are RDF2Vec (Ris-
toski and Paulheim 2016), metapath2vec (Dong, Chawla,
and Swami 2017), and JUST (Hussein, Yang, and Cudré-
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Mauroux 2018). One common denominator of both homo-
geneous and knowledge graph embedding approaches is the
usage of language model techniques. The idea is to consider
sequences of nodes in a graph (i.e., random walks) as anal-
ogous to sentences in a document; then, the node sequences
are fed into models like Skip-gram (Mikolov et al. 2013)
to learn the final node embeddings. There have been previ-
ous attempts considering edge embeddings in homogeneous
graphs. In particular, node2vec construct edge embeddings
by applying some operator (e.g., average, Hadamard prod-
uct) to the embeddings of the endpoint nodes of an edge.
However, this will be problematic in the context of KGs
since it is not clear how to behave when nodes are linked by
more than an edge as typically happens in real-world KGs
like DBpedia. Other approaches like ComplexE (Trouillon
et al. 2016), ConvE (Dettmers et al. 2018), TransG (Xiao,
Huang, and Zhu 2016), and RotatE (Sun et al. 2019) learn
embeddings of both entities and predicate types for link pre-
diction. These approaches could compute triple embeddings
by aggregating node and predicates embeddings. This ap-
proach is sub-optimal as it will consider the same predicate
and node embeddings in all triples where these appear.

The goal of this paper is to devise a novel technique to di-
rectly learn triple embeddings from knowledge graphs. This
sets three main challenges. The first is about how to go from
node embeddings to triple embeddings. To tackle this first
challenge, we build upon the notion of line graph of a graph.
As an example, the directed line graph obtained from the
knowledge graph in Fig. 1 (a) is shown in Fig. 1 (b), where
the two copies of the node Lauren Oliver, Americans cor-
respond to the triples having nationality and citizenship as
a predicate, respectively. It would be tempting to directly ap-
ply embedding techniques to the nodes of the directed line
graph to obtain triple embeddings. However, we detect two
main problems. The first is that it is impossible to discern be-
tween the two triples encoded by the nodes Lauren Oliver
and Americans. The second is that the directed line graph
is disconnected and as such, it becomes problematic to learn
triple embeddings via random walks. Therefore, we intro-
duce the notion of triple line graph GL of a knowledge graph
G. In GL, nodes are the triples of G and an edge is introduced
whenever the triples of G share an endpoint.
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Figure 1: A knowledge graph (a), its directed line graph and (c) its triple line graph.

This construction guarantees that GL is connected if G is
connected. The triple line graph for the graph in Fig. 1 (a)
is shown in Fig. Fig. 1 (c). Unfortunately, directly working
with GL may lead to low-quality embeddings because edges
in GL are added based on adjacency. This introduces the sec-
ond challenge related to the fact that high degree nodes in
G are over-represented, in terms of the number of edges, in
GL. This affects the dynamics of the graph thus having a
direct impact on network embedding approaches like Deep-
walk or node2vec that are based on the computation of ran-
dom walks. To tackle this seconds challenge, we introduce a
mechanism to weight the edges of GL based on predicate
relatedness (Pirrò 2019). The weight of an edge between
nodes of GL is equal to the semantic relatedness between the
predicates in the triples of G represented by the two nodes.
As an example, in Fig. 1 (c) the weight of the nodes of GL

(M. Damon, birthPlace, Cambridge) and (Cambridge,
country, United States) will be equal to the relatedness
between birthPlace and country.

The third challenge consists of how to compute the edge
embeddings from the weighted GL. To this end, we gener-
ate truncated random walks, in the form of sequences of
nodes, on the weighted triple line graph. Note that weights
based on semantic relatedness will bias the random walker
to obtain similar contexts for nodes in the weighted triple
line graph linked by related predicates. The underlying idea
is that similar contexts will lead to similar embeddings. Fi-
nally, the walks are fed into the Skip-gram model (Mikolov
et al. 2013), which will give the embeddings of the nodes of
the weighted triple line graph that correspond to the embed-
dings of the original triples. We believe that triple embed-
dings can open up a novel class of downstream applications
that go beyond that based on node embeddings. In particu-
lar, we are going to discuss applications in the area of edge
classification, clustering, and user-item recommendation.

The remainder of the paper is organized as follows. We in-
troduce some preliminary definitions in Section 2. In Section
3, we introduce the notion of triple line graph of a knowledge
graph along with an algorithm to compute it. Section 4 de-
scribes the Triple2Vec approach to learn triple embeddings
from knowledge graphs. In Section 5, we discuss an exper-
imental evaluation. Related work is dealt with in Section 6.
We conclude and sketch future work in Section 7.

2 Preliminaries

A Knowledge Graph (G) is a kind of heterogeneous infor-
mation network. It is a node and edge labeled directed multi-
graph G=(VG, EG, TG) where VG is a set of uniquely iden-
tified vertices representing entities (e.g., D. Lynch), EG a
set of predicates (e.g., director) and TG a set of triples of
the form (s, p, o) representing directed labeled edges, where
s, o ∈ VG and p ∈ EG. The line graph GL=(VL, EL) of an
undirected graph G=(VG, EG) is such that: (i) each node of
GL represents an edge of G; (ii) two vertices of GL are ad-
jacent if, and only if, their corresponding edges in G have
a node in common. Starting from G it is possible to com-
pute the number of nodes and edges of GL as follows: (i)
|VL| = |EG|; (ii) |EL| ∝ 1

2

∑
v∈VG

d2v − |EG|, where dv
denotes the degree of the node v ∈ VG.

The concept of line graph has been extended to other types
of graphs, including multigraphs and directed graphs. The
extension to multigraphs adds a different node in the line
graph for each edge of the original multigraph. If the graph
G is directed, the corresponding line graph GL will also be
directed; its vertices are in one-to-one correspondence to the
edges of G and its edges represent two-length directed paths
in G.

3 Triple Line Graph of a Knowledge Graph

As we have discussed in the Introduction, apply the notion
of line graph to knowledge graphs would lead to counter-
intuitive behaviors. Consider the graph G in Fig. 1 (a). Fig. 1
(b) shows the directed line graph GL, obtained by applying
the standard definition, where nodes of GL are in one-to-one
correspondence to the edges of G. Moreover, from the same
sub-figure it can be noticed that each directed edge of GL

corresponds to a path of length 2 in G.
At this point, three main issues arise. First, the standard

definition associates to each node of the directed line graph
the two endpoints of the corresponding edge; however, the
edge labels in a knowledge graph carry a semantic meaning,
which is completely lost if only the endpoints are consid-
ered. As an example, it is not possible to discern between
the two copies of the nodes Morgan Freeman, Americans.
Second, the edges of the line graph are determined by con-
sidering their direction. This disregards the fact that edges in
G witness some semantic relation between their endpoints
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(i.e., entities) that can be interpreted bidirectionally. As an
example, according to the definition of directed line graph,
the two nodes (Lauren Oliver, Americans) in GL remain
isolated since the corresponding edges do not belong to any
two-length path in G (see Fig. 1 (a)-(b)). However, consider
the triple (Lauren Oliver, nationality, Americans). While
the edge label from Lauren Oliver to Americans serves the
purpose of stating the relation nationality, the same label in
the opposite direction states the relation is nationality of.

Hence, in the case of knowledge graphs, two nodes of the
line graph must be connected by an edge if they form a two-
length path in the original knowledge graph no matter the
edge direction, as the semantics of edge labels can be inter-
preted bidirectionally. Finally, triples encode some semantic
meaning via predicates, and the desideratum is to preserve
this semantics when connecting two nodes (i.e., triples of G)
in the line graph. Because of these issues, we introduce the
novel notion of triple line graphs suitable for KGs.

Definition 3.1 (Triple Line Graph). Given a knowledge
graph G = (VG, EG, TG), the associated triple line graph
GL = (VL, EL, w) is such that: (i) each node of GL repre-
sents a triple of G; (ii) two vertices of GL, say s1, p1, o1 and
s2, p2, o2, are adjacent if, and only if, {s1, o1} ∩ {s2, o2} �=
∅; (iii) the function w associates a weight in the range [0, 1]
to each edge of GL.

3.1 Computing Triple Line Graphs

We now describe an algorithm (outlined in Algorithm 1)
to compute the triple line graph GL of a knowledge graph
G. This is at the core of Triple2Vec for the computation
of triple embeddings. After initializing the set of nodes and
edges of GL to the empty set (line 1), the algorithm iterates
over the triples of the input G and add a node to GL for each
visited triple (lines 2-3), thus inducing a bijection from the
set of triples of G to the set of nodes of GL . Besides, if two
triples share a node in G then an edge will be added between
the corresponding nodes of GL (lines 5-14). In particular, the
data structure I(s) (line 6) keeps track, for each node s of G,
of the triples in which s appears as subject or object (lines
7-8). Since such triples correspond to nodes of the triple line
graph, by iterating over pairs of triples in I(s) it is possible
to add the desired edge between the corresponding nodes of
GL (lines 9-10). The algorithm also considers a generic edge
weighting mechanism (line 11) that will be detailed in Sec-
tion 4.1.

By inspecting Algorithm 1, we observe that GL can
be computed in time O(|T |2 × costWeight), where
costWeight is the cost of computing the weight between
nodes in GL.

4 Triple2Vec: Learning Triple Embeddings

We now describe Triple2Vec that directly learns triple em-
beddings from knowledge graphs. Triple2Vec includes four
main phases: (i) building of the triple line graph (Section 3);
(ii) weighting of the triple line graph edges (Section 4.1);
(iv) computing walks on the weighted triple line graph (Sec-
tion 4.2), and (v) computing embeddings via the Skip-gram
model (Section 4.3).

Input : Knowledge Graph G
Output: GL: the Triple Line Graph associated to G

1: GL = {∅, ∅, ∅}
2: for all (s, p, o) in G do
3: add the node (s, p, o) to GL

4: end for
5: for all s ∈ G do
6: I(s) = ∅
7: for all (s, p, o) (resp., (o, p, s)) in G do
8: add s, p, o (resp., o, p, s) to I(s)
9: for all pair n, n′ in I(s) do

10: add the edge (n, n′) to GL

11: set w(n, n′) = computeEdgeWeight
(n, n′)

12: end for
13: end for
14: end for
15: return GL

Algorithm 1: BuildTripleLineGraph (G)

4.1 Triple Line Graph Edge Weighting

We have mentioned in Section 3.1 that the number of edges
in the (triple) line graph can be large. This structure is
much denser than that of the original graph and may signif-
icantly affect the dynamics of the graph in terms of random
walks. To remedy this drawback, we introduce edge weight-
ing mechanism (line 11 Algorithm 1). The desideratum is to
come up with a strategy to compute walks so that the neigh-
borhood of a triple will include triples that are semantically
related. To this end, we leverage a predicate relatedness mea-
sure (Fionda and Pirrò 2018).

This measure is based on the Triple Frequency defined as
TF (pi, pj)=log(1 +Ci,j), where Ci,j counts the number of
times the predicates pi and pj link the same subjects and
objects. Moreover, it uses the Inverse Triple Frequency de-
fined as ITF (pj , E)=log |E|

|{pi:Ci,j>0}| (Pirrò 2019). Based
on TF and ITF, for each pair of predicates pi and pj we
can build a (symmetric) matrix CM where each element
is CM (i, j)=TF (pi, pj) × ITF (pj , E). The final predi-
cate relatedness matrix MR can be constructed such that
MR(pi, pj)=Cosine(Wi,Wj), where Wi (resp., Wj) is the
row of pi (resp., pj) in CM . This approach guarantees that
the more related predicates in the triples representing two
nodes in the triple line graph are, the higher the weight of
the edge between these nodes.

Driving the random walks according to a relatedness cri-
terion can capture both the graph topology in terms triple-
to-triple relations (i.e., edges in the triple line graph) and se-
mantic proximity in terms of relatedness between predicates
in triples.

4.2 Computing Walks

Triple2Vec leverages a language model approach to learn
the final edge embeddings. As such, it requires a “corpus”
of both nodes and sequences of nodes similarly to word em-
beddings techniques that require words and sequences of
words (i.e., sentences). We leverage truncated graph walks.
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The idea is to start from each node of GL (representing a
triple of the original graph) and provide a context for each
of such node in terms of a sequence of other nodes. Although
walks have been used by previous approaches (e.g., (Grover
and Leskovec 2016)), none of them has tackled the problem
of computing triple embeddings.

4.3 Computing Triple Embeddings

Once the “corpus” (in terms of the set of walks W) is avail-
able, the last step of the Triple2Vec workflow is to compute
the embeddings of the nodes of GL that will correspond to
the embeddings of the triples of the input graph G. The em-
bedding we seek can be seen as a function f : VL → Rd,
which projects nodes of the weighted triple line graph GL

into a low dimensional vector space, where d � |VL|, so
that neighboring nodes are in proximity in the vector space.
For every node u ∈ VL, N(u) ⊂ VL is the set of neighbors,
which is determined by the walks computed (Section 4.2).
The co-occurrence probability of two nodes vi and vi+1 in a
set of walks W is given by the Softmax function using their
vector embeddings evi and evi+1

:

p((evi , evi+1
) ∈ W) = σ(eTvievi+1

) (1)

where σ is the Softmax function and eTvievi+1
is the dot prod-

uct of the vectors evi and evi+1
. As the computation of (1)

is computationally demanding (Grover and Leskovec 2016),
we use negative sampling to training the Skip-gram model.
Negative sampling randomly selects nodes that do not ap-
pear together in a walk as negative examples, instead of con-
sidering all nodes in a graph.

If a node vi appears in a walk of another node vi+1, then
the vector embedding evi is closer to evi+1 as compared to
any other randomly chosen node. The probability that a node
vi and a randomly chosen node vj do not appear in a walk
starting from vi is given by:

p((ej , ei) �∈ W) = σ(−eTvievj
) (2)

For any two nodes vi and vi+1, the negative sampling objec-
tive of the Skip-gram model to be maximized is given by the
following objective function:

O(θ) = log σ(eTvievi+1
) +

k∑

j=1

Evj [log σ(−eTvievj )], (3)

where θ denotes the set of all parameters and k is the num-
ber of negative samples. For the optimization of the objec-
tive function, we use the parallel asynchronous stochastic
gradient descent algorithm (Recht et al. 2011).

5 Experiments

We now report on the evaluation and comparison with re-
lated work. Triple2Vec has been implemented in Python and
uses the Gensim1 library to learn embeddings.

1https://radimrehurek.com/gensim

5.1 Experiments on Classification and Clustering

In the experiments, we used three real-world data sets.
DBLP (Huang and Mamoulis 2017) about authors, papers,
venues, and topics. This dataset has ∼16K nodes, ∼52K
edges, and 4 predicate types. Authors are labeled with one
among four labels (i.e., database, data mining, machine
learning, and information retrieval). Foursquare (Hussein,
Yang, and Cudré-Mauroux 2018) with ∼30K nodes and
∼83K edges including four different kinds of entities, that is,
users, places, points of interests and timestamps. Each point
of interest has also associated one among 10 labels. Finally,
we used a subset of Yago (Huang and Mamoulis 2017) in the
domain of movies. It includes ∼22K nodes, ∼89K edges,
and 5 predicate types. Here, each movie is assigned one or
more among 5 available labels.

Due to the novelty of the task we face, there are no bench-
marks available for the evaluation of triple embedding ap-
proaches. However, we constructed a benchmark for two
tasks, that is, triple classification and triple clustering by us-
ing the labels available in datasets above described. Specif-
ically, for DBLP the 4 labels for author nodes have been
propagated to paper nodes by following authorship links;
then, from paper nodes to topic and venue nodes. For Yago,
the labels for movies have been propagated to actors, mu-
sicians and directors by following actedIn, wroteMusic-
For and directed edges, respectively. Finally, the 10 labels
for points of interest in FourSquare have been propagated
to places, users and timestamps by following locate, per-
form and happendAt edges, respectively. With this reason-
ing, each node of each G is now labeled with a subset of
labels. Hence, nodes of GL (i.e., the triples of G) have been
labeled with the union of the set of labels associated with
the triple endpoints. Finally, to each different subset of la-
bels, we assigned a different meta-label.

Systems and Parameter Setting. As Triple2Vec tackles
the novel problem of directly embedding triples, there is an
intrinsic difficulty in finding competitors. Nevertheless, we
considered the following two groups of related approaches:

1. this group includes metapath2vec (Dong, Chawla, and
Swami 2017), node2vec (Grover and Leskovec 2016) im-
plemented in StellarGraph2 and DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014) configured with the best param-
eters reported in their respective papers. As these ap-
proaches compute embeddings for each node only (not
for predicates), a triple embedding was obtained by aver-
aging the embeddings of the triple endpoints.

2. this group includes two state-of-the-art approaches for
knowledge graph embedding, that is, ConvE (Dettmers et
al. 2018) and RotatE (Sun et al. 2019) configured with the
best parameters reported in their respective paper and im-
plemented in the pykg2vec3. As these approaches com-
pute embeddings for each node and each predicate, triple
embeddings were obtained by concatenating the embed-
dings of the triple endpoints and the predicate.

2https://www.stellargraph.io
3https://github.com/Sujit-O/pykg2vec
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Figure 2: Triple classification results in terms of Micro and Macro F1.

For sake of space, in what follows, we only report the best
results obtained by setting the parameters of Triple2Vec as
follows: number of walks per node n=10, maximum walk
length L = 100, window size (necessary for the context in
the Skip-gram model) w = 10. Moreover, we used d=128
as a dimension of the embeddings. The number of negative
samples Γ is set to 50. All results are the average of 10 runs.

Results on Triple Classification. To carry out this task,
we trained a one-vs-rest Logistic regression model, giving
as input the triple embeddings along with their labels (the la-
bels of the node of GL). Then, we compute the Micro-F1 and
Macro-F1 scores by varying the percentage of training data.
The results of the evaluation are reported in Fig. 2. We ob-
serve that Triple2Vec consistently outperforms competitors.
This is especially true in the DBLP and Yago datasets. We
also note that metapath2vec performs worse than node2vec
and DeepWalk, although the former has been proposed to
work on knowledge graphs. This may be explained by the
fact that the metapaths used in the experiments (Hussein,
Yang, and Cudré-Mauroux 2018), while being able to cap-
ture node embeddings, fail short in capturing edge (triple)
embeddings.

As for the other group of approaches, we can see that the
performance are even worse than the first group in some
cases although also predicate embeddings are considered.
This may be since the goal of these approaches is to learn
entity and predicate embeddings for link prediction. There-
fore, the concatenation of entity and predicate embeddings
to form triple embeddings does not correctly capture triple
embeddings. Another reason is the fact that these approaches

compute a single predicate and node embedding, which is
the same for all triples in which it appears. On the other
hand, Triple2Vec, which directly compute triple embed-
dings can better capture and discriminate the roles of the
same predicate /node in different triples.

(a) Triple2Vec (b) metapath2vec

Figure 3: DBLP triple embedding visualization.

Results on Triple Clustering and Visualization. To have
a better account of how triple embeddings are placed in the
embedding space, we used t-SNE (Maaten and Hinton 2008)
to obtain a 2-d representation of the triple embeddings (orig-
inally including d dimensions) obtained from Triple2Vec
and metapath2vec. We only report results for DBLP (Fig.
3) as we observed similar trends in the other datasets. More-
over, metapath2vec was the system giving the ”most graph-
ically readable” results. We note that while Triple2Vec can
clearly identify groups of triples (i.e., triples labeled with the
same labels), metapath2vec offers a less clear perspective.
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We can explain this behavior with the fact that Triple2Vec
defines a specific strategy for triple embeddings based on
the notion of semantic proximity, while triple embeddings
for metapath2vec have been obtained from the embedding
of endpoint nodes according to predefined metapaths.

5.2 Recommendations via Triple Embeddings

As a concrete application of triple embeddings, we consid-
ered the task of user-item recommendation using KGs as a
source of background knowledge. The underlying idea of
this approach is to leverage paths that exist between users
and items in a KG to estimate the probability that a user will
interact with a target item. Incorporating background knowl-
edge is useful for two main reasons. First, it can help in visu-
ally explaining why a user may be interested in a particular
item. As an example, a user may be interested in a song writ-
ten by the same author of another song s/he has listened to.
Second, a set of user-item paths, if appropriately encoded,
can be feed into a learning model to automatically provide a
verdict whether a given user will interact with an item.

We identify three main challenges for the setting up of
this machinery. The first is how to extract user-item paths.
The second concerns how to encode these paths for the
learning model. The third is the definition of the learning
model itself. As for the first challenge, we use an simple al-
gorithm, which given a pair (user, item) finds all paths of
at most length d. This approach has been used in previous
work (e.g., (Wang et al. 2019)) and we found this strategy
viable for moderately-large KGs. As for the second chal-
lenge, we proceed as follows: consider a path u

p1−→ e1
p2−→

e2. . .ed−1
pd−1−−−→ i, u is a user, i is an item, pi (i ∈ [1, d]) is

a predicate, and ei is an entity all available in the same KG.
We replace each of the constituent triples of the path with its
triple embedding.

pk−1pk−1
pkpk

pk+1pk+1
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Figure 4: User-item recommendation learning architecture.

As the goal of this experiment is to show the usage of
triple embeddings rather than specifically focusing on the
problem of item recommendation in KGs, to tackle the third
challenge, we use the KPRN (Wang et al. 2019) learning
model. KPRN leverages an LSTM, capable of incorporat-
ing long-term dependencies, and a weighted pooling layer,
which can discriminate the strength of the different paths
(see Fig. 4). Finally, the task of user-item recommendation is
treated as a binary classification problem, where an observed
user-item interaction is assigned a target value 1, otherwise
0. Further details are available in (Wang et al. 2019).

Datasets and Experimental Setting. We used the KPRN
available implementation4 as well as the same datasets.

4https://github.com/eBay/KPRN

These are MovieLens-1M (referred to as MI) enriched with
data from IMDb (∼6K users, ∼4K items, ∼1M interac-
tions, ∼1M triples in the final KG, ∼55M extracted user-
item paths) and KKBox, which includes user-item interac-
tion data along with information about songs, singers, song-
writers and genre (∼34K users, ∼2.2M items, ∼3.7M in-
teractions, ∼11M triples in the final KG, ∼38M extracted
user-item paths). To test the usefulness of triple embeddings
in the recommendation task, we considered two variants of
KPRN by changing the function tripleEmb(·) in Fig. 4.
• KPRN, the original way, where tripleEmb(·) embeds each

triple as (Ei, E
t
i , Pi), where Ei is the embedding of the

entity ei in the path, Et
i is the embedding of the entity

type of ei, and Pi the embedding of the predicate in the
triple. A user-item path is a sequence of such triplets;

• KPRNTriple2Vec, where tripleEmb(·) is the triple embed-
ding implemented by Triple2Vec. A user-item path is a
sequence of triple embeddings.
In both cases, the system has been configured with the

best hyper-parameters reported in (Wang et al. 2019). We
did not consider other competitor approaches in this experi-
ments, since KPRN has been shown to outperform state-of-
the-art approaches (Wang et al. 2019).

For the evaluation, we adopted the methodology in (Wang
et al. 2019) based on the computation of:
• hit@k: it considers whether relevant items are retrieved

within the top-k positions of the recommendation list
• ndcg@k: it measures the relative orders among positive

and negative items within the top-k of the ranking list
The results reported in Table 1 are the average of all in-

stances in the test set for k={5,10,15}.

Results. We want to mention that this experiment was
meant to give an idea of the usefulness of triple embed-
dings in an important downstream application like user-item
recommendation using KGs and was not meant to design a
novel user-item recommendation model.

Nevertheless, we can observe in Table 1 that in both
datasets, encoding the user-item paths using triple embed-
dings brings some benefit to the KPRN model. We believe
that this is mainly because while KPRN encodes each triple
in a path by considering the concatenation of the entity, en-
tity type and predicate, our approach directly considers the
whole triple.

To give a more precise account of why triple embed-
dings are important, consider the path Mary

interact−−−−−→
Lost

sungBy−−−−−→ Rob with u of type User, Lost of
type Item and Rob of type Person. According to
KPRN, this path will be encoded as the sequence
{(Emb(Mary)⊕Emb(User)⊕Emb(interact)),(Emb(Rob)⊕
Emb(Person)⊕Emb(END))} where END denotes the end
of the path and Emb is the knowledge graph embedding
function that learns entity and predicate embeddings.

On the other hand, our approach encodes the same path
as {Triple2Vec(Mary, interacts, Lost), Triple2Vec(Lost,
sungBy, Rob)}. We believe that our direct triple encoding,
where there the object of a triple at position i is shared with
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Table 1: Performance comparison of KPRN and KPRNTriple2Vec

MI KKBox
hit@5 hit@10 hit@15 ndcg@5 ndcg@10 ndcg@15 hit@5 hit@10 hit@15 ndcg@5 ndcg@10 ndcg@15

KPRN 0.676 0.773 0.832 0.584 0.616 0.632 0.717 0.823 0.881 0.613 0.637 0.652
KPRNTriple2Vec 0.685 0.781 0.836 0.587 0.618 0.654 0.723 0.828 0.886 0.621 0.647 0.685

the subject of a triple at position i+ 1, can better model the
path as a sequence of triple embeddings. The preliminary
user-item recommendation approach we presented leaves
room for future work as, for instance, jointly encoding (and
combining) triples and the types of entities within. As an
example, we will have {Triple2Vec(User, interacts, Item),
Triple2Vec(Item, sungBy, Person)}.

6 Related Work

There is a vast body of related research about graph embed-
ding techniques (Cai, Zheng, and Chang 2018; Wang et al.
2017). We group related work in three main categories.

1. Node Embeddings in Homogeneous Graphs. Early
work on node embeddings has focused on homogeneous
graphs. These techniques sample a set of random walks in
the original graph that is fed to a Skip-gram model (Mikolov
et al. 2013) to generate the vector representation of nodes
so that two nodes that frequently co-occur in a randomly
sampled path will have similar embeddings. DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014) generates short truncated
random walks by uniformly sampling the starting node and
the additional nodes from the neighbors of the last node
visited. node2vec (Grover and Leskovec 2016) generates
biased random walks by using two parameters to control
how fast the walk explores and leaves the neighborhood of
a node. LINE (Tang et al. 2015) guides the generation of
random walks by using 1-hop and 2-hop neighborhoods of
nodes as such it learns two different latent representations of
nodes. We have compared Triple2Vec with DeepWalk and
node2vec. More recent approaches (e.g., (Veličković et al.
2017)) focus on refined notions of neighborhoods.
2. Node Embeddings in Knowledge Graphs. Another
strand of research has focused on heterogeneous graphs,
where nodes and edges can have different types (Dong,
Chawla, and Swami 2017; Fu, Lee, and Lei 2017; Hus-
sein, Yang, and Cudré-Mauroux 2018; Ristoski and Paul-
heim 2016). Here, the random walk generation for the Skip-
gram model has been adapted to consider nodes and edge
types. RDF2Vec (Ristoski and Paulheim 2016) focuses on
computing node embeddings by using the continuous bag of
words or Skip-gram models. It computes two kinds of walks:
sub-trees up to a fixed depth k and breadth-first search
walks(by uniformly sampling the nodes on the walks among
the neighbors). metapath2vec (Dong, Chawla, and Swami
2017) uses metapaths to guide the generation of walks, but
it also proposes to use heterogeneous negative samples in
the Skip-gram model for learning latent vectors of nodes.
Hin2vec (Fu, Lee, and Lei 2017) is an evolution of meta-
path2vec, which considers multiple metapaths. JUST (Hus-
sein, Yang, and Cudré-Mauroux 2018) provides a sampling

strategy that balances the presence of homogeneous and het-
erogeneous edges along with the node distribution over dif-
ferent domains (i.e., node types) in the generated walks. We
have compared Triple2Vec with metapath2vec.
3. Knowledge Graph Representational Learning. These
approaches roughly use either the translational embedding
TransE (Bordes et al. 2013) or bi-linear models (Nickel,
Tresp, and Kriegel 2011) or their extensions. These models
jointly learn the vector representations of entities (nodes)
and relations (edge labels). Henceforth, the learned repre-
sentations are used for link prediction (whether there is a
relation/edge between two entities). Note that link predic-
tion is the most important task in knowledge graph embed-
ding whereas node classification and clustering are tasks
associated with approaches in 1. and 2. above. This is re-
flected in the way these two approaches are trained; while
the former are trained using random graph walks, the latter
are trained using triples and triples corrupted by replacing
the subject and object entities by randomly sampled entities.
We have compared Triple2Vec with the recent approaches
ConvE (Dettmers et al. 2018) and RotatE (Sun et al. 2019).

All the above approaches have a different departure point.
As for 1. and 2., they focus on learning node embeddings
only. We mention that approaches like node2vec have pro-
posed ways to learn embeddings for edges in unlabeled
graphs as some combination of the embeddings of the edge
endpoints (e.g., Hadamard product, average). Although this
approach is inherently sub-optimal, when applied to knowl-
edge graphs it will lead to counter-intuitive behaviors. In-
deed, all the triples involving the same pair of nodes will be
given the same vector representation. We have shown that
this approach does not perform comparably to our direct way
of computing triple embeddings. As for 3., these approaches
learn both node and predicate embeddings. Even in this case,
we found that when adapting these approaches to compute
triple embeddings (e.g., by concatenating the embeddings of
the nodes and predicate in a triple) the results are not satis-
factory. The reason can be understood with the following ex-
ample: consider two triples t1=(s1, p, o1) and t2=(s1, p, o2).
While our approach is designed to directly provide embed-
dings for t1 and t2, these approaches would consider the em-
beddings of s1, o1, p and s1, p and o2, respectively as build-
ing blocks for triple embeddings. However, the embeddings
of both s1 and p will be the same in the two final triple em-
beddings. On the other hand, our approach (working at the
level of triple) will be able to better discern the role of both
s1 and p in the two triples.

7 Concluding Remarks and Future Work

We introduced the novel task of learning triple embeddings.
While for homogeneous graphs, there have been some sub-
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optimal proposals (Grover and Leskovec 2016), for knowl-
edge graphs, this problem was never explored. We presented
a solution, which builds upon the notion line graph coupled
with semantic proximity. Although existing approaches can
be adapted we have shown that: (i) simply aggregating the
embedding of the triple endpoint nodes is problematic when
the endpoint nodes are connected by more than one predi-
cate: (ii) even concatenating node and predicate embeddings
would not work since it is not possible to discriminate the
role of the same entities and predicates in all triples they
appear. We introduced new applications, that is, triple clas-
sification and clustering. We also showed how triple embed-
dings can be used in downstream applications and discussed
the case of user-item recommendations where we found that
a state-of-the-art approach can benefit from triple embed-
dings. Other areas where triple embeddings are useful in-
clude fact-checking and reasoning over KG-paths in general.
Including novel ways of imposing triple proximity (e.g., via
constraints (Minervini et al. 2017)) is in our research agenda.
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