The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

A Skip-Connected Evolving Recurrent Neural Network
for Data Stream Classification under Label Latency Scenario

Monidipa Das, Mahardhika Pratama, Jie Zhang, Yew Soon Ong
School of Computer Science and Engineering, Nanyang Technological University, Singapore
{monidipadas, mpratama, zhangj, asysong } @ntu.edu.sg

Abstract

Stream classification models for non-stationary environments
often assume the immediate availability of data labels. How-
ever, in a practical scenario, it is quite natural that the data
labels are available only after some temporal lag. This paper
explores how a stream classifier model can be made adaptive
to such label latency scenario. We propose SkipE-RNN, a
self-evolutionary recurrent neural network with dynamically
evolving skipped-recurrent-connection for the best utilization
of previously observed label information while classifying
the current data. When the data label is unavailable, SkipE-
RNN uses an auto-learned mapping function to find the best
match from the already known data labels and updates the
network parameter accordingly. Later, upon availability of
true data label, if the previously mapped label is found to
be incorrect, SkipE-RNN employs a regularization technique
along with the parameter updating process, so as to penalize
the model. In addition, SkipE-RNN has inborn power of self-
adjusting the network capacity by growing/pruning hidden
nodes to cope with the evolving nature of data stream. Rig-
orous empirical evaluations using synthetic as well as real-
world datasets reveal effectiveness of SkipE-RNN in both
finitely delayed and infinitely delayed data label scenarios.

Introduction

Data streams are primarily unbounded and evolving data
that continuously arrive over time (Ditzler and Polikar
2013). Because of the two interesting characteristics,
namely ‘infinite length’ and ‘evolving nature’ (indicating
concept drift, concept evolution, etc.), the streaming data
classification has received considerable research attention
in present years (Masud et al. 2012). Besides, in a typical
real-world scenario, it often becomes hard to acquire labeled
data due to various issues, including high labelling cost,
lack of expertise, confidentiality, etc. Thus, in practice, the
streaming data labels become available only after a certain
amount of delay which may vary from 0 to co (Souza et
al. 2015a). However, majority of the existing data stream
classification techniques are based on supervised learning
models, and hence, their performances are subjected to the
availability of the data labels. The same is also true for

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3717

online active learning models (Ksieniewicz et al. 2019)
which require the data labels to be immediately available
upon request. Even, the semi-supervised learning principle
(Haque, Khan, and Baron 2016) is also not truly effective in
the delay scenario of online learning, since each delayed-
labeled sample is always treated as the unlabeled sample
as it appears with no label at the beginning, and in infinite
delay scenario, the actual labels of the samples are never
available to guide the classifier (Souza et al. 2015b). As a
consequence, the traditional procedure for monitoring error
rate and adapting with concept drift remains no longer ap-
plicable. Rather, it becomes necessary to devise a classifier
model that should adapt itself by effective utilization of
the most recent and/or the most relevant labeled data, even
when the true label at the current instant is unavailable.

Contributions: Motivated by the limitations of the state-of-
the-art techniques, in this paper we aim to propose a virtually
supervised learning model with an embedded mapping unit
which continuously supervises the learning process by sug-
gesting possible data label, even when there is a label latency
during stream classification. We achieve this by proposing
a skip-connected evolving recurrent neural network (SkipE-
RNN) following the teacher forcing policy for feature learn-
ing though analysis of temporality in the data. Our objective
of using recurrent neural network model is to exploit the
temporal dependency of a data stream as the basis for de-
termining the current data labels, which is often ignored by
the existing classifiers. The proposed SkipE-RNN is flexible
enough to be applied in the infinitely delayed label scenario
as well. The key contributions of this work are as follows.

e This paper proposes SkipE-RNN as a novel variant of the
recurrent neural network model which is well featured for
stream classification under label latency scenario.

e SkipE-RNN is defined along with an embedded mecha-
nism of label mapping that leads the model to dynam-
ically evolve skip-connection for recurrent learning, and
thus, helps to continue learning under delay context.

e SkipE-RNN features flexible architecture and self-
adaptation power, according to which it starts learning
with a single hidden unit and automatically refines the net-
work structure to cope with evolving data characteristic.

e The proposed SkipE-RNN is designed to implicitly learn
as per the teacher forcing policy, so that it can overcome
expensive computation and gradient vanishing/exploding
issues in traditional RNN learning.

Effectiveness of the proposed SkipE-RNN is validated using
two sets of empirical studies. In the first case, we evaluate
SkipE-RNN in comparison with five recently developed in-
cremental learning models considering finite time delay over
four popular benchmark datasets, used in stream classifica-
tion problems. In the second case, SkipE-RNN is assessed
with respect to infinite delay scenario over six other bench-
mark datasets and in comparison with the state-of-the-art
SCARGC model (Souza et al. 2015b) which is typically
proposed for infinite label latency scenario. Experimental
results reveal that, with the help of dynamically evolving
skipped recurrent connection, the adaptive learning of pro-
posed SkipE-RNN is able to achieve promising accuracy
with acceptable computation cost in delayed label condition.

Proposed Model: SkipE-RNN

This section provides the conceptual details of SkipE-RNN,
with respect to stream classification scenario as stated below.

Problem Formulation

The proposed prediction model is defined over a data stream
classification scenario where the data is continuously gener-
ated in the form of data chunks Dy, --- , D¢, such that the
number of chunks (C') and the distribution of the data are
not known apriori. Each chunk may contain one or more
data points/samples [z(1), ... 2(T)] such that T > 1 and

2@’ € RP where D denotes the input feature dimension.
Further, since the sample size may randomly depend on ac-
cumulating data (Gama, Sebastido, and Rodrigues 2013), the
classifier needs to be executed based on the ‘prequential test-
then-train’ protocol, where each data-chunk is first used to
test the generative power of the classifier and then exploited
to update the parameters (refer to Figure 1).

More significantly, in a typical stream classification sce-
nario, the actual class/data-label (y(*)) of any data point
2 becomes available after certain amount of time delay
d € [0, 00), which is also termed as label latency or verifi-
cation latency (Souza et al. 2015b). In an extreme case, the
labels of the data never arrive after the classification model
is initialized. This is called as infinite label latency or ex-
treme verification latency. Since in the infinite delay condi-
tion there is complete lack of labeled data during classifi-
cation phase, in order to maintain the definition of a clas-
sification problem, it is presumed that small amount of la-
beled data is available before the classification starts. This
initially labeled data (Dyer, Capo, and Polikar 2014) pro-
vides an overall information of the number of classes and
the respective feature spaces to support the classification.

According to the problem scenario, when applied in a
stream classification environment, the proposed SkipE-RNN
is first tested as per the ‘prequential-test-then-train’ policy.
Subsequently, it learns in an online and single-pass manner
during the training phase (see Figure 1).

3718

Data stream

s s s s f s f

7Y skipE-RNN i

O

Label mapping
(for delayed data label scenario)

Online structural evolution
(hidden layer adaptation)

Feature Input Feature _Ne_h_uurk . U“if
Reconstruction Matching S'E'I'f"'a_"ce rowing
Estimation or Pruning
S)2 1T
SkipE-RNN Single-pass parameter learning

Regularization based on
delayed unequal label

Un-regularized
update

Figure 1: SkipE-RNN in stream classification scenario

SkipE-RNN Architecture

The recurrent architecture and corresponding unfolded com-
putational graph of SkipE-RNN are depicted in Figure 2. As
shown in the figure, the recurrent learning module of SkipE-
RNN consists of two major units, namely i) label mapping
unit (‘M’), and ii) feature learning unit (‘H’).

Label Mapping Unit The prime objective of this unit is
to map the input feature of the current unlabeled sample to
the input feature of observed samples with known data la-
bels, and accordingly, determining the most likely label of
the current sample. Mathematically, this can be expressed as
M :RP — Tt and M(x(t)T) = k®, where k() < (t — §)
indicates the timestamp at which the data label is most likely
to be similar as that of the current sample, § is the temporal
delay, I'" is the set of positive integers, and R is the set of real
numbers. In order to accomplish this mapping, we use an
autoencoder model (see top-right of Figure 2), which, when
applied on z(!), generates a reconstructed input feature z’'(*).
Later, 2’/(*) is matched with the previously observed samples
with known data labels, and finally the label corresponding

to the observed sample a®) E® < (t — 0) is selected as
the best match for the current sample z(*), such that

E® = argmin ||2’® — 2@,
i<t—6

(D

The idea is illustrated in Figure 2. During the matching pro-
cess, instead of comparing with the raw input feature 2(*),
we use the reconstructed input feature 2’(*) to make the map-
ping unit more generic towards variants of input features as-
sociated with the same concepts. This eventually helps the
model in handling virtual drift. As shown in Figure 2, the la-
bel mapping unit learns in parallel with the feature learning
unit for supplying the best () < (¢ — §) value, and thus,
results in no additional cost in terms of computational time.

Feature Learning Unit This unit aims at exploiting the
temporal dependency (which can be observed though auto-

correlation analysis) of the data stream to recurrently learn
the complex features and classify the current sample at time
t. Since the actual data labels appear with delay (¢), the idea
is to utilize parameters learnt for the known or initially la-
beled samples (Dyer, Capo, and Polikar 2014) with similar
input feature, and accordingly evolve the recurrent connec-
tion with § or more skips, instead of employing usual recur-
rent connection to the network state at (¢ — 1). The unit takes
as input the k(*) < (¢t — &) value as generated by the label
mapping unit and establishes the recurrent connection with
the network state at the timestamp k(*), while skipping the
intermediate states from (k) + 1) to (¢t —1). Thus, unlike a
vanilla RNN, the recurrent connection here is not necessar-
ily defined in terms of immediate precursor in the timeline.
The connection involves skipping of network states which
is decided dynamically in accordance with the k value, as
received from the label mapping unit (see Figure 2). For

Cx L ,-8)

Reconstructed
input feature

y Feature

Learning
?? Unit

Output

layer

Hidden h 14
layer U

Input -

layer
Auto
Encoder

O

Mapping Unit (M) Mapping Unit (M) *{/ Mapping Unit (M) %A//

%)

{ Delay

© Newly

@ Unitselected —s Weightsto
added unit

Newlyadded
for pruning ber

weights

Figure 2: SkipE-RNN architecture

each time step ¢, the input to feature learning unit is z(*),

the hidden layer activation is h® (where h(t)—r c R™, m
is the number of hidden units), un-normalized output is o®
which is further updated through softmax layer to achieve
the predicted output 7" (where 7 T € R¥, S is the num-
ber of classes), and the loss is L® The input-to-hidden and
hidden-to-output connections are parameterized by weight
matrices Uy, » p) and Vg], respectively. To be noted, the
recurrent connection of the feature learning unit (denoted
by the dotted arrows in Figure 2) is not defined by explicit
weight matrix. The output-to-hidden recurrent connection
is maintained implicitly, because of using hyperplane-based
activation in the hidden layer (refer to the section below).

Parameter Learning

The parameter learning of both label mapping unit and fea-
ture learning unit are performed by single scanning of data.
The parameter learning for the autoencoder model within

3719

label mapping unit follows a standard convention, where we
use sigmoid activation in the hidden layer and linear acti-
vation in the output layer with quadratic loss measured as

2
% Zi,;l (a:i(t) — J;Q(t)) . Hence, in this section, we fo-
cus on feature learning unit, where the parameter learning is
built upon the concept of skipped recurrent connection with
hyperplane activation (Ferdaus et al. 2019) during forward

propagation, followed by regularized weight updating dur-
ing backward propagation.

Forward-propagation: Typically, the hyperplane activa-
tion applied on hidden layer is expressed as follows.

R = exp| — _)
[N sy (di®))
, EOY G (b 4 U®
g - W2 =S (U + Uit 3)

D
Vit2im U

where, d*® is the distance from k(*)-th data point to the
i-th feature in the current feature hyperplane at the hidden
layer, |y|; is the 1-norm of y, S is the output dimension,
b" € R™ is equivalent to the bias associated with the added
dimension to the feature plane, and 7 controls the strength of
activation. Subsequently, the predicted class 7" is estimated
as) = softmax(o®), where o) = ¢4+ Vh®); T € RS
is the bias for the output layer. While testing, y and k(*) in
Eq. 3 are replaced by y and (¢t — 1), respectively.
The hyperplane activation plays two significant roles to
establish the dynamically evolving skipped recurrent con-
nection. First, this leads the hidden layer to be implicitly in-

fluenced by the output y* “ from an earlier time stamp, thus
forming an output-to-hidden recurrent connection, without
using explicit weight matrix. This not only reduces the pa-
rameter requirement, but also helps the model to directly
learn from exact output of earlier time stamps, thus fol-
lowing teacher forcing policy (Goodfellow et al. 2016). Be-
cause of the teacher forcing, the model can also avoid the
overhead of back-propagation through time and the explod-
ing/vanishing gradient issues. Second, this helps the model
recurrently learn from the network state at an earlier time
stamp k(*) < (t—¢) which is dynamically decided by the la-
bel mapping unit, and eventually results in a skip-connected
recurrent architecture. Thus, the model can continuously
learn from the streaming data without waiting for the true
data label, which fits well with the label latency scenario.

Regularized Weight Updating: The weight updating pro-
cess of SkipE-RNN feature learning unit is governed by the
following cost function:

L™ 5) =~ S gy R @

where 7 is the predicted label, y(k’m) is the known/observed
label at £(*), and R is a regularization term. The definition
of R at each timestamp ¢ changes dynamically as follows.

R:

| >

VO = VEDy U0 —UD),

if y(t*ts) £ y(k“’_‘i))
©)

Here, X\ denotes the regularization parameter. The key idea
here is, if the actual label y(*~%) of a sample at time (t — &)
is revealed at current time ¢ (i.e. after the end of the de-
lay period ¢§) and is found to be mismatched with the sug-

gested/mapped label y(k(tﬂ;)), then penalize the model by
bringing the parameter states back to what these were ear-
lier and then proceed for the current updating process. Oth-
erwise, the regularization term (penalty) is kept as zero.

In case of infinite delay (§ = 00), the actual label is never
available for validating the correctness. So, in such case,
the model continues learning only based on the supervision
from label mapping unit, without any penalty (i.e. R=0).

The recursive computation of gradient starts with 8(2“) =
1. Subsequently, the gradients of weight parameters are esti-
mated as per regularization condition, in following manner.

=0, otherwise

VL= (Voo L) (k) 40 (v -vED))

VoL =((4-h0) o (VL)) a® +ur (U -Ut=0)

7
R ()
where, (Voo L), = 57 =4), Vo L = VT (V0 L),

and A is the maximum of the data-sample distances to the
hidden layer features. In the Eqs. 7 and 6, ¢y = 1 when

Y= £ 7)) otherwise 1 = 0.

Hidden Layer Adaptation

The structural adaptation within the hidden layer of SkipE-
RNN is achieved based on network significance (NS) (Ash-
fahani and Pratama 2019) which represents the general-
ization power of the network in terms of bias and vari-
ance as follows: NS = Bias? + Var. In case of the
SKipE-RNN, N S = (E[o] — y)? + (E[0?] — E|[0]?) where,
Elo] is the expectation of un-normalized output from fea-
ture learning unit. As per SkipE-RNN parameter learn-
ing, E[o] [Z.(c+ V- h)ph)dh = c+V - E[h],

where E[h] = e(_%) and E[d’] (|y(k)|1 _

(b + Ui)/ (/1 + ijzl Ui;); juis the mean of data dis-

tribution.

A hidden node is added to the hidden layer when we de-
tect high bias, indicating model-underfit, and thus require-
ment for enlarging structural complexity. The high bias con-
dition is represented as: ;. + 0k > WHIN 4 woRin
Here, (13,55 04 are respectively the mean and the stan-
dard deviation of bias at the ¢-th time instance and p'g;”,
o"in are that for the minimum bias till the time instance
t. Once a new hidden node is added to the layer, the as-
sociated parameters (b, U, V) can be set by employing

adaptive scope selection mechanism (Wang and Li 2017;

3720

Tang et al. 2017). Similarly, a hidden node is pruned from
the hidden layer when we detect high variance, indicating
model-overfit, and thus, requirement for reducing structural
complexity. The high variance condition is represented as:
H%/ar + U€/ar 2 'ugl;? + QXO{;L(Z‘L’ where :u%/ar’ U%/ar are re-
spectively the mean and standard deviation of the variance at
the ¢-th time instance, and pu{", 07" are that for the mini-
mum variance till the time instance ¢. Once high variance is
detected, the p-th hidden unit, associated with the least ever

average activation value in the hidden layer is chosen for
h;(f)) The 7
and x are dynamic constants controlling the confidence level
of the sigma rule (see the high bias/variance condition equa-
tions above) and are estimated as 1.3 exp(—Var) 4+ 0.7. A
typical scenario of hidden unit growing and pruning within
feature learning unit of SkipE-RNN is depicted in Figure 2.

pruning. Thus, p = argmin (hmT%oo i)
i

Experimental Evaluation

We evaluate the model using two case studies, covering
finitely delayed and infinitely delayed label situation, re-
spectively. SkipE-RNN and other baselines are executed un-
der the same ‘prequential test-then-train’ environment. The
source code of SkipE-RNN is available online '.

Table 1: Specifications for the datasets used in Case Study-1

Specifications

Datasets

ELECT.
HYPER.

#Instance | #Attr. #Task
45312 8 45
120000 4 2 120
100000 3 2 100
70000 10 70

Characteristics

Real, non-stationary with covariate drifts

Synthetic, non-stationary with gradual concept drifts
Synthetic, non-stationary with recurring drifts
Synthetic, non-stationary with recurring drifts

#Target

SEA
P-MNIST

784

Case Study-1: Finite Latency Scenario

Background The case study-1 is prepared for the finite
label latency scenario considering the delay 6 € [0,500].
However, as discussed in our introductory section, the exist-
ing supervised, semi-supervised, and active learning models
are not fit for online delay scenario. Hence, first we set & = 0
and compare our proposed model with the state-of-the-art
stream classification techniques to evaluate its power of han-
dling evolving data streams under usual online learning envi-
ronment. Subsequently, we consider different J value to as-
sess the effect of delay on our proposed model performance.

Datasets In case study-1, we evaluate SkipE-RNN using
four popular data streams: i) Electricity-pricing (Ditzler and
Polikar 2013), ii) Hyperplane (Bifet et al. 2010), iii) Sea
(Street and Kim 2001), and iv) Permuted-MNIST (Lopez-
Paz and others 2017). A summary of these is presented in
Table 1. Electricity-pricing, Hyperplance, and Sea are well-
used as data streams with variants of concept drifts (refer
to Table 1). Further, these show prominent temporal depen-
dency which are appropriate for evaluating the effectiveness
of our proposed recurrent model. We also use Permuted (P)-
MNIST to evaluate the models against high input dimension.
This is a variant of MNIST dataset which is rebuilt through
digit-transformation by permuting the pixels. The P-MNIST

'https://github.com/SkipE-RNN/Share

dataset is widely used to assess continual learning ability of
the models in data stream classification scenario.

Baselines Data stream classification needs to take care of
several issues, including one-pass learning, limited compu-
tational resources, temporal dependency, and self adapta-
tion to evolving data. We, therefore, have chosen the follow-
ing baselines dealing with one or more of these aspects.

e PNN (Rusu et al. 2016): Progressive neural network; Pri-
marily deals with concept evolution in a data stream;

e DEN (Lee et al. 2017): Dynamically expandable network;
Extension of PNN; Puts forward selective retraining, dy-
namic expansion, and splitting/duplicating methods;

e HAT (Serra et al. 2018): Task-based hard attention mech-
anism; Developed for concept evolution in a data stream;

e Learn++.NSE (Ditzler and Polikar 2013): Appropriate
for dealing with variants of drift scenarios; Capable of
learning in non-stationary environments;

e Online Multiclass (OMC) Boosting (Jung, Goetz, and
Tewari 2017): Variant of online boosting algorithm; Uses
optimal number of classifier in the ensemble to achieve
desired accuracy with reduced computational cost;

e RNN_tanh: Vanilla RNN model (Goodfellow et al. 2016)
with single layer using tanh activation and learning based
on back propagation through time (BPTT); This compar-
ison is necessary, since SkipE-RNN is a variant of RNN.

Hyper-parameter settings For each baseline, we con-
sidered the same configuration as given in the respective
papers/source-codes. If the performance is surprisingly poor,
we fine-tuned the same to record the best ones. In case of
SkipE-RNN, the activation control constant = 0.5 and
A = 0.001. However, since SkipE-RNN is self-evolving,
there is no hyper-parameter regarding its structural setup.

Results and Discussions The model performance is
measured using four criteria: classification rate (CR), pa-
rameter count (PC), hidden unit count (HU), and execution
time (ET). The results of comparative study are presented
through Table 2. The values are recorded as average of
five random seeds. For OMC boosting and Learn++.NSE,
PC=NA and HU=NA, since these are based on decision tree
model. On analyzing the results, we can infer the following.

Comparison on classification rate (CR): Even with the
minimal usage of parameters, the proposed SkipE-RNN is
able to achieve comparable and sometimes substantially
better classification accuracy for each considered dataset.

5[Dataset: Electricity Pricing

Growing E-..

Pruning

|
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
=——> Data samples

No. of hidden units
- w

Figure 3: Typical hidden unit adjustment in SkipE-RNN

3721

Table 2: Performance study under finite latency scenario
Models \ Metrics [

‘ Data [CR [HU] PC [ETG | "©
PNN 57.84 £4.52 78 1868 51.345 X
DEN 56.54 £7.66 16 178 72.54 X
> HAT 56.63 £+ 8.04 20 242 145.57 X
£ [OMC-Boosting 7712£457 | NA | NA | 5680 | X
E Learn++.NSE 7718 £9.3 NA NA 169.88 X
§ RNN_tanh 65.124+7.21 4 104 35.41 X
= SkipE-RNN;— 77.75 £ 09.87 19.22
SkipE-RNN;_5¢ 75.01 £11.13 4 46 30.92
SkipE-RNN;_500 74.90 +10.29 24.95
PNN 85.07 £7.12 42 560 190.196 X
DEN 91.83 £4.17 8 58 202.57 X
g HAT 77.9 £10.76 12 98 370.8 X
S OMC-Boosting 86.18 =3.73 | NA NA 111.74 X
g Learn++.NSE 90.35 £2.48 | NA NA 374 X
& RNN_tanh 76.55 £2.82 4 80 101.58 X
== SkipE-RNN;— 9245 £2.76 39.66
SKkipE-RNN;-50 90.95 £+ 3.55 2 16 73.78
SkipE-RNN;s_500 91.86 +2.43 68.47
PNN 84.87 £ 6.52 33 353 152.46 X
DEN 79.95 £ 19.28 6 38 169.72 X
HAT 74.65 £ 10.1 10 72 327 X
OMC-Boosting 87.86 =3.85 | NA NA 77.44 X
(;-‘3 Learn++.NSE 90.17 £596 | NA NA 268 X
RNN_tanh 75.17 £2.94 4 42 10522 X
SkipE-RNN;_—(91.17 £ 6.69 33.81
SkipE-RNN;_5 88.65 + 6.87 2 14 63.06
SkipE-RNN;s_500 87.53 £7.94 57.34
PNN 6442 £8.77 | 260 | 170K | 152.95 X
DEN 52.08 £22.6 | 440 | 290K | 399.83 X
= HAT 59.64 £ 1888 | 60 | 249K | 207.04 X
2] OMC-Boosting 3558 £20.51 | NA NA 5K X
Z Learn++.NSE NA NA NA NA NA
E, RNN_tanh 69.62 £ 11.36 | 250 | 198K | 925.10 X
& ["SKipE-RNN,_, 84.01 = 13.61 549.76
SkipE-RNN;s_5(81.49 +13.40 | 79 63K 592.62
SkipE-RNN;_500 81.66 = 13.56 596.24
X: Reject null hypothesis that a model performs better than SkipE-RNN

The average percentage improvement of SkipE-RNN over
fixed structured vanilla RNN is more than 13%, and also, it
is achieved with notably less execution time. The modelling
of temporal dependencies through the dynamically adaptive
recurrent architecture helps SkipE-RNN to attain this
encouraging performance. The significantly higher CR of
SkipE-RNN for P-MNIST dataset further demonstrates its
potential to deal with high dimensional, unstructured data.

Comparison on parameter count (PC) and hidden unit
(HU) requirement: Though the PC and HU for SkipE-
RNN are sometimes higher (e.g. in case of P-MNIST), these
are not prefixed from the beginning. As depicted in Figure
3, the execution of SkipE-RNN starts with only one unit
in a single hidden layer, and then, gradually the number
of hidden units is adjusted (added or removed) from the
layer so as to cope up with the time varying distribution and
conceptual drift of the streaming data. This gradual and on-
the-fly structural adjustment helps SkipE-RNN to achieve
desired accuracy with optimal number of parameters.

Comparison on execution time (ET): Table 2 also shows
that even with the dynamic layer adaptation overhead,
SkipE-RNN is able to achieve acceptable accuracy within
reasonable time. Though online multiclass (OMC) boosting
is in general popular for low computational time require-
ment, our proposed self-adaptive SkipE-RNN is found to be
even faster than OMC-Boosting for each considered dataset.
This is so because SkipE-RNN is based on single classifier

and it works based on optimal no. of parameters.

Sensitivity on label latency: Effect of different (finite and
non-zero) latency duration on SkipE-RNN performance is
also summarized in Table 2. The result shows that the clas-
sification performance of SkipE-RNN is not very sensitive
to the latency/delay length (§). The average degradation in
prediction accuracy is approximately 2.5% with respect to
no-delay situation. This demonstrates the effectiveness of
using the label mapping unit along with the recurrent feature
learning, and also proves the usefulness of regularizing the
model in case of label mismatch in subsequent phases.

Results of statistical tests: The performance of SkipE-
RNN is also validated using Wilcoxon statistical test, as
summarized in Table 2 (see WT column). The results val-
idate that, in every case, the proposed SkipE-RNN performs
statistically better or similar compared to the other consid-
ered models (with a significance level of 5%).

Case Study-2: Infinite Latency Scenario

Background In this case, the actual label of the data
is never available after the classification starts, and thus,
0 = oo here. However, as per the state-of-the-art conven-
tion (Souza et al. 2015b; Dyer, Capo, and Polikar 2014), the
scenario assumes that a small amount of initial labeled data
with at least one sample for each possible class is available
before the classification begins. This is necessary to main-
tain the definition of a classification problem.

Datasets Case study-2 is carried out using five synthetic
benchmark datasets, typically prepared for infinite delay
scenario, and one more real-world problem (refer Table 3).
All these datasets are collected from the website (Souza et
al. 2019) of our main competitor method SCARGC (Souza
et al. 2015b). The synthetic datasets i.e. 1CHT, 2CHT,
GEARS-2C-2D, MG-2C-2D, and UG-2C-5D show incre-
mental concept drift, whereas the real-world dataset NOAA
shows real and recurrent drift. For all the datasets, we have
considered the amount of initial labeled data to be <2%
with equal distribution of each class.

Table 3: Dataset description for the Case Study-2

Dataset #Class | #Feature | Drift | Length Type

ICHT 2 2 400 16000 | Synthetic
2CHT 2 2 400 | 16000 | Synthetic
GEARS 2C 2D 2 2 2000 | 200000 | Synthetic
MG 2C 2D 2 2 2000 | 200000 | Synthetic
UG 2C 5D 2 5 2000 | 200000 | Synthetic
NOAA 2 8 180 | 18000 Real

Baselines We compare our model against the state-of-

the-art SCARGC (Stream Classification Algorithm Guided
by Clustering) (Souza et al. 2015b), which is primar-
ily proposed for handling infinitely delayed label context.
SCARGC is extremely efficient in terms of running time.
However, this significantly depends on clustering phase and
requires user knowledge for parameter setting. In addition
to SCARGC, as suggested by Souza et al., we also consider

3722

two bounds, namely Static and Sliding, as the baselines for
comparative study. The Static classifier is only trained on the
given initial samples (with known label) and is not updated
over time. So, its performance is equivalent to the lower
bound, indicating how well the initial samples represent the
whole dataset and whether classifier updating is necessary.
Contrarily, after training on the initial samples, the Sliding
model is constantly updated whenever a new sample comes
while dropping the old ones. Thus, the performance of this
model is expected to be nearly an upper bound.

To be noted, the arbitrary sub-population tracker (APT)
(Krempl 2011) and compacted object sample extraction
(COMPOSE) (Dyer, Capo, and Polikar 2014) are two other
state-of-the-art classifiers proposed for infinitely delayed la-
bel scenario. However, it is clearly demonstrated by Souza et
al. 2015b that SCARGC is able to offer similar or even bet-
ter accuracy with significantly reduced computational time,
compared to APT and COMPOSE, for these datasets. We,
therefore, have compared SkipE-RNN with SCARGC only.

Hyper-parameter settings To compare with SCARGC,
we have considered its INN version with the same parame-
ter setup as used by Souza et al. 2015b. SkipE-RNN does not
require ad-hoc parameter settings, since it is self-evolving.

Table 4: Accuracy (%) comparison in infinite delay scenario

Dataset Static | Sliding | SCARGC | SkipE-RNN
ICHT 91.96 | 99.24 99.31 99.34
2CHT 54.03 | 85.44 86.13 88.74
GEARS 2C_2D | 93.62 99.86 95.60 95.61
MG_2C2D 49.00 | 90.40 61.91 87.31
UG_2C5D 68.81 | 89.91 79.98 91.92
NOAA 66.19 | 72.01 68.37 73.04

Table 5: Run-time (s) comparison in infinite delay scenario

Dataset— 1CHT | 2CHT | GEARS | MG_2C2D | UG 2C.5D | NOAA
SCARGC 1.46 1.83 16.10 16.20 19.31 2.27
SkipE-RNN | 5.33 5.80 7227 68.02 71.40 6.84

Results and Discussions The comparative study is carried
out with respect to average accuracy for classifying each
data stream. We also compare the computational time of our
proposed model against SCARGC. The results of empirical
analysis are presented through Tables 4-5 and Figure 4.

Analysis on model accuracy: It can be observed from the
Table 4 that for both synthetic and real-world datasets,
especially in case of 2CHT, MG-2C-2D, UG-2C-5D, and
NOAA, the classification accuracy for SkipE-RNN is
substantially high compared to state-of-the-art SCARGC
model. Interestingly, the poor performance of static model
for these particular datasets indicates that the model must
include appropriate adaptation quality for classifying these
data. Hence, we can conclude that the adaptation power
of the proposed SkipE-RNN is far better than that of
SCARGC. For a better understanding, we have plotted the
classification performance of both SCARGC and SkipE-
RNN on ‘per step basis’ in Figure 4 for some datasets. The

%0 90 T
gso <80
70 =70
) g
© 60 © 60
3
8 50 § 50
< —— SCARGC < —— SCARGC
40 Dataset: MG_2C_2D — SkipE-RNN 40 Dataset: UG_2C_5D — SKipE-RNN
30 30 —
0 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
—> Step —> Step

100
90
X 80
z 70
£ 60
E 50
40
30

— SCARGC
— SkipE-RNN

10 20 30 40 50 60 70 80 90 100
—> Step

Dataset: NOAA

Figure 4: Comparative study of accuracy in the infinitely de-
layed label scenario

figure shows that though SkipE-RNN sometimes starts with
low accuracy at the very beginning, it has powerful enough
adaptation mechanism to finally reach the desired level.
Judicious learning from initial samples through dynamically
evolving skipped-recurrent-connection helps the model to
achieve such classification performance.

Analysis on computation time requirement: Apparently,
it seems from Table 5 that the time requirement for SkipE-
RNN is quite higher compared to SCARGC algorithm.
However, when analyzed from the perspective of per
sample time requirement, we can find that the proposed
SkipE-RNN requires approximately 0.0004 second to
process/classify each sample (for any dataset), which is not
at all a poor performance indicator in the scenario of online
stream classification under infinite label latency. Further,
it can be noted from literature that the computational time
requirement for SkipE-RNN is substantially less compared
to the other state-of-the-art models, like APT (Krempl
2011) and COMPOSE (Dyer, Capo, and Polikar 2014),
recently proposed for infinite label latency scenario.

In summary, even if the true labels of the samples are never
available during classification, SkipE-RNN still can work
under the virtual supervision of its label mapping unit, which
continuously suggests for possible labels of the unlabeled
samples. Though SkipE-RNN cannot outperform SCARGC
in terms of time requirement, it is able to achieve far better
classification accuracy within reasonable computation time
and without using ad-hoc parameter settings.

Related Works

Evolving Data Stream Classifiers: The existing ap-
proaches for evolving stream classification are focused more
towards incremental/continual learning (Polikar et al. 2001)
than dealing with the issue of label latency. These models
are constructed either on a single classifier or on an ensem-
ble of classifiers. Compared to a single classifier model, an
ensemble method (Jung, Goetz, and Tewari 2017; Kolter
and Maloof 2005; Polikar et al. 2001) can better control
the bias-variance problem by providing sufficient diversity

3723

of its base classifiers. However, the ensemble-models suffer
from notably high structural complexity, which is resolved
by single-classifier model (Rusu et al. 2016; Lee et al. 2017;
Serra et al. 2018). Nevertheless, being defined on super-
vised and active learning principles, most of these models
are not suitable for delayed data label scenario. Though the
semi-supervised techniques are typically proposed to work
based on little amount of labeled data (Wu, Li, and Hu 2012;
Haque, Khan, and Baron 2016), these are still not fit for de-
lay context in online learning. This is because in the online
learning environment the streaming samples are required
to be immediately classified, but due to the delay, all the
samples are appeared to be unlabeled for these algorithms.
Moreover, in case of the infinite delay, the actual labels of
the samples are never available to guide the classifier.

In order to deal with infinite delay, recently Kremple
2011, Dyer et al. 2014 and Souza et al. 2015b; 2015a pro-
posed some techniques, mostly guided by the concepts of
sup-population/cluster or micro-clusters and computational
geometries. However, these models either use a number of
predefined assumptions (e.g. constant sub-population size)
or require ad-hoc parameter settings (e.g. no. of clusters,
size of pool etc.) which restrict them in several applications.
High computational cost also becomes a major issue for
some of these algorithms (Dyer, Capo, and Polikar 2014).

Skip-connected RNNs: RNN models with skip connec-
tion have recently gained considerable attention in deep
learning research. However, the existing skip-connected
RNNs (Campos et al. 2017; Chen et al. 2017; Chang et al.
2017) are mostly designed based on fixed architecture of the
feed-forward component, making these unfit for handling
the evolving data streams. Though the skip-connected RNN
model of Miikkulainen et al. (2019) can evolve its network
topology, this model works on epoch-basis and requires im-
mediate access to data labels. Thus, it becomes neither fit for
online learning nor fit for delayed label scenario.

Conclusions

Delay in arrival of data label is a common concern in the
realm of stream classification. In this paper, we have pro-
posed SkipE-RNN, a variant of RNN, to tackle such situa-
tion through its dynamically evolving and skipped recurrent
connection which helps the model to continue learning from
already known or initially observed samples. The proposed
SkipE-RNN-based classification model is applicable for fi-
nite as well as infinite label latency scenario, and also, it can
handle the evolving characteristics of data stream through
the auto-adaptation of its network configuration. Eventually,
this becomes appropriate for a wide range of real-life ap-
plications. Unlike existing classifiers for delayed label con-
text, our proposed model is exempted from predefined as-
sumptions and ad-hoc parameter settings, while producing
promising accuracy within acceptable computational time.
In future, we plan to extend SkipE-RNN with added convo-
lution module to deal with complex image streams.

Acknowledgments

This work is financially supported by the NTU-SUTD-
ASTAR AI partnership grant (#RGANS1902).

References

Ashfahani, A., and Pratama, M. 2019. Autonomous deep
learning: Continual learning approach for dynamic environ-
ments. In SIAM International Conference on Data Mining.

Bifet, A.; Holmes, G.; Kirkby, R.; and Pfahringer, B. 2010.
Moa: Massive online analysis. Journal of Machine Learning
Research 11(May):1601-1604.

Campos, V.; Jou, B.; Giré-i Nieto, X.; Torres, J.; and Chang,
S.-F. 2017. Skip rnn: Learning to skip state updates in re-
current neural networks. arXiv preprint arXiv:1708.06834.
Chang, S.; Zhang, Y.; Han, W.; Yu, M.; Guo, X.; Tan,
W.; Cui, X.; Witbrock, M.; Hasegawa-Johnson, M. A.; and
Huang, T. S. 2017. Dilated recurrent neural networks. In
Advances in Neural Information Processing Systems, 77-87.
Chen, Y.; Li, J.; Xiao, H.; Jin, X.; Yan, S.; and Feng, J. 2017.
Dual path networks. In Advances in Neural Information Pro-
cessing Systems, 4467—-4475.

Ditzler, G., and Polikar, R. 2013. Incremental learning of
concept drift from streaming imbalanced data. IEEE Trans-
actions on Knowledge and Data Enggineering 25(10):2283—
2301.

Dyer, K. B.; Capo, R.; and Polikar, R. 2014. Compose:
A semisupervised learning framework for initially labeled
nonstationary streaming data. IEEE transactions on neural
networks and learning systems 25(1):12-26.

Ferdaus, M. M.; Pratama, M.; Anavatti, S.; and Garratt,
M. A. 2019. Palm: An incremental construction of hyper-
planes for data stream regression. [EEE Transactions on
Fuzzy Systems (in press).

Gama, J.; Sebastido, R.; and Rodrigues, P. P. 2013. On
evaluating stream learning algorithms. Machine learning
90(3):317-346.

Goodfellow, I.; Bengio, Y.; Courville, A.; and Bengio, Y.
2016. Deep learning, volume 1. MIT press Cambridge.
Haque, A.; Khan, L.; and Baron, M. 2016. SAND: Semi-
supervised adaptive novel class detection and classification
over data stream. In Thirtieth AAAI Conference on Artificial
Intelligence, 1652—1658. AAAI Press.

Jung, Y. H.; Goetz, J.; and Tewari, A. 2017. Online multi-
class boosting. In Advances in neural information process-
ing systems (NIPS), 919-928.

Kolter, J. Z., and Maloof, M. A. 2005. Using additive expert
ensembles to cope with concept drift. In Proceedings of the

22nd International Conference on Machine Learning, 449—
456. ACM.

Krempl, G. 2011. The algorithm apt to classify in concur-
rence of latency and drift. In International Symposium on
Intelligent Data Analysis, 222-233. Springer.

Ksieniewicz, P.; Wozniak, M.; Cyganek, B.; Kasprzak, A.;
and Walkowiak, K. 2019. Data stream classification using
active learned neural networks. Neurocomputing 353:74-82.

3724

Lee, J.; Yun, J.; Hwang, S.; and Yang, E. 2017. Life-
long learning with dynamically expandable networks. arXiv
preprint arXiv:1708.01547.

Lopez-Paz, D., et al. 2017. Gradient episodic memory for
continual learning. In Advances in Neural Information Pro-
cessing Systems (NIPS), 6467-6476.

Masud, M. M.; Woolam, C.; Gao, J.; Khan, L.; Han, J.;
Hamlen, K. W.; and Oza, N. C. 2012. Facing the reality
of data stream classification: coping with scarcity of labeled
data. Knowledge and information systems 33(1):213-244.
Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink,
D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.;
Duffy, N.; etal. 2019. Evolving deep neural networks. In Ar-
tificial Intelligence in the Age of Neural Networks and Brain
Computing. Elsevier. 293-312.

Polikar, R.; Upda, L.; Upda, S. S.; and Honavar, V. 2001.
Learn++: An incremental learning algorithm for supervised
neural networks. IEEE Transactions on Systems, Man, and
Cybernetics, part C 31(4):497-508.

Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.;
Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; and Hadsell,
R. 2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Serra, J.; Suris, D.; Miron, M.; and Karatzoglou, A. 2018.
Overcoming catastrophic forgetting with hard attention to
the task. In 35th International Conference on Machine
Learning, volume 80, 4548-4557.

Souza, V. M.; Silva, D. E; Batista, G. E.; and Gama, J.
2015a. Classification of evolving data streams with infinitely
delayed labels. In 2015 IEEE 14th International Conference
on Machine Learning and Applications, 214-219. 1IEEE.

Souza, V. M.; Silva, D. E.; Gama, J.; and Batista, G. E.
2015b. Data stream classification guided by clustering
on nonstationary environments and extreme verification la-
tency. In Proceedings of the 2015 SIAM International Con-
ference on Data Mining, 873-881. SIAM.

Souza, V. M.; Silva, D. F.; Batista, G. E.; and Gama, J. 2019.
Nonstationary Environment— Archive. https://sites.google.
com/site/nonstationaryarchive/. [Online; access Sep-2019].

Street, W. N., and Kim, Y. 2001. A streaming ensemble
algorithm (sea) for large-scale classification. In Proceedings
of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, 377-382. ACM.
Tang, J.; Qiao, J.; Wu, Z.; Zhang, J.; and Yan, A. 2017. Se-
lective ensemble random neural networks based on adaptive
selection scope of input weights and biases for building soft
measuring model. In International Conference on Neural
Information Processing, 5S76-585. Springer.

Wang, D., and Li, M. 2017. Stochastic configuration net-
works: Fundamentals and algorithms. IEEE transactions on
cybernetics 47(10):3466-3479.

Wu, X.; Li, P;; and Hu, X. 2012. Learning from concept
drifting data streams with unlabeled data. Neurocomputing
92:145-155.

