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Abstract

We present a personalized and reliable prediction model for
healthcare, which can provide individually tailored medical
services such as diagnosis, disease treatment, and preven-
tion. Our proposed framework targets at making personalized
and reliable predictions from time-series data, such as Elec-
tronic Health Records (EHR), by modeling two complemen-
tary components: i) a shared component that captures global
trend across diverse patients and ii) a patient-specific compo-
nent that models idiosyncratic variability for each patient. To
this end, we propose a composite model of a deep neural net-
work to learn complex global trends from the large number
of patients, and Gaussian Processes (GP) to probabilistically
model individual time-series given relatively small number of
visits per patient. We evaluate our model on diverse and het-
erogeneous tasks from EHR datasets and show practical ad-
vantages over standard time-series deep models such as pure
Recurrent Neural Network (RNN).

Introduction

Precision medicine, which aims to provide individually tai-
lored medical services such as diagnosis, disease treatment,
and prevention, is an ultimate goal in healthcare. While
rendered difficult in the past, nowadays it is becoming in-
creasingly realizable due to the advances in data-driven
approaches such as machine learning. Especially, recent
widespread use of Electronic Health Record (EHR), a sys-
tematic collection of diverse clinical records of patients, has
encouraged machine learning researchers to explore vari-
ous clinical inferences (such as heart failure risk predic-
tion (Choi et al. 2016b), sepsis prediction (Futoma, Hari-
haran, and Heller 2017), and physiological time-series anal-
ysis (Dürichen et al. 2015), to name a few) based on the
records of personal medical history to improve the quality
of clinical cares (Lipton et al. 2016; Lipton, Kale, and Wet-
zel 2016; Che et al. 2018).

As we have seen the recent huge success of deep learn-
ing, one of the most popular choices when working with
EHR is to use Recurrent Neural Network (RNN) based mod-
els (Lipton et al. 2016; Choi et al. 2016b). However, this
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kind of so-called “population based” models (that is, learn-
ing a single model for all patients as in RNN) might fail
to give personalized predictions due to huge variability or
heterogeneity among patients originated from diverse (pos-
sibly unobserved) sources such as intrinsic differences of pa-
tients due to demographical and biological factors, or other
environmental factors (Marlin et al. 2012; Ng et al. 2015;
Alaa et al. 2016). To demonstrate this issue, we illustrate
in Figure 1 how heterogeneities across patients can impact
the overall performances of population based models. In this
toy simulation (see Appendix for details), we generate a
bunch of patient-specific time-series f (i)(x) (i is patient in-
dex) with some globally shared structure and train the model
with data from limited region (before dashed line). Figure 1
shows some test case. Here we can observe that for the re-
gion not used for training (after dashed line), teacher forced
RNN tends to make biased predictions to the average of
training patients. One possible and the easiest solution to-
wards personalization is to model separate functions, one
per patient to model the heterogeneity, but in a multitask
framework to share the common knowledge across patients.
However, deep models typically require large data, making
it very challenging to train separate models for each patient.

Gaussian Process (GP) is another popular model for time-
series as a non-parametric model, hence it might be the
proper choice to separately model each patient. Due to its
probabilistic nature, GP has additional benefit of represent-
ing uncertainty, which is also critical in medical problems
for reliable prediction. However, when working with large
amount of data, modeling exact GP gets computationally
challenging since it requires to compute the inverse of co-
variance matrix across all data points (O(n3) in exact in-
ference for n data points), although several approximations
such as (Snelson and Ghahramani 2006; Titsias 2009) have
been proposed at the expense of performance degradation
(We will discuss related multi-task GPs and their computa-
tional issues in later sections). Some works such as (Clifton
et al. 2013) have proposed to use separate GP for each time-
series as an alternative, however these models cannot take
advantages from global perspective as simply shown in Fig-
ure 1, Personalized GP.

In order to only take benefits from different approaches
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Figure 1: Motivating experiment. We generate data for a
patient i by f (i)(x) = x + sin(x) + ε(i) where ε(i) ∼
N (μi, σ

2
i ) as deviation from others. RNN fails to provide

personalized predictions on unseen input range (after dashed
line) due to lack of personalization. Personalized GP dis-
misses the global trend. The behavior of other baselines are
shown in Appendix though each has its disadvantage, com-
pared to our model (denoted as DME-GP).

in multiple time-series, in this paper we propose a fam-
ily of mixed effect model, Deep Mixed Effect Model using
GPs (DME-GP), which combines a deep neural network and
GPs. In DME-GP, by leveraging the complementary proper-
ties of two ingredients, we use a deep neural network (such
as RNN) to capture the global trend from the large number of
patients and GP to model idiosyncratic variability of individ-
ual patient. Regarding on the choice of the former, the global
function should be representationally powerful enough to
capture the complex shared trend across large number of pa-
tients. Not only that, it should be computationally amenable
to handle large number of patients in training as well as in-
ference procedures. Deep models including RNN architec-
ture are the reasonable option to leverage the size of EHR
data (in terms of the number of patients). On the other hand
for the latter, we deliberately choose GP in order to provide
reliable and individualized predictions even with very lim-
ited number of data points (i.e., limited number of patient’s
visits). The use of GP naturally makes our model proba-
bilistic and enables us to obtain the prediction uncertainty,
which is another important property for mission-critical clin-
ical tasks.

Our main contribution is threefold:

• We propose a frame of mixed effect model for multiple
time-series that can leverage the individual benefits of
shared global function and local function.

• We present the showcase of our framework for EHR anal-
ysis that uses RNN for capturing complex global trend in
time-series and GP for personalized and reliable predic-
tion with uncertainty estimate.

• We show practical advantages of our model over diverse
baselines both on regression (from Physionet Challenge
2012 (Goldberger et al. 2000)) and classification tasks
(from National Health Insurance Service; NHIS), and in-
vestigate its reliability, which is essential for mission-

critical tasks.

Related Work

Due to space constraint, here we focus to review works
modeling EHR. More comprehensive review (e.g. review on
combining GPs and deep models) is provided in Appendix.

Multiple Gaussian Processes for EHR Gaussian Process
models have been actively used in the medical applications
thanks to their reliability and versatility. However, using the
separate formulation of multiple GPs is preferred due to its
computational cost. (Clifton et al. 2013) proposed a multiple
GPs formulation to handle missing values caused by sensor
artifact or data incompleteness, which is common situation
in wearable devices. (Peterson et al. 2017) proposed to use
a similar model for diagnosis of Alzheimer’s disease, where
a population-level GP is adapted to a new patient using do-
main GPs individually.

Multi-task Gaussian Process for EHR. The previous line
of works can be understood as multi-task learning in the
sense that the parameters of GPs across patients are shared.
However, more systematic way of considering multi-task
learning with GPs is to directly learn a shared covariance
function over tasks. (Bonilla, Agakov, and Williams 2007;
Bonilla, Chai, and Williams 2008) proposed Multi-task
Gaussian Process (MTGP) that constructs large covariance
matrix as a Kronecker product of input and task-specific
covariance matrices for multi-task learning. A practical ex-
ample of applying MTGP in medical situation is given in
(Dürichen et al. 2015). (Cheng et al. 2017) proposed an-
other approach that shares covariance matrix structured as
the linear model of coregionalization (LMC) framework
for personalized GPs, which is generalization of (Nguyen
and Bonilla 2014). (Futoma, Hariharan, and Heller 2017;
Futoma et al. 2017) made use of MTGP for preprocess-
ing of input data fed into RNN. All of this line of works
are based on the multi-task GPs that share huge covariance
matrix which makes exact inference intractable. There have
been some attempts to utilize mean of GP similar to our ap-
proach, proposed by (Schulam and Saria 2015), (Futoma et
al. 2016), and (Iwata and Ghahramani 2017). However, our
model is constructed in distinctive way where we use flex-
ible deep models for shared mean function to capture com-
plex structures, and more importantly, we explicitly con-
struct a single GP for each patient to reflect individual signal.

Deep learning models with EHR. Recurrent neural net-
works (RNN) have recently been gained popularity as
means of learning a prediction model on time-series clini-
cal data such as EHR. (Lipton et al. 2016) and (Choi et al.
2016a) proposed to use RNN with Long-Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) and Gated
Recurrent Units (GRU) (Cho et al. 2014) respectively for
multi-label classification of diagnosis codes given multivari-
ate features from EHR. Moreover, the pattern of missing-
ness, which is typical property of EHR, has been exploited
in (Lipton, Kale, and Wetzel 2016) and (Che et al. 2018)
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by introducing missing indicator and the concept of decay-
ing informativeness. (Choi et al. 2016b) proposed to use
RNN for generating attention on which feature and hospital
visit the model should attend to, for building an interpretable
model, and demonstrated it on heart failure prediction task.
While RNN models have shown impressive performance on
real-world clinical datasets, deploying them to safety-critical
clinical tasks should be done with caution as they lack the
notion of confidence, or uncertainty of prediction.

Proposed Method

Problem Formulation

Suppose dataset D := {(Xi,yi)}Pi=1 consists of P patients
and i-th patient is represented by a sequence of Ti elements
(or visits), that is, Xi := [x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
Ti
], and corre-

sponding target values, yi := [y
(i)
1 , y

(i)
2 , . . . , y

(i)
Ti
]. The goal

of our task in patient modeling is to predict the target value
y
(i)
t at each time step, given the current input features x

(i)
t

and all the previous history: {x(i)
s }t−1

s=1 and {y(i)s }t−1
s=1.

This problem formulation incorporates several problems
in EHR analysis such as disease progression modeling
(DPM) or learning to diagnose (L2D) (Choi et al. 2016b). In
DPM, we predict the evolutions of medical codes simultane-
ously at every time point. Specifically, if we have r different
medical codes in our EHR, xt ∈ R

r, which encodes the
binary status indicating if each code appears in t-visit data,
our goal is to predict xt at every time t given all the previ-
ous history {xs}t−1

s=1. In L2D, which can be thought of as the
special case of DPM, we are interested only in diagnosing of
certain disease at the very end of visit sequence.

A Framework of Mixed Effect Model

Now we provide the general description of our mixed ef-
fect framework decomposing the function f (i) for i-th pa-
tient into two independent functions g(·) and l(i)(·) under
the multi-task learning paradigm:

f (i)(xt) = g(xt) + l(i)(xt) (1)

where we assume l(i)(·) to include random noise. Note that
g(·) and l(i)(·) are also called as fixed and random effect
respectively in other literature (Greene 2003). In the frame-
work, g(·) models global trend among the whole diverse pa-
tients, and hence it is shared across all patients. On the other
hand, l(i)(·) models the patient-specific signal (for i-th pa-
tient) that is not captured by the global trend g(·). Note that
no information is shared across patients through l(i)(·). We
highlight that since the framework is generic, both functions
can be chosen to be optimal depending on whatever the do-
main we apply on. Note also that in the traditional multi-task
learning, we usually employ this kind of information sharing
strategy at the parameter level; that is, the parameter vector
for each task is represented as the sum of shared and indi-
vidual parameters. However, in (1), the function value itself
is mixed. Both approaches are equivalent only if g(·) and
l(i)(·) are linear mappings, which is not the case in general.
The graphical representation of the framework (1) is shown
in Figure 2a.
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Figure 2: (a) A graphical representation of mixed effect
framework for EHR analysis in (1). (b) A graphical repre-
sentation of DME-GP in (4). To emphasize our decompos-
ing framework, we color the global and individual compo-
nents as blue and red respectively. Final composite model is
colored as yellow.

Mixed Effect Model using GPs
As a concrete example of framework (1), we first consider
the case where both g(·) and l(i)(·) follow Gaussian Pro-
cesses. Note that this formulation is just to relate our frame-
work to existing multi-task GPs modeling each patient us-
ing a personalized GP. At the end of this subsection, it will
be clear that this direction of individualization will involve
almost intractable computations as the number of patients
grows. Specifically, both components are represented as fol-
lowings:

g(xt) ∼ GP(
0, kg(xt,xt′)

)
, l(i)(xt) ∼ GP(

0, k(i)(xt,xt′)
)

where we assume both GPs to have zero-mean for simplic-
ity, and kg(·, ·) and k(i)(·, ·) are valid covariance functions
such as squared exponential kernel (RBF). We name this in-
stantiation ME-GP that stands for Mixed Effect Model using
GPs. Note that in this model, knowledge sharing occurs via
the covariance function kg(·, ·) of global GP. Further assum-
ing the independence between g(·) and l(i)(·) for all patients,
we can derive overall covariance function in the following
manner:

k̃(x
(i)
t ,x

(j)
t′ ) = kg(x

(i)
t ,x

(j)
t′ ) + δij · k(i)(x(i)

t ,x
(j)
t′ )

where δij is the Kronecker delta function: δij = 1 if i = j
(that is, for same patient) otherwise 0. Interestingly, person-
alized GPs from this construction in fact boils down to a sin-
gle GP with the covariance function k̃(·, ·) for all of function
variables f (1), · · · ,f (P ):
⎡
⎢⎣
f (1)

...
f (P )

⎤
⎥⎦ ∼ GP

⎛
⎜⎝0,

⎡
⎢⎣
Kg

11 +K(1) · · · Kg
1P

...
. . .

...
Kg

P1 · · · Kg
PP +K(P )

⎤
⎥⎦

⎞
⎟⎠

(2)

where f (i) = f (i)(Xi) is a random vector of i-th patient
process, and Kg

ij and K(i) are covariance matrices with el-

ements given by kg(x
(i)
t ,x

(j)
t′ ) and k(i)(x

(i)
t ,x

(i)
t′ ) respec-

tively at (t, t′) position. As a result, the covariance matrix
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in (2) lies in the space of RPT×PT , assuming T = Ti for
all i. Given the model search and inference for a new point
in GP rely on the inversion of covariance matrix, which
costs O(P 3T 3) for exact computation, learning with EHR
datasets can be intractable in ME-GP even if we have small
number of data points for each patient.

As noted earlier, Multi-task Gaussian Process (MTGP) is
another model that uses GP in multi-task setting by form-
ing covariance function with multiplicative task-relatedness
parameters as allows :

k̃(x
(i)
t ,x

(j)
t′ ) = Kij · kg(x(i)

t ,x
(j)
t′ )

where Kij is an element at (i, j) position in task-relatedness
matrix K as defined in (Bonilla, Chai, and Williams 2008).
MTGP also requires to compute the inverse of huge covari-
ance matrix in the same space as (2) and causes the same
scalability issue.

Deep Mixed Effect Model using GPs

In this section, we propose Deep Mixed Effect Model using
GPs (DME-GP) that exploits complementary properties of a
deep network and GP and show our proposed model natu-
rally overcomes scalability issue arisen in ME-GP. Specifi-
cally, we assume g(·) to be a deep network and l(i) to be GP
as followings:

g(xt) = μ(xt), l(i)(xt) ∼ GP(
0, k(i)(xt,xt′)

)
where μ(·) is any kind of a deep neural network such as MLP
or RNN where the knowledge sharing occurs across individ-
ual processes of patients. As we have done in the previous
subsection, we can derive overall covariance function as fol-
low:

k̃(x
(i)
t ,x

(j)
t′ ) = δij · k(i)(x(i)

t ,x
(j)
t′ ) .

Note that this covariance function naturally forms block-
diagonal matrix where each corresponds to each patient’s
process f (i):⎡

⎢⎣
f (1)

...
f (P )

⎤
⎥⎦ ∼ GP

⎛
⎜⎝
⎡
⎢⎣
μ1

...
μP

⎤
⎥⎦ ,

⎡
⎢⎣
K(1) · · · 0

...
. . .

...
0 · · · K(P )

⎤
⎥⎦
⎞
⎟⎠ (3)

where μi = μ(Xi) are outputs of a deep network. This in
turn makes each patient process to be independent to other
processes, which results in personalized GP models sharing
global deep networks, described in (4). The computational
cost of DME-GP compared to ME-GP reduces to O(PT 3)
thanks to its personalized formulation, which means DME-
GP linearly scales to the number of patients P .

We also investigate complementary properties of DME-
GP between global and individual components. As we dis-
cussed in the introduction, shared function g(·) and individ-
ual function l(i)(·) have their own desired properties:

Individual Component We adopt a personalized Gaus-
sian Process for l(i)(·). This adoption allows the overall
model to naturally provide the prediction uncertainty as a
probabilistic model. In addition to that, GP enables us to re-
liably estimate individual signals based on relatively small
number of data points (or visits for a patient) as a non-
parametric model.

Figure 3: An overall conceptual illustration of DME-GP.
Left panel describes personalized formulation for each pa-
tient. Right panel shows detailed descriptions of decom-
posed components for a single patient. Note that weights
sharing of deep model occurs across all GPs and individ-
ual parameters are maintained for them as shown in green
and orange boxes respectively.

Global Component We adopt representationally expres-
sive deep models such as MLP or RNN for g(·). This is a rea-
sonable choice to capture complex patterns in high dimen-
sional medical data in relatively computationally amenable
fashion using stochastic gradient descent algorithms such as
Adam (Kingma and Ba 2015).

Composite Model Armed with these deliberate choices, it
turns out the composite model (1) can be reduced to person-
alized GPs sharing a deep mean function, derived from (3):

f (i)(xt) ∼ GP
(
μ(ht|w), k(i)(ht,ht′ |θi)

)
(4)

where the shared deep function g(·) is renamed as μ(·|w)
(since it is a “mean function” of GP), k(i)(·, ·|θi) is a kernel
function for the individual process l(i)(·), and ht is some
embedding for input xt through global embedding function
φ(·|v). Here we adopt deep models as global embedding
function, as done for global component. Note, this is a nat-
ural extension to benefit from deep kernel approach to make
local kernel function more expressive (Wilson et al. 2016).
The graphical representation of (4) is shown in Figure 2b al-
though some parts of our model are deterministic mappings.

Design Choice The framework of (4) does not restrict μ(·)
and φ(·) to have specific form. However, we focus on RNN
to efficiently handle sequential nature of EHR. For instance
of vanilla RNN with single hidden layer case, we have:

ht = φ(xt,ht−1|v) = tanh(vxhxt + vhhht−1) (5)

where we suppress bias terms for simplicity and v =
{vxh,vhh}. μ(·) can be formulated in a similar way. Note
that the type of RNN cell can be any of choice, such as
LSTM or GRU, and the architecture of a deep model can be
carefully designed with domain knowledge of target dataset.
Overall conceptual illustration of DME-GP is shown in Fig-
ure 3.

Learning and Inference of DME-GP

While our model is generally applicable to both regression
and classification tasks, we implicitly assume the Gaussian
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likelihood throughout the paper just for clarity and nota-
tional simplicity. These can be seamlessly extended for clas-
sification problems with binary likelihood along with stan-
dard approximation techniques as in regular Gaussian Pro-
cess.

Learning Our learning objective is to maximize the
marginal log-likelihoods of patients data D under the model-
ing assumption of (3) and (4) to find global-level parameters
{w,v} and θ = {θi}Pi=1 from the individual components:

θ∗,w∗,v∗ = argmax
θ,w,v

P∑
i=1

log p(yi|Xi,θ,w,v) (6)

where the log-likelihood is the sum of individual patient data
under i.i.d. assumption across patients. An individual log-
likelihood of single patient then can be represented using
global and local parameters as follows:

log p(yi|Xi,θi,w,v) =− 1

2

(
yi − μi

)T
K(i)−1(

yi − μi

)

− 1

2
log |K(i)| − Ti

2
log 2π (7)

where the parameter dependencies are implicitly defined:
μi = [μ(h1|w), · · · , μ(hTi

|w)]T , K(i) ∈ R
Ti×Ti is a

full covariance matrix given the element k(i)(ht,ht′ |θi) at
(t, t′) position, and RNN-based embedding ht is a function
on v as mentioned in (5).

The gradient of (7) with respect to parameters can then be
derived by chain rule as follows:

∂Li

∂θi
=

∂Li

∂K(i)

∂K(i)

∂θi
,
∂Li

∂w
=

Ti∑
t=1

∂Li

∂μt

∂μt

∂w

∂Li

∂v
=

∂Li

∂K(i)

Ti∑
t=1

∂K(i)

∂ht

∂ht

∂v
+

Ti∑
t=1

∂Li

∂μt

t∑
t′=1

∂μt

∂ht′

∂ht′

∂v

(8)

where Li := log p(yi|Xi,θi,w,v), and μt = μ(ht). Note
that, unlike vanilla RNN, the gradient computation of v from
(6) involves additional {K(i)}Pi=1 terms, leading to a bit
more complicated computation. Note also that the gradient
of global parameters w and v should involve the marginal
likelihood across all patients while we only consider indi-
vidual Li for clarity.

Our learning algorithm is based on stochastic gradient as-
cent in an alternating fashion and summarized in Appendix.
Note again that our personalized formulation allows us to be
able to avoid heavy computational cost from huge GP like
in (2) with EHR datasets. In addition, deep architectures as a
shared mean function can be updated efficiently through the
standard back-propagation algorithm. Note also that in non-
Gaussian likelihood cases such as classification tasks, the
marginal likelihood can be computed via variational lower
bound with variational approximation or by simulation ap-
proaches (Nickisch and Rasmussen 2008).

Inference for new patient j Since we have single GP for
each patient in (4), our inference procedure for new patient

j follows the standard procedures of single GP inference.
Suppose we want to predict yt of a new patient j given
current input feature xt and all historical data on this pa-
tient: X = {xs}t−1

s=1 and y = {ys}t−1
s=1 where we suppress

the patient index j for clarity. Then, we update the patient-
specific parameters θj of new GP by maximizing marginal
log-likelihood (7), while global parameters {w,v} are fixed.

The predictive distribution of yt becomes
p(yt|xt,X,y) = N (yt|ȳt, σ2

t ) with:

ȳt = μ(ht) + kT
t K

−1(y − μ(H))

σ2
t = k(ht,ht)− kT

t K
−1kt (9)

where H = [h1, ...,ht−1]
T and kt = k(H,ht). The pre-

dictions can be done in sequential manner, which means we
can predict the output at any time point of the patient. Note
that the prediction at the first time point, t = 1, can be
done deterministically by the global mean function, where
the model predicts in average. As we increase the time point
t, we have more evidence for the patient and make better
personalized predictions.

We note that approximate predictions can also be de-
rived with non-Gaussian likelihood in a classification prob-
lem. While following the notations from Gaussian likelihood
case explained above, the output y follows some distribution
p
(
y|f(x)) that is properly defined according to Y (i.e., nor-

mal distribution when Y := R and Bernoulli distribution
when Y := {0, 1}). Then, the distribution of the latent func-
tion of GP for the test case xt is given by:

p(ft|xt,X,y) =

∫
p(ft|xt,X,f)p(f |X,y)df (10)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) by Bayes’
rule. Finally, the predictive distribution of yt is:

p(yt|xt,X,y) =

∫
p(yt|ft)p(ft|xt,X,y)dft (11)

where p(yt|ft) is a properly designed likelihood function
of yt given ft according to the class of problems. In re-
gression case, we have analytic forms for (10) and (11)
when p(yt|ft) follows Gaussian as we have shown in (9).
On the other hand for classification problems, the likeli-
hood function is designed to be a sigmoid function such as

1
1+exp(−ft)

, which makes the integral in (10) and (11) an-
alytically intractable. Thus, we need approximation meth-
ods for the posterior p(f |X,y), such as Laplace approxi-
mation, variational method, or Markov Chain Monte Carlo
(MCMC) approximation (Nickisch and Rasmussen 2008;
Opper and Archambeau 2009).

Experiments

Dataset Description and Experimental Setup

Vital-Sign Dataset This dataset is compiled from a pub-
licly available EHR dataset called Physionet Challenge 2012
(Goldberger et al. 2000). Specifically, we extract heart rate
(HR) information in time-series for 865 patients who are in
a cardiac surgery recovery unit (52,942 overall data points).
Input (event time) and output values (heart rate) are scaled
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Figure 4: Vital-Sign Analysis. The predictions (red curves) for a random patient (blue dots) are shown in the order of DME-
GP, p-GPs, and MLP respectively. The uncertainty representation is given by ± 1 standard deviation centered at the model’s
predictions. The global trend of DME-GP, which is predicted by a global mean function, is shown as a green dashed line.

by 5,000 and 50, respectively. The dataset is motivated from
the patient monitoring system in hospitals where the con-
ventional procedures of the system are operated by nursing
staff who frequently check target vital signs. It is impor-
tant to automate the monitoring system to reduce the high
cost of human labor and for early detection of those patients
in a dangerous condition by predicting progressions of vital
signs.

Medical Checkup Dataset This dataset is compiled from
health checkup records for 32,927 patients (and 220,408
data points) collected from 2002 to 2013 (provided by Na-
tional Health Insurance Service; NHIS). We select 12 com-
mon target diseases, and for each disease we have the health
checkup history (either real or categorical input features)
and corresponding target binary variables indicating either
the absence or presence of a disease at each year. We con-
vert categorical variables into one-hot vectors and normal-
ize each real-valued feature with its mean and standard de-
viation. We simply fill in missing values in raw EHR data
with zeros since missing rate is low (Lipton, Kale, and Wet-
zel 2016; Che et al. 2018). Detailed statistics of our data for
each dataset are provided in Appendix.

Baselines We compare DME-GP against several baseline
models including RNN-based deep models that are known
to work well with time-series datasets:

• Linear Models (LM): A linear and logistic regression
models for regression and classification respectively.

• MLP: A multi-layer perceptron containing two hidden
layers with a sigmoid activation function.

• RNN: A RNN containing two hidden layers with long
short-term memory units (LSTM) (Lipton et al. 2016).

• RETAIN: A RNN-based recurrent attention model pro-
posed in (Choi et al. 2016b).

• MTGP-RNN: A multi-task Gaussian Process-wrapped
RNN proposed in (Futoma, Hariharan, and Heller 2017).
This model uses a multi-task GP (MTGP), but it is com-
putationally tractable since it only considers the MTGP to
correlate input features across different time points.

• MAML: A RNN-based Meta-SGD model proposed
in (Li et al. 2017). This model is extended version of

MAML (Finn, Abbeel, and Levine 2017) where the model
also learns step size of a meta-learner (an optimizer).

In case of LM and MLP, we treat individual time steps for
all patients as i.i.d. observations since they are not specif-
ically designed for time-series inputs. We exclude compar-
isons against variants of a single GP including MTGP and
ME-GP not only because we observed their limited perfor-
mances on the preliminary experiments but because they are
computationally too expensive for exact inference. For our
DME-GP, we consider two different models that use MLP
and RNN with one hidden layer respectively. Note that we
use a single-layered deep kernel function for our DME-GPs
for fair comparisons (since baseline deep models use two
layers in total). We defer all training details (e.g. setting
hyper-parameters) to Appendix due to the space constraint.

Ablation Models We also evaluate the following variants
of DME-GP for an ablation study:
• p-GPs: Personalized GPs with zero mean, individual em-

bedding vi and covariance θi for patient-i.
• p-GPs-cov: Personalized GPs with zero mean, shared

embedding v and covariance θ.
• p-GPs-both: Personalized GPs with shared mean and co-

variance parameters w,v,θ.
We expect that p-GPs would not generalize well on a rel-
atively small amount of patient data due to lack of shar-
ing information. p-GPs-cov would benefit sharing informa-
tion from a shared covariance function but in a limited
way and lose individual characteristics. Lastly, p-GPs-both
would fully benefit from both shared mean and covariance
function, but not be able to capture individual signals be-
cause of missing local components. Interestingly, (Fortuin
and Ratsch 2019) proposes a similar model as p-GPs-both
concurrently to our work but in meta-learning perspective.

The code is available at https://github.com/jik0730/Deep-
Mixed-Effect-Model-using-Gaussian-Processes.

Vital-Sign Analysis: Heart Rate

Our goal here is to find a mapping from a fixed window time-
series {xt−2:t, yt−2:t} to step-ahead target value yt+5 at ev-
ery time stamp t.

In this experiment, we compare DME-GP (MLP) against
p-GPs and MLP since other baselines perform similarly with
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Table 1: Disease Risk Prediction. Performance (AUC) comparisons for 12 risk prediction tasks.

Diseases DME-GP DME-GP RNN RETAIN MTGP-RNN MLP MAML LM(RNN) (MLP)

Alcoholic Fatty Liver 0.829 0.801 0.791 0.796 0.785 0.777 0.780 0.529
Atherosclerosis 0.815 0.740 0.662 0.726 0.716 0.735 0.728 0.547
Emphysema 0.805 0.742 0.778 0.671 0.769 0.787 0.632 0.552
Liver Cirrhosis 0.932 0.922 0.888 0.871 0.904 0.856 0.913 0.635
Alcoholic Hepatitis 0.842 0.852 0.803 0.788 0.853 0.782 0.852 0.563
Arrhythmia 0.763 0.740 0.592 0.616 0.587 0.658 0.767 0.602
Fatty Liver 0.726 0.731 0.689 0.684 0.680 0.647 0.691 0.513
Heart Failure 0.829 0.759 0.790 0.792 0.761 0.783 0.729 0.620
Hepatic Failure 0.728 0.738 0.625 0.614 0.646 0.688 0.653 0.563
Hepatitis B 0.542 0.489 0.567 0.571 0.674 0.671 0.554 0.528
Myocardial Infarction 0.885 0.826 0.865 0.858 0.815 0.890 0.803 0.787
Toxic Liver Disease 0.641 0.698 0.595 0.594 0.596 0.643 0.685 0.518

Task Average 0.778 0.753 0.720 0.715 0.732 0.743 0.732 0.580

Figure 5: Reliability Study. Average classification probabil-
ity ratio between easy patients and hard patients.

these two baselines. Running examples made by these mod-
els for a selected patient are shown in Figure 4. p-GPs shown
in the middle graph tends to produce underestimated predic-
tions where the model outputs lower values than expected,
especially in initial time points. This phenomenon can be
explained by its lack of global trend, and we can verify the
benefit of knowledge transferring from other patients.

MLP on the right tends to behave like a follower where the
predictions simply copy the former time-series targets since
previous targets are the most useful information for popu-
lation based models. On the other hand, DME-GP shows
better predictions than the baselines. The predicted global
trend (or mean) in DME-GP (shown in green dashed line)
exhibits a similar pattern with the predictions of MLP and
contributes to making the overall predictions better than p-
GPs and MLP. This result partially implies that DME-GP is
able to successfully benefit from both global and individual
components. Overall test prediction performance (RMSE)
for all patients is measured as 0.150 (DME-GP), 0.243 (p-
GPs), and 0.194 (MLP), respectively.

Disease Risk Prediction by Medical Checkup

Given a visit sequence of input features {x(i)
t }Ti

t=1 (which
are representing clinical status) and corresponding binary
targets {y(i)t }Ti−1

t=1 (disease history) for each patient i, our
task is to predict the most recent target y(i)Ti

. The task can be
thought of as predicting the risk of disease given time-series
health checkup variables.

Figure 6: Ablation Study. Performance comparisons (in
terms of Area Under the ROC Curve; AUC) among the vari-
ants of DME-GP. For fair comparison, we evaluate the mod-
els under the same hyper-parameters and measure the vali-
dation AUC.

We compare DME-GP against standard baselines listed
above to verify the importance of considering the idiosyn-
cratic variability of individual patient when modeling het-
erogeneous clinical data. As summarized in Table 1, DME-
GP significantly outperforms others in most of the cases.
The performance of DME-GP with a RNN mean function
is the best among them probably because RNN is able to
effectively capture the global trend by making use of histor-
ical data points in time-series. The population-based deep
models such as RNN perform worse than DME-GP proba-
bly because they are not be able to effectively model individ-
ual differences across diverse patients. In particular, MTGP-
RNN’s degraded performance compared to DME-GP sug-
gests that modeling each patient as a single task is better than
modeling each feature when modeling heterogeneous pa-
tient data. MAML also shows not enough prediction scores
compared to DME-GP, which supports the claim that DME-
GP is a better way to transfer knowledge in heterogeneous
EHR datasets.

Ablation Study In this experiment, we evaluate the vari-
ants of DME-GP to investigate the effect of using differ-
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Table 2: Reliability Study. Performance (in terms of Area
Under the ROC Curve; AUC) comparisons when we exclude
a set of hard patient who has a positive label at Ti but neg-
ative labels for others. Experiments for other diseases are
shown in Appendix.

DISEASES DME-GP RNN RETAIN

A. FATTY LIVER 0.998 0.856 0.861
ATHEROSCLEROSIS 1 0.683 0.768
EMPHYSEMA 0.991 0.785 0.765
LIVER CIRRHOSIS 0.989 0.928 0.922
ALCOHOLIC HEPATITIS 0.981 0.881 0.866
ARRHYTHMIA 0.992 0.639 0.656

ent levels of information sharing across patients. As a re-
cap, our model only shares the global mean function across
all patient-wise GPs to capture global trend in the data for
knowledge transfer, and leverages patient-wise GPs to cap-
ture local variability from inherent hidden factors of each
patient. The results shown in Figure 6 support our claim that
the decomposition into a shared global part and a personal-
ized local part is sensible with heterogeneous medical data.

Reliability Study Finally, in order to indirectly measure
the predictive reliability of our model, we design a simple
modification from the previous experiment on risk predic-
tions. Specifically, we define a hard patient to denote a pa-
tient who has a positive label only at the prediction time Ti

but never has positive labels in his/her historical data. We
compare the differences (in terms of confidence as well as
AUC) between i) the case where we exclude hard patients
(easy) and ii) the case where we only consider such hard
patients (hard). Figure 5 shows how confident the models
are for two groups of patients and Table 2 summarizes AUC
when we exclude hard patients. Our model exhibits clear dis-
tinctions between the two cases and achieves almost perfect
scores for many datasets when it is confident. On the other
hand, for the latter case (only on hard patients), the gain of
using our model degrades as shown in Appendix, while be-
ing competitive with deep models. This reliable confidence
information will allow proper involvement of human medi-
cal staff.

Conclusion

We have presented the framework of Mixed Effect Model for
electronic health records (EHR) and provided Deep Mixed
Effect Model using GPs (DME-GP) as a showcase example
that exploits complementary properties of RNN and GP. In
DME-GP, we use a deep network to learn a globally shared
mean function capturing complex global patterns among di-
verse patients and use GP to build personalized and reliable
prediction model. We have investigated the properties of our
model for diverse tasks complied from real EHR data and
validated the superiority of it against state-of-the-art base-
lines. One last important note is that our model has an advan-
tage to provide prediction uncertainty via GP in a principled
way, which is essential for safety-critical clinical tasks.
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