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Abstract

The geometric block model is a recently proposed generative
model for random graphs that is able to capture the inherent
geometric properties of many community detection problems,
providing more accurate characterizations of practical com-
munity structures compared with the popular stochastic block
model. Galhotra et al. recently proposed a motif-counting al-
gorithm for unsupervised community detection in the geo-
metric block model that is proved to be near-optimal. They
also characterized the regimes of the model parameters for
which the proposed algorithm can achieve exact recovery. In
this work, we initiate the study of active learning in the geo-
metric block model. That is, we are interested in the prob-
lem of exactly recovering the community structure of ran-
dom graphs following the geometric block model under ar-
bitrary model parameters, by possibly querying the labels of
a limited number of chosen nodes. We propose two active
learning algorithms that combine the use of motif-counting
with two different label query policies. Our main contribu-
tion is to show that sampling the labels of a vanishingly small
fraction of nodes (sub-linear in the total number of nodes)
is sufficient to achieve exact recovery in the regimes under
which the state-of-the-art unsupervised method fails. We val-
idate the superior performance of our algorithms via numeri-
cal simulations on both real and synthetic datasets.

1 Introduction

Community detection (or graph clustering) is one of the
most important tasks in machine learning and data mining.
In this problem, it is assumed that each node (or vertex) in
a network (or graph) belongs to one of the underlying com-
munities (or clusters), and that the topology of the network
depends on these latent group memberships (or labels). The
goal is to recover the communities by partitioning the nodes
into different classes that match the labels up to a permu-
tation. This problem has many applications, such as clus-
tering in social networks (Fortunato 2010), detecting pro-
tein complexes in protein interaction networks (Chen and

∗This work was done during Eli Chien’s internship at Nokia
Bell Labs, New Jersey.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yuan 2006), identifying customer interests in recommenda-
tion systems (Sahebi and Cohen 2011), and performing im-
age classification and segmentation (Shi and Malik 2000).

The stochastic block model (SBM) is a popular random
graph model for community detection that generalizes the
well-known Erdös-Renyi model (Holland, Laskey, and Lein-
hardt 1983; Mossel, Neeman, and Sly 2015). In the SBM,
the probability of having an edge between a pair of nodes
depends only on the labels of the corresponding two nodes.
In its simplest version, the SBM contains two communities
of equal sizes, such that a pair of nodes from the same com-
munity are connected with probability p, and nodes from dif-
ferent communities are connected with probability q. Prior
works (see (Abbe 2017) for an overview) have established
the limits of unsupervised methods to achieve exact commu-
nity detection (recovery) in terms of the relative difference
between p and q.

However, many practical scenarios fall in the regimes
where unsupervised methods fail to achieve exact recovery
(difference between p and q below fundamental limit). It has
then become apparent the need to understand if, in those
regimes where unsupervised methods fail, we can still re-
cover the correct community memberships by querying the
labels of a small subset of nodes. The process of actively
querying the labels of a subset of nodes, referred to as active
learning, is a very useful tool for many machine learning ap-
plications where the acquisition of labeled data is expensive
and/or time consuming (Cohn, Atlas, and Ladner 1994). In
the active learning framework, we are allowed to query node
labels up to a budget constraint in order to improve overall
classification accuracy. The authors of (Gadde et al. 2016)
showed that a sub-linear number of queries is sufficient to
achieve exact recovery below the limit (in terms of differ-
ence between p and q) of unsupervised methods in the SBM,
and that the number of queries needed for exact recovery de-
pends on how far we are below such limit – hence providing
a smooth trade-off between query complexity and clustering
accuracy in the SBM.

While the SBM has gained a lot of popularity to bench-
mark the performance of clustering algorithms owing to
its ease of tractability, it fails to capture very important
properties of real networks, such as “transitivity” (‘friends
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having common friends’) (Holland and Leinhardt 1971;
Wasserman, Faust, and others 1994). Consider any three
nodes in a graph, x, y, and z. Given the existence of edges
between x and y, and between y and z, (partial) transitivity
dictates that it is more likely than not that there also exists
an edge between x and z. However, under the SBM, edges
are assumed to exist independent of each other, conditioned
on their respective node labels. Hence, in the SBM, the ex-
istence of edges (x, y) and (y, z) does not affect the proba-
bility of having edge (x, z), failing to capture transitivity.

In order to account for the apparent transitivity of many
real networks, the authors of (Galhotra et al. 2018) proposed
a random graph community detection model termed geo-
metric block model (GBM). The GBM combines elements
of the SBM with the well studied random geometric graph
(RGG) model that has found important practical applica-
tions e.g., in wireless networking (Penrose and others 2003;
Gupta and Kumar 1999; Devroye et al. 2011; Goel et al.
2005). In the GBM, the probability that and edge exists be-
tween two nodes depends, not only on the associated node
labels, but also on their relative distance in the latent feature
space. The authors in (Galhotra et al. 2018) experimentally
validated the benefit of the GBM compared with the SBM to
more accurately model real-world networks. In their follow-
up work (Galhotra et al. 2019), they proposed a state-of-the-
art near-optimal motif-counting algorithm that can achieve
exact recovery with high probability when the GBM param-
eters are above the limit for exact unsupervised recovery. In-
terestingly, as we illustrate in Section 2.1, such limit is much
higher than in the SBM, showing that clustering in the GBM
is fundamentally harder than in the SBM, and hence that in
many practical settings, unsupervised methods will not be
sufficient to accurately cluster real-world networks.

1.1 Contributions

Motivated by the advantage of the GBM to more accurately
characterize real-world networks and by the increased diffi-
culty in clustering GBM-based networks (compared with the
SBM), in this work, we initiate the study of active learning
in the GBM.

We propose two active learning algorithms for the GBM
that exactly recover the community memberships with high
probability using a sub-linear number of queries, even in
regimes below the limit of the state-of-the-art unsupervised
algorithm in (Galhotra et al. 2019). Similar to the result
of (Gadde et al. 2016) in the SBM, our results offer a smooth
trade-off between query complexity and clustering accuracy
in the GBM. Both algorithms exploit the idea of motif-
counting to remove cross-cluster edges, while combining it
with active learning in a different way. The first algorithm
combines the use of motif-counting to remove cross-cluster
edges (not necessarily all of them) with the minimax graph-
based active learning algorithm S2 (Dasarathy, Nowak, and
Zhu 2015) to remove the remaining cross-cluster edges.
The second algorithm employs a more aggressive version of
motif-counting to remove all cross-cluster edges (possibly
removing also some intra-cluster edges), and then queries
for the label of at least one node from each disconnected
component. Interestingly, our analysis of the motif-counting

phase of our algorithms also leads to a slight improvement
of the limit for exact unsupervised recovery derived in (Gal-
hotra et al. 2019).

We test our algorithms extensively on both synthetic and
real-world data. They improve the accuracy of the method
in (Galhotra et al. 2018) from roughly 0.78 to 0.92 by query-
ing no more than 4% of the nodes in two real-world datasets.
We remark that this accuracy is much higher than that of the
spectral method, which can only achieve roughly 0.6 accu-
racy on these same datasets. We also compare with the S2

algorithm, which attains a slightly higher accuracy, but using
at least 10 times more queries.

The full version of this paper, including the Supplement,
can be found in (Chien, Tulino, and Llorca 2019).

1.2 Related work

Active learning on arbitrary graphs– Active learning on
graphs has attracted significant attention in the recent re-
search literature. Most previous works do not assume any
knowledge of the underlying statistical model, and hence
their performance guarantees depend on the parameters of
the graph into consideration (Guillory and Bilmes 2009;
Gu and Han 2012; Zhu, Lafferty, and Ghahramani 2003;
Cesa-Bianchi et al. 2013; Dasarathy, Nowak, and Zhu 2015).
While these approaches are fairly general, they tend be too
pessimistic in settings where prior knowledge about the sta-
tistical model is available. In our work, we exploit the use of
the minimax optimal graph-based active learning algorithm
S2 (Dasarathy, Nowak, and Zhu 2015) in combination with
the prior knowledge of the underlying GBM.

Modeling transitivity– Prior attempts to include transi-
tivity in random graph models include the Euclidean ran-
dom graph (Sankararaman and Baccelli 2018), where edges
between nodes are randomly and independently drawn as a
function of the distance between the corresponding nodes’
feature random variables. Differently from the GBM, clus-
tering in this model requires, in addition to the graph, the
values of the nodes’ feature variables. Another transitivity
driven model is the Gaussian mixture block model (Abbe et
al. 2018), where node features are modeled via a Gaussian
random vector with mean depending on the associated node
label and identical variance. Two nodes are then connected
by an edge if and only if their distance is smaller then some
threshold. However, the authors of (Abbe et al. 2018) only
use this model to empirically validate their proposed unsu-
pervised clustering method. No theoretical results have yet
been proved for this model.

Finally, we note that, while out of the scope of this paper,
the use of hypergraphs provides another way to model tran-
sitivity, and that recent works have studied the generalization
of the SBM in the hypergraph setting (Chien, Lin, and Wang
2018; 2019; Ghoshdastidar, Dukkipati, and others 2017;
Ahn, Lee, and Suh 2016; Paul, Milenkovic, and Chen 2018).

2 Notation and the geometric block model

We use boldface upper case letters A to denote matrices
and [n] to denote the discrete set {1, 2, ..., n}. We use the
standard asymptotic notation f(n) = O(g(n)) to denote
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lim
n→∞ | f(n)g(n) | ≤ C for some constant C ≥ 0, and f(n) =

o(g(n)) to denote lim
n→∞ | f(n)g(n) | = 0.

We start by introducing the definition of the random geo-
metric graph (RGG) model, which appeared as an alternative
to the popular Erdös-Renyi graph.
Definition 2.1 (RGG, 2 dimensional torus case). A random
graph under RGG(n, r) is a graph with n nodes, where
each node u ∈ [n] is associated with a latent feature vec-
tor Xu ∼ Unif [0, 1]. Letting the distance between Xu and
Xv be defined as duv = min(|Xu −Xv|, 1 − |Xu −Xv|),
then, nodes u, v are connected by an edge under RGG(n, r)
if and only if duv ≤ r.

Remark 2.1. Let r � θ log(n)
n for some constant θ. It is well

known that a random graph under RGG(n, r) is connected
with high probability if and only if θ > 1 (Penrose and oth-
ers 2003).

Next, we provide the definition of the GBM, which de-
pends on the RGG in a similar manner as the SBM depends
on the Erdös-Renyi graph.
Definition 2.2 (GBM, 2 dimensional torus case (Galhotra et
al. 2018; 2019)). A random graph under GBM(n, σ, r1, r2)
is a graph G = (V,E) such that V = [n] can be parti-
tioned into two equal size components V1 and V2 determined
by the label assignment σ. Specifically, σ(i) = j if and
only if i ∈ Vj , ∀i ∈ [n], j = 1, 2. Each node u ∈ V
is associated with a feature vector Xu ∼ Unif [0, 1] in-
dependently from each other. Letting the distance between
Xu and Xv be defined as duv = min(|Xu − Xv|, 1 −
|Xu − Xv|), then, (u, v) ∈ E if and only if duv ≤
(r11{σ(u) = σ(v)}+ r21{σ(u) �= σ(v)}) , where r1 ≥ r2
can depend on n.
Remark 2.2. Note that each cluster in GBM(n, σ, r1, r2) can
be seen as an RGG(n/2, r1).

Remark 2.3. Let (r1, r2) � (θ1, θ2)
log(n)

n for some con-
stant θ1 ≥ θ2. As shown in (Galhotra et al. 2018; 2019),
if θ1 − θ2 < 0.5 or θ1 < 1, then no unsupervised method
can correctly recover the community memberships with high
probability. Since our focus is on the interesting log(n)

n scal-
ing regime, with a slight abuse of notation, we will use
GBM(n, σ, θ1, θ2) to indicate (r1, r2) = (θ1, θ2)

log(n)
n in

the rest of the paper.
Note that in the GBM, a pair of nodes from the same com-

munity are connected with probability 2θ1
log(n)

n , and nodes
from different communities are connected with probability
2θ2

log(n)
n . We refer to these two probabilities as the marginal

distributions of the GBM.

2.1 Limits of unsupervised learning in the GBM
and in the SBM

In this section, we compare the limits of unsupervised clus-
tering on SBM and GBM by setting the marginal distribu-
tions of both models to be the same, and show how cluster-
ing in the GBM is fundamentally harder than in the SBM.

We first focus on the GBM. In order to achieve exact re-
covery, the algorithm of (Galhotra et al. 2019) requires the

parameters of the GBM to satisfy certain sophisticated con-
straints. Due to space limitations, we only list Table 1 for
some examples of GBM parameter values that satisfy such
constraints. The complete description of the corresponding
theorem is stated in the Supplement.

θ2 1 2 3 4 5

min θ1 8.96 12.63 15.9 18.98 21.93

Table 1: The minimum θ1 for given θ2 such that the algo-
rithm in (Galhotra et al. 2019) would work.

We now turn to the SBM. Recall that in SBM(n, σ, p, q)
intra and inter community nodes are connected with proba-
bility p and q, respectively. Letting p � a log(n)

n , q � b log(n)n ,
it is known that the state-of-the-art unsupervised method for
the SBM requires (

√
a −√

b)2 ≥ 2 to achieve exact recov-
ery. We set b = 2θ2 and a = 2θ1 to equate the marginal
distributions to those of the GBM.

b
2 1 2 3 4 5

min a
2 4 5.83 7.46 9 10.47

Table 2: The minimum a for given b such that the best unsu-
pervised method for SBM would work.

From Table 1 and 2, we can observe that exact recovery
under the GBM requires much denser connections within
clusters (large θ1) than for the case of the SBM, implying
that clustering under the GBM is much harder than under
the SBM. This also means that many networks in practice,
which are shown to follow the GBM more closely than the
SBM (Galhotra et al. 2018), will likely fall in the regimes
where unsupervised methods cannot achieve exact recovery,
further motivating the importance of active learning for com-
munity detection in real-world networks that exhibit transi-
tivity.

3 Active learning algorithms in the GBM

In what follows, we present two active learning algorithms
for the GBM, whose pseudocode is described in Algo-
rithms 1 and 2. Both algorithms are composed of two phases:
a first unsupervised phase that builds on the motif-counting
technique of (Galhotra et al. 2019) to remove cross-cluster
edges, and a second phase that queries a subset of node la-
bels until recovering the underlying clusters.

Phase 1 of Algorithm 1 removes as many cross-cluster
edges as possible while preserving intra-cluster connectivity
with high probability. During Phase 2, the S2 algorithm is
used to identify the remaining cross-cluster edges. In con-
trast, Algorithm 2 adopts a more aggressive edge removing
policy during Phase 1. That is, it removes all cross-cluster
edges with high probability. Note that in this case, intra-
cluster connectivity may no be preserved. Nevertheless, dur-
ing Phase 2, querying the label of one node in each disjoint
component is sufficient to recover the underlying clusters.
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One of the key elements of Phase 1 in the proposed al-
gorithms is the motif-counting technique used in (Galhotra
et al. 2019). Here, a motif is simply defined as a configura-
tion of triplets (triangles) in the graph. For any edge (u, v),
we count the number of triangles that cover edge (u, v). It
is shown in (Galhotra et al. 2019) that this triangle count is
statistically different depending on whether σ(u) = σ(v) or
σ(u) �= σ(v). More importantly, this count is also related to
the feature distance duv . We will discuss this more precisely
in Section 4.

Algorithm 1: Motif-counting with S2

Input: Graph G = (V,E), threshold ET .
Output: Estimated labels σ̂
Duplicate G by Gr

Phase 1:
for (u, v) ∈ E do

Calculate the number of triangles Tuv that cover the
edge (u, v) on G, remove (u, v) from Gr if
Tuv ≤ nET .

end

Phase 2: Apply S2 to Gr to get σ̂. Terminate when we
find 2 disjoint components.

Algorithm 2: Aggressive edge removing approach
Input: Graph G = (V,E), parameter t1.
Output: Estimated labels σ̂
Duplicate G by Gr

Phase 1:
for (u, v) ∈ E do

Calculate the number of triangles Tuv that cover the
edge (u, v) on G, remove (u, v) from Gr if
Tuv ≤ (2θ2 + t1) log(n).

end
Phase 2:
Query one node for each disjoint components in Gr and
assign labels according to queried nodes for each
disjoint components.

In the following section, we show that under the assump-
tion that θ1 ≥ 2θ2

1 and θ1 ≥ 2, both Algorithm 1 and Al-
gorithm 2 guarantee exact recovery with sub-linear query
complexity. However, note that if θ1 < 2, the underlying
clusters may already contain disconnected components and,
consequently, Algorithm 1 may not be able to preserve intra-
cluster connectivity, requiring additional queries to achieve
exact recovery. In this case, it is better to directly use Algo-
rithm 2 even if exact recovery with sub-linear query com-
plexity can no longer be guaranteed.

Finally, in the numerical results of Section 5, we show that
under the assumption of perfect knowledge of the underlying
GBM, Algorithm 2 has practically lower query complexity

1Note that the condition θ1 ≥ 2θ2 is stronger than our model
assumption θ1 ≥ θ2

than Algorithm 1. However, when dealing with real datasets
for which the parameters of the underlying GBM are not
available, Algorithm 1 is shown to be more robust to the
uncertainty of the GBM parameters.

4 Analysis of algorithms

In this section, we provide theoretical guarantees for our al-
gorithms, and sketch the associated proofs. Detailed proofs
are deferred to the Supplement. We first state the result for
the triangle count distribution.

Lemma 4.1 (Lemma 11 and Lemma 12 in (Galhotra et
al. 2019)). Assume θ1 ≥ 2θ2. Let A be the adjacency
matrix of GBM(n, σ, θ1, θ2). For any pair of nodes u, v

with Auv = 1, let duv = x � φ log(n)
n and let the

count of the triangles that cover edge (u, v) be Tuv(x) �
|{z ∈ V : Auz = Avz = 1}|. If σ(u) �= σ(v), then

Tuv(x) ∼ Bin(n− 2, 2θ2
log(n)

n
).

If σ(u) = σ(v), then

Tuv(x) ∼ Bin(
n

2
− 2, (2θ1 − φ)

log(n)

n
)

+ 1{φ ≤ 2θ2}Bin(
n

2
, (2θ2 − φ)

log(n)

n
).

Lemma 4.1 shows that indeed the triangle count is an in-
formative metric to distinguish the cases of σ(u) = σ(v)
and σ(u) �= σ(v). It is also strongly related to the distance
between node features duv . See Figure 2a for visualization.

4.1 Analysis of Algorithm 1

In the following, we state the theoretical guarantees of Al-
gorithm 1 under two different regimes using Theorems 4.2
and 4.3. To this end, we first define

t1 = inf

{
t ≥ 0 : (2θ2 + t) log(

2θ2 + t

2θ2
)− t > 1

}
. (1)

Theorem 4.2. Under the assumption that θ1 > 2θ2 ≥ 2, set

η = inf

{
t ≥ 0 : (θ1 + θ2 − 2− t) log(

θ1 + θ2 − 2− t

θ1 + θ2 − 2
) + t > 1

}
,

ET = (θ1 + θ2 − 2− η)
log(n)

n
. (2)

If θ1 − θ2 − 2 − η > t1, then, after Phase 1, Algorithm 1
already recovers the communities up to a permutation with
probability at least 1 − o(1). If t1 > θ1 − θ2 − 2 − η > 0,
then after Phase 2, Algorithm 1 recovers the communities
up to a permutation with probability at least 1 − o(1), and
query complexity at most

O(n1−ε log(n)3 + log(n)), (3)

where

ε = (θ1+θ2−2−η) log(
θ1 + θ2 − 2− η

2θ2
)−(θ1−θ2−2−η).
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Figure 1: The minimum gap between θ1 and θ2 required for
exact unsupervised clustering under Theorem 4.2 versus the
state-of-the-art bound of (Galhotra et al. 2019).

Theorem 4.3. Under the assumption that 2θ2 ≤ 2, θ1 ≥ 2,
the same theoretical guarantees for Algorithm 1 stated in
Theorem 4.2 can be derived by redefining

η = inf

{
t ≥ 0 : (2θ1 − 2 − t) log(

2θ1 − 2 − t

2θ1 − 2
) + t > 2

}
,

ET =
1

2
(2θ1 − 2 − η)

log(n)

n
,

ε = (
1

2
(2θ1 − 2 − η)) log(

1
2 (2θ1 − 2 − η)

2θ2
) − (

1

2
(2θ1 − 2 − η) − 2θ2).

(4)

Remark 4.1. Note that for any fixed θ2 such that θ1 ≥ 2θ2
with θ1 ≥ 2, 1 − ε decays as θ1 grows. Thus, Algorithm 1
provides a smooth trade-off between clustering accuracy
and query complexity. Interestingly, Theorem 4.2 shows that
when θ1 − θ2 − 2 − η > t1, we can achieve exact recovery
without any queries. We numerically show that this result
gives an improvement over the previously known bound for
unsupervised methods given in (Galhotra et al. 2019) for a
wide range of θ2 (See Figure 1).

In the following, we focus on proving Theorem 4.2, since
Theorem 4.3 can be proved analogously. In order to prove
Theorem 4.2, we will use the theoretical guarantee of the S2

algorithm (Theorem 4.4) and two technical lemmas.
Theorem 4.4 (Simplified Theorem 3 in (Dasarathy, Nowak,
and Zhu 2015)). Let C be the set of cross-cluster edges in
graph G with latent labels σ. Let ∂C be the set of nodes
associated with at least 1 cross-cluster edge. Suppose that
each cluster is connected and has diameter at most D. If the
S2 algorithm uses at least

log(2/δ)

log(2)
+ �log2(n)�+ (min(|∂C|, |C|)− 1)(�log2(2D + 1)�+ 1)

queries, then with probability at least 1−δ, the S2 algorithm
recovers the clusters exactly.
Remark 4.2. We note that while the original analysis
in (Dasarathy, Nowak, and Zhu 2015) only uses the term
|∂C| in the query complexity, the authors of (Chien, Zhou,
and Li 2019) slightly improve it by including the term
min(|∂C|, |C|), which better serves our analysis.

Lemma 4.5. Assume θ2 ≥ 1. Let

η = inf

{
t ≥ 0 : (θ1 + θ2 − 2− t) log(

θ1 + θ2 − 2− t

θ1 + θ2 − 2
) + t > 1

}
.

Then, by choosing ET = (θ1 + θ2 − 2− η) log(n)n , Phase 1
of Algorithm 1 is guaranteed to generate a graph Gr whose
underlying communities are connected.
Lemma 4.6. Assume θ2 ≥ 1 and set ET as in Lemma 4.5.
Let C be the set of cross-cluster edges in Gr. If θ1 − θ2 −
2− η > t1, then with probability at least 1− o(1), we have
|C| = 0. If t1 > θ1 − θ2 − 2− η > 0, we have

|C| ≤ θ2
2
n1−ε(log(n))2

with probability at least 1− o(1), where

ε = (θ1+θ2−2−η) log(
θ1 + θ2 − 2− η

2θ2
)−(θ1−θ2−2−η)

Remark 4.3. Note that while Lemma 4.5 characterizes the
threshold in Phase 1 of Algorithm 1 that guarantees remov-
ing the most cross-cluster edges while maintaining intra-
cluster connectivity, Lemma 4.6 provides a bound on the
number of remaining cross-cluster edges. Such bound, to-
gether with the result stated in Theorem 4.4, is one of the
key ingredients in the evaluation of the query complexity
bound of Algorithm 1. A graphical interpretation of the pa-
rameters t1 and η, as well as of the key steps of the proof of
Lemma 4.6 is provided in Figures 2a and 2b.

We are now ready to provide the proof of Theorem 4.2.

Proof. (Proof of Theorem 4.2) The first half of Theorem 4.2
directly follows from Lemma 4.5 and 4.6. Hence, in the
following, we focus on the case t1 > θ1 − θ2 − 2 − η >
0. From Lemma 4.5, we know that with probability at least
1 − o(1), the underlying clusters of graph Gr (the graph
returned by Phase 1) are still connected among each other.
Then, by Theorem 4.4, we know that with probability at least
1− δ, using at most

log(2/δ)

log(2)
+�log2(n)�+(min(|∂C|, |C|)−1)(�log2(n+1)�+1)

queries, we can recover the communities. Finally, by
Lemma 4.6, we know that with probability at least 1− o(1),
min(|∂C|, |C|) ≤ |C| ≤ θ2

2 n
1−ε log(n)2. Hence, by union

bound over all error events, we know that with probability at
least 1− o(1), we can recover the communities with at most

O(n1−ε log(n)3 + log(n))

queries, by simply choosing δ = 1
n .

4.2 Analysis of Algorithm 2

The next theorem provides the theoretical guarantee of Al-
gorithm 2 under the assumption that θ1 ≥ 2θ2, and θ2 > 1.
Theorem 4.7. Assume θ1 ≥ 2θ2, θ2 ≥ 1, and 2θ2 + t1 >
θ1 + θ2 − 2 − η. With probability at least 1 − o(1), Algo-
rithm 2 exactly recovers the underlying clusters with query
complexity at most

3

2
n1−R/2 + 2,
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(a) θ1 − θ2 − 2− η > t1. (b) θ1 − θ2 − 2− η < t1. (c) θ1 − θ2 − 2− η < t1.

Figure 2: Figure (a) illustrates Lemma 4.1 and the intuition behind parameters t1 and η. Figure (b) illustrates the main idea
behind the proof of Lemma 4.6. We use the error probability (red area) to compute the expected number of cross-cluster edges
that are kept after Phase 1 of Algorithm 1. Then, we use Markov inequality to give the high probability bound for the number
of cross-cluster edges in Gr. Figure (c) illustrates the idea behind parameter R in Lemma 4.8, which is chosen to be the largest
number such that Tuv(R log(n)

n ) ≥ 2θ2 + t1 for intra-cluster edges (blue) with high probability.

where

R = sup
min(θ1−θ2−t1,2)>r>0

{
(2θ2 + t1) log(

2θ2 + t1
θ1 + θ2 − r

)

+ (θ1 + θ2 − r − (2θ2 + t1)) > 1

}
.

Note that if 2θ2+ t1 < θ1+θ2−2−η, since Algorithm 2
sets the threshold for the triangle count to 2θ2 + t1, it is im-
mediate to note (see Figure 2a) that all cross-cluster edges
will be removed while preserving all intra-cluster edges
whose distance φ log(n)

n is less than 2 log(n)
n . In order to proof

Theorem 4.7, we need the following lemmas.
Lemma 4.8. Assume θ1 ≥ 2θ2, θ2 ≥ 1 and 2θ2 + t1 >
θ1 + θ2 − 2 − η. All intra-cluster edges with distance less
than R will not be removed in Gr, where

R = sup
min(θ1−θ2−t1,2)>r>0

{
(2θ2 + t1) log(

2θ2 + t1
θ1 + θ2 − r

)

+ (θ1 + θ2 − r − (2θ2 + t1)) > 1

}

Figure 2c provides a graphical illustration of R. The key
idea is to find the largest R such that all intra-cluster edges
with distance smaller than R will not be removed with high
probability during Phase 1 of Algorithm 2.

Next, we characterize the number of disjoint components
created in each cluster by Phase 1 of Algorithm 2. To this
end (see Remark 2.2), we resort to the following lemma.
Lemma 4.9 (Modification of Theorem 8.1 in (Han and
Makowski 2008)). Given a random geometric graph
RGG(n, τ) with 2τ < 1, let Cn,τ be the probability mass
function of the number of disjoint components minus one of
RGG(n, τ), and let Πλ denote a Poisson distribution with
parameter λ. Let dTV (μ, ν) � 1

2

∑∞
x=0 |μ(x)−ν(x)| be the

total variation of the two probability mass functions μ and ν
on N. We then have

dTV (Cn,τ ,Πλn(τ)) ≤ Bn(τ),

where

λn(τ) = n(1− τ)n, Bn(τ) = n(1− τ)n − (n− 1)(1− τ

1− τ
)n.

The key idea of the proof of Theorem 8.1 in (Han and
Makowski 2008) is observing that the number of disjoint
components can be related to the indicator functions of the
spacing of uniform random variables. Note that these indi-
cator functions are nothing but properly correlated Bernoulli
random variables which can be approximated by a Poisson
random variable where the total variation can be bounded via
Stein-Chen’s method (Chen 1975). See more details in (Han
and Makowski 2008), and the modification for our setting in
the Supplement.
Lemma 4.10 (Poisson tail bound (Clément Canonne 2019)).
Let X ∼ Πλ be a Poisson random variable with parameter
λ. For all y > 0,

P (X ≥ λ+ y) ≤ exp

(
− y2

2(λ+ y)

)
.

We are now ready to state the sketch of the proof of Theo-
rem 4.7. First, we use Lemma 4.8 to find the largest distance
R such that, with high probability, all intra-cluster edges
with distance smaller than R will not be removed during
Phase 1 of Algorithm 2. Next, we note that the number of
disjoint components in Gr can be upper bounded by twice
the number of disjoint components in an RGG(n2 , R

log(n)
n ).

Using Lemma 4.9, we approximate the number of dis-
joint components in RGG(n2 , R

log(n)
n ) as a Poisson random

variable with parameter given in Lemma 4.9. Combining
Lemma 4.9 and 4.10, we are able to establish an upper bound
on the number of disjoint components in Gr, which directly
leads to the query complexity bound. The rigorous proof of
Theorem 4.7 is deferred to the Supplement.

5 Experimental Results

5.1 Synthetic Datasets

We generate random graphs using a GBM(n, σ, θ1, θ2)
where n = 1000 and σ is chosen arbitrarily among the
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Figure 3: Query Complexity of our active learning algorithms in the GBM, where we use Q to denote the query complexity.
Results are averaged over 20 independent trials. The light yellow shaded area indicates the improvement of our approach
compared with (Galhotra et al. 2019) (grey shaded area) in the unsupervised setting. For Theorem 4.2 and 4.7, we only plot
the main term in the theoretical bounds, n1−ε and n1−R/2.

equal-size community assignment. We plot the query com-
plexity as a function of θ1 for some fixed θ2 in Figure 3.
The figures for the other choices of θ2 are deferred to the
Supplement. Figure 3 plots the logarithm of the query com-
plexity as a function of θ1 for a given θ2.2 Note from the
yellow shaded area that our results significantly improve the
previously known bound for unsupervised clustering given
in (Galhotra et al. 2019), and our theorems capture the be-
havior of the query complexity of Algorithms 1 and 2.

As expected, from Figure 3 we observe that for a fixed θ2,
as θ1 decreases, we need more queries in order to achieve ex-
act recovery. Note that, for a given θ2, there is a large regime
of θ1 where unsupervised clustering fails, while our methods
can achieve exact recovery with a small number of queries.
For example, for n = 10000, θ2 = 4, and any value of θ1
larger than around 13, we can achieve exact recovery with at
most around 32 queries (n0.5), which is just 3% of the total
number of nodes.

Interestingly, while Theorem 4.2 provides a lower query
complexity bound than Theorem 4.7, Figure 3 shows Algo-
rithm 2 incurring lower query complexity in practice. This
implies that our Theorem 4.7 can be tighter. In fact, while
our current analysis only takes into account the edges pre-
served (not removed) with high probability, there may be
other edges preserved only with constant probability. Each
of these additional edges can potentially reduce the number
of disjoint components by one. Nevertheless, this analysis is
much more complicated since these edges are not indepen-
dent, and is hence left for future work.

5.2 Real Datasets

• Political Blogs (PB): (Adamic and Glance 2005) It con-
tains a list of political blogs from the 2004 US Elec-
tion classified as liberal or conservative, and links be-
tween blogs. The clusters are of roughly the same size

2Note that logn(Q) < 1 implies that a sub-linear number of
queries can achieve exact recovery.

(586, 636) with a total of 1222 nodes and 16714 edges.

• LiveJournal (LJ): (Yang and Leskovec 2015) The Live-
Journal dataset is a free online blogging social network of
around 4 million users. We extract the top two clusters of
sizes (1430, 936) which consist of around 11.5K edges.

Experimental setting: For real-world networks, it is hard
to obtain an exact threshold as the actual values of θ1 and θ2
are unknown. Hence, following the idea proposed in (Galho-
tra et al. 2018), we use a similar but much more intuitive ap-
proach compared with (Galhotra et al. 2018), which consists
of 3 phases. In the first phase, we set a threshold T1. We re-
move all edges (u, v) ∈ E covered by less than T1 triangles,
and we identify V0 as the largest connected component in the
resulting graph. In the second phase, we apply the S2 algo-
rithm on V0 and terminate it when we find 2 non-singleton
disjoint components in V0. Finally, in the third phase, we
take majority voting to decide the class of each node outside
V0 based on the class of its already labeled neighbors. Note
that, in contrast with the unsupervised method used in (Gal-
hotra et al. 2018), where two more hyperparameters T2 and
T3 are required, our active learning method only needs one
hyperparameter T1. We use GMPS18 to denote the unsuper-
vised method in (Galhotra et al. 2018) and Spectral to denote
the standard spectral method. All results are averaged over
100 independent trials.

Method Accuracy Query complexity (%)
PB LJ PB LJ

Ours 0.931 0.912 3.7% 0.88%

Spectral 0.53 0.64 0 0

GMPS18 0.788 0.777 0 0

S2 0.97 0.999 47.2 % 9.2%

Table 3: Performance on real-world datasets.
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We choose T1 = 30 for the PB dataset and T1 = 5 for the
LJ dataset. From Table 3, we can see that our active learn-
ing method only queries 3.7% of nodes and significantly im-
proves the accuracy from 0.788 to 0.931 in the PB dataset.
Also, note that if we directly apply S2 without using tri-
angle counting, it will query 47.2% of nodes before termi-
nation. Apparently, this is too expensive in terms of query
complexity. A similar result can also be observed on the LJ
dataset. Hence, integrating triangle counting is necessary for
obtaining a practical solution in the active learning frame-
work when we have a limited query budget.
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