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Abstract

Minimizing the discrepancy of feature distributions between
different domains is one of the most promising directions in
unsupervised domain adaptation. From the perspective of mo-
ment matching, most existing discrepancy-based methods are
designed to match the second-order or lower moments, which
however, have limited expression of statistical characteristic
for non-Gaussian distributions. In this work, we propose a
Higher-order Moment Matching (HoMM) method, and fur-
ther extend the HoMM into reproducing kernel Hilbert spaces
(RKHS). In particular, our proposed HoMM can perform
arbitrary-order moment matching, we show that the first-
order HoMM is equivalent to Maximum Mean Discrepancy
(MMD) and the second-order HoMM is equivalent to Corre-
lation Alignment (CORAL). Moreover, HoMM (order≥ 3)
is expected to perform fine-grained domain alignment as
higher-order statistics can approximate more complex, non-
Gaussian distributions. Besides, we also exploit the pseudo-
labeled target samples to learn discriminative representations
in the target domain, which further improves the transfer
performance. Extensive experiments are conducted, showing
that our proposed HoMM consistently outperforms the exist-
ing moment matching methods by a large margin. Codes are
available at https://github.com/chenchao666/HoMM-Master

Introduction
Convolutional neural networks (CNNs) have shown promis-
ing results on supervised learning tasks. However, the per-
formance of a learned model always degrades severely when
dealing with data from the other domains. Considering that
constantly annotating massive samples from new domains
is expensive and impractical, unsupervised domain adapta-
tion (UDA), therefore, has emerged as a new learning frame-
work to address this problem (Csurka 2017). UDA aims to
utilize full-labeled samples in source domain to annotate
the completely-unlabeled target domain samples. Thanks to
deep CNNs, recent advances in UDA show satisfactory per-
formance in several computer vision tasks (Hoffman et al.
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Figure 1: 300 points in R
2 and the level sets of the moment

tensor. As observed, higher-order moment tensor captures
the shape of the cloud of samples more accurately.

2018). Among them, most methods bridge the source and
target domain by learning domain-invariant features. These
dominant methods can be further divided into two cate-
gories: (1) Learning domain-invariant features by minimiz-
ing the discrepancy between different distributions (Sun and
Saenko 2016; Long et al. 2017). (2) Encouraging domain
confusion by a domain adversarial objectives whereby a dis-
criminator (domain classifier) is trained to distinguish be-
tween the source and target representations. (Ganin et al.
2016; Tzeng et al. 2017; Hoffman et al. 2018).

Most existing discrepancy-based methods in UDA are
based on Maximum Mean Discrepancy (MMD) (Long et
al. 2017) or Correlation Alignment (CORAL) (Sun and
Saenko 2016), which are designed to match the first-order
(Mean) and second-order (Covariance) statistics of differ-
ent distributions. However, for the real world applications,
the deep features are always a complex, non-Gaussian dis-
tribution, which can not be completely characterized by its
first-order or second-order statistics (Jia and Darrell 2011;
Xu et al. 2016). Therefore, aligning the second-order or
lower statistics only guarantees coarse-grained alignment
of two distributions. To address this limitation, we propose
to perform domain alignment by matching the higher-order
(mainly refer to third- and fourth-order) statistics, which
contain more discriminative information and can better rep-
resent the feature distribution. Inspired by (Pauwels and
Lasserre 2016), Fig.1 illustrates the metrics of higher-order
moment tensor, where we plot a cloud of points (consists of
three different Gaussians) and the level sets of moment ten-
sor with different order. As observed, the higher-order mo-
ment tensor characterizes the distribution more accurately.
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Our contribution can be concluded as: (1) We propose a
Higher-order Moment Matching (HoMM) method to mini-
mize the domain discrepancy, which is expected to perform
fine-grained domain alignment. The HoMM integrates the
MMD and CORAL into a unified framework and generalizes
the first-order and second-order moment matching to higher-
order moment tensor matching. Without bells and whistles,
the third- and fourth-order moment matching outperform all
existing discrepancy-based methods by a large margin. (2)
Due to lack of labels in the target domain, we propose to
learn discriminative clusters in the target domain by assign-
ing the pseudo-labels for the reliable target samples, which
also improves the transfer performance.

Related Work
Learning Domain-Invariant Features To minimize the do-
main discrepancy and learn domain-invariant features, vari-
ous distribution discrepancy metrics have been introduced.
The representative ones include Maximal Mean Discrep-
ancy (MMD) (Gretton et al. 2012; Long et al. 2017), KL-
divergence, Correlation Alignment (Sun and Saenko 2016;
Chen et al. 2019) and Wasserstein distance (Lee et al. 2019).
MMD was first introduced for the two-sample tests problem
(Gretton et al. 2012), and is currently the most widely used
metric to measure the distance between two feature distribu-
tions. Specifically, Long et al. proposed DAN (Long et al.
2015) and JAN (Long et al. 2017) which perform domain
matching via multi-kernel MMD or a joint MMD criteria in
multiple domain-specific layers across domains. Sun et al.
proposed the correlation alignment (CORAL) (Sun, Feng,
and Saenko 2016; Sun and Saenko 2016) to align the sec-
ond order statistics of the source and target distributions.
Some recent work also extended the CORAL into repro-
ducing kernel Hilbert spaces (RKHS) (Zhang et al. 2018)
or deployed alignment along geodesics by considering the
log-Euclidean distance (Morerio, Cavazza, and Murino ). In-
terestingly, (Li et al. 2017b) theoretically demonstrated that
matching the second order statistics is equivalent to mini-
mizing MMD with the second order polynomial kernel. Be-
sides, the approach most relevant to our proposal is the Cen-
tral Moment Discrepancy (CMD) (Zellinger et al. 2017),
which matches the higher order central moments of prob-
ability distributions. Both CMD and our HoMM propose
to match the higher-order statistics for domain alignment.
The CMD matches the higher-order central moment while
our HoMM matches the higher-order cumulant tensor. An-
other fruitful line of work tries to learn the domain-invariant
features through adversarial training (Ganin et al. 2016;
Tzeng et al. 2017). These efforts encourage domain confu-
sion by a domain adversarial objective whereby a discrim-
inator (domain classifier) is trained to distinguish between
the source and target representations. Also, recent work per-
forming pixel-level adaptation by image-to-image transfor-
mation (Hoffman et al. 2018) has achieved satisfactory per-
formance and obtained much attention. In this work, we pro-
pose a higher-order moment matching method, which shows
great superiority over existing domain matching methods.
Higher-order Statistics The statistics higher than first-order
has been successfully used in many classical and deep learn-

ing methods (De Lathauwer, Castaing, and Cardoso 2007;
Koniusz et al. 2016; Gou, Camps, and Sznaier 2017). Es-
pecially in the field of fine-grained image/video recogni-
tion, second-order statistics such as Covariance and Gaus-
sian descriptors, have demonstrated better performance than
descriptors exploiting zeroth- or first-order statistics (Li
et al. 2017a; Wang, Li, and Zhang 2017). However, us-
ing second-order or lower statistical information might not
be enough when the feature distribution is non-Gaussian
(Gou, Camps, and Sznaier 2017). Therefore, the higher-
order (mainly refer to third-order and fourth-order) statis-
tics have been explored in many signal processing prob-
lems (Mansour and Jutten 1995; Jakubowski et al. 2002;
De Lathauwer, Castaing, and Cardoso 2007; Gou, Camps,
and Sznaier 2017). In the field of Blind Source Separa-
tion (BSS) (De Lathauwer, Castaing, and Cardoso 2007;
Mansour and Jutten 1995), for example, the fourth-order
statistics are widely used to identify different signals from
mixtures. Gou et al. utilizes the third-order statistics for
person ReID (Gou, Camps, and Sznaier 2017). Xu et al.
exploits the third-order cumulant for blind image quality
assessment (Xu et al. 2016). In (Jakubowski et al. 2002;
Koniusz et al. 2016), the authors exploit higher-order statis-
tics for image recognition and detection. Matching the sec-
ond order statistics can not ensure two distributions insepa-
rable, just as using the second order statistics can not iden-
tifies different signals from mixtures (De Lathauwer, Cas-
taing, and Cardoso 2007). That’s why we explore higher-
order moment tensor for domain matching.

Method

In this work, we consider the unsupervised domain adap-
tation problem. Let Ds = {xi

s, y
i
s}ns

i=1 denotes the source
domain with ns labeled samples and Dt = {xi

t}nt
i=1 denotes

the target domain with nt unlabeled samples. Given Ds∪Dt,
we aim to train a cross-domain CNN classifier fθ(x) which
can minimize the target risks εt = Ex∈Dt [fθ(x) �= yt].
Here fθ(x) denotes the outputs of the deep neural networks,
θ denotes the model parameter to be learned. Following
(Long et al. 2017; Chen et al. 2019), we adopt the two-
stream CNNs architecture for unsupervised deep domain
adaptation. As shown in Fig. 2, the two streams share the
same parameters (tied weights), operating the source and
target domain samples respectively. And we perform the do-
main alignment in the last full-connected (FC) layer (Sun
and Saenko 2016; Chen et al. 2019). According to the the-
ory proposed by Ben-David et al. (Ben-David et al. 2010), a
basic domain adaptation model should, at least, involve the
source domain loss and the domain discrepancy loss, i.e.,

L(θ|Xs,Ys,Xt) = Ls + λdLd (1)

Ls =
1

ns

ns∑
i=1

J(fθ(x
s
i ),y

s
i ) (2)

where Ls represents the classification loss in the source
domain, J(·, ·) represents the cross-entropy loss function.
Ld represents the domain discrepancy loss and λd is the
trade-off parameter. As aforementioned, most of existing
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Figure 2: Two-stream CNNs with shared parameters are
adopted for unsupervised deep domain adaptation.

discrepancy-based methods are designed to minimize dis-
tance of the second-order or lower statistics between dif-
ferent domains. In this work, we propose a higher-order
moment matching method, which matches the higher-order
statistics of different domains.

Higher-order Moment Matching

To perform fine-grained domain alignment, we propose a
higher-order moment matching as

Ld =
1

Lp
‖ 1

ns

ns∑
i=1

φθ(x
i
s)

⊗p − 1

nt

nt∑
i=1

φθ(x
i
t)

⊗p‖2F (3)

where ns = nt = b (b is the batch size) during the train-
ing process. φθ(x) denotes the activation outputs of the
adapted layer. As illustrated in Fig. 2, hi = φθ(x

i) =
[hi(1),hi(2), · · · ,hi(L)] ∈ R

L denotes the activation out-
puts of the i-th sample, L is the number of hidden neurons
in the adapted layer. Here, u⊗p denotes the p-level tensor
power of the vector u ∈ R

c. That is

u⊗p = u⊗ u · · · ⊗ u︸ ︷︷ ︸
p times

∈ R
cp (4)

where ⊗ denotes the outer product (or tensor product). We
have u⊗0 = 1, u⊗1 = u and u⊗2 = u ⊗ u. The 2-level
tensor product u⊗2 ∈ R

c2 defined as

u⊗2 = uTu =

⎡
⎢⎢⎣
u1u1 u1u2 · · · u1uc
u2u1 u2u2 · · · u2uc

...
...

. . .
...

ucu1 ucu2 · · · ucuc

⎤
⎥⎥⎦ (5)

when p ≥ 3, T = u⊗p is a p-level tensor with
T[i, j, · · · , k] = uiuj · · ·uk.

Instantiations According to Eq. (3), when p = 1, the
first-order moment matching is equivalent to the linear
MMD (Tzeng et al. 2014), which is expressed as

Ld =
1

L
‖1
b

b∑
i=1

hi
s −

1

b

b∑
i=1

hi
t‖2F (6)

When p = 2, the second-order HoMM is formulated as,

Ld =
1

L2
‖1
b

b∑
i=1

hi
s
Thi

s −
1

b

b∑
i=1

hi
t
Thi

t‖2F

=
1

b2L2
‖G(hs)−G(ht)‖2F

(7)

HoMM(p=1) HoMM(p=2) HoMM(p=3)

Figure 3: An illustration of first-order, second-order and
third-order moments in the source domain. HoMM matches
the higher-order (p ≥ 3) moment across different domains.

where G(h) = HTH ∈ R
L×L is the Gram matrix,

H = [h1;h2; · · · ,hb] ∈ R
b×L, b is the batch size. There-

fore, the second-order HoMM is equivalent to the Gram ma-
trix matching, which is also widely used for cross-domain
matching in neural style transfer (Gatys, Ecker, and Bethge
2016; Li et al. 2017b) and knowledge distillation (Yim et al.
2017). Li et al. (Li et al. 2017b) theoretically demonstrate
that matching the Gram matrix of feature maps is equiva-
lent to minimize the MMD with the second order polynomial
kernel. Besides, when the activation outputs are normalized
by subtracting the mean value, the centralized Gram matrix
turns into the Covariance matrix. In this respect, the second-
order HoMM is also equivalent to CORAL, which matches
the Covariance matrix for domain matching.

As illustrated in Fig. 3, in addition to the first-order mo-
ment matching (e.g. MMD) and the second-order moment
matching (e.g. CORAL and Gram matrix matching), our
proposed HoMM can also perform higher-order moment
matching when p ≥ 3. Since higher-order statistics can
characterize the non-Gaussian distributions better, applying
higher-order moment matching is expected to perform fine-
grained domain alignment. However, the space complexity
of calculating the higher-order tensor u⊗p (p ≥ 3) reaches
O(Lp), which makes the higher-order moment matching in-
feasible in many real-world applications. Adding bottleneck
layers to shrink the length of adaptive layer does not even
solve the problem. When L = 128, for example, the dimen-
sion of a third-order tensor still reaches O(106), and the di-
mension of a fourth-order tensor reaches O(108), which is
absolutely computational-unfriendly. To address this prob-
lem, we propose two practical techniques to perform the
compact tensor matching.

Group Moment Matching. As the space complexity
grows exponentially with the number of neurons L, one
practical approach is to divide the hidden neurons in the
adapted layer into ng groups, with each group �L/ng	 neu-
rons. Then we can calculate and match the high-level tensor
in each group respectively. That is,

Ld =
1

b2�L/ng	p
ng∑
k=1

‖
b∑

i=1

hi
s,k

⊗p −
b∑

i=1

hi
t,k

⊗p‖2F (8)

where hi
:,k ∈ R

�L/ng� is the activation outputs of k-th
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group. In this way, the space complexity can be reduced
from O(Lp) to O(ng · �L/ng	p). In practice, �L/ng	 ≥ 25
need to be satisfied to ensure satisfactory performance.

Random Sampling Matching. The group moment
matching can work well when p = 3 and p = 4, but it
tends to fail when p ≥ 5. Therefore, we also propose a ran-
dom sampling matching strategy which is able to perform
arbitrary-order moment matching. Instead of calculating and
matching two high-dimensional tensors, we randomly se-
lect N values in the high-level tensor, and only calculate
and align these N values in the source and target domains.
In this respect, the p-order moment matching with random
sampling strategy can be formulated as,

Ld =
1

b2N

N∑
k=1

[

b∑
i=1

rnd[k,p]∏
j=rnd[k,1]

hi
s(j)−

b∑
i=1

rnd[k,p]∏
j=rnd[k,1]

hi
t(j)]

2

(9)
where rnd ∈ R

N×p denotes the randomly generated po-
sition index matrix, rnd[k, j] ∈ {1, 2, 3, · · · , L}. There-
fore,

∏rnd[k,p]
j=rnd[k,1] h

i
s(j) denotes a randomly sampled value

in the p-level tensor hi
s
⊗p. With the random sampling strat-

egy, we can perform arbitrarily-order moment matching, and
the space complexity can be reduced from O(Lp) to O(N).
In practice, the model can achieve very competitive results
even N = 1000.

Higher-order Moment Matching in RKHS

Similar to the KMMD (Long et al. 2017), we generalize
the higher-order moment matching into reproducing kernel
Hilbert spaces (RKHS) as well. That is,

Ld =
1

Lp
‖1
b

b∑
i=1

ψ(hi
s
⊗p)− 1

b

b∑
i=1

ψ(hi
t
⊗p)‖2F (10)

where ψ(hi
s
⊗p) denotes the feature representation of i-th

source sample in RKHS. According to the proposed ran-
dom sampling strategy, hi

s
⊗p and hi

t
⊗p can be approximated

by two N -dimensional vectors hi
sp ∈ R

N and hi
tp ∈ R

N ,

where hi
sp(k) =

∏rnd[k,p]
j=rnd[k,1] h

i
s(j), k = 1, · · · , N . In this

respect, the domain matching loss can be formulated as

Ld =
1

b2

b∑
i=1

b∑
j=1

k(hi
sp,h

j
sp)−

2

b2

b∑
i=1

b∑
j=1

k(hi
sp,h

j
tp)

+
1

b2

b∑
i=1

b∑
j=1

k(hi
tp,h

j
tp)

(11)

where k(x,y) = exp(−γ‖x− y‖2) is the RBF kernel
function. Particularly, when p = 1, the kernelized HoMM
(KHoMM) is equivalent to the KMMD.

Discriminative Clustering

When the target domain features are well aligned with the
source domain features, the unsupervised domain adap-
tation turns into the semi-supervised classification prob-
lem, where the discriminative clustering in the unlabeled

data is always encouraged (Grandvalet and Bengio 2005;
Xie, Girshick, and Farhadi 2016). There have been a lot of
work trying to learn the discriminative clusters in the target
domain (Shu et al. 2018; Morerio, Cavazza, and Murino ),
most of which minimize the conditional entropy to ensure
the decision boundaries do not cross high-density data re-
gions,

Lent =
1

nt

nt∑
i=1

c∑
j=1

−pj log pj (12)

where c is the number of classes, pj is the softmax output
of j-th node in the output layer. We find that the entropy
regularization works well when the target domain has high
test accuracy, but it helps little or even downgrades the ac-
curacy when the test accuracy is unsatisfactory. The reason
can be drawn that the classifier may be misled as a result of
entropy regularization enforcing over-confident probability
on some misclassified samples. Instead of clustering in the
output layer by minimizing the conditional entropy, we pro-
pose to cluster in the shared feature space. First, we pick up
highly confident predicted target samples whose predicted
probabilities are greater than a given threshold η, and assign
pseudo-labels to these reliable samples. Then, we penalize
the distance of each pseudo-labeled sample to its class cen-
ter. The discriminative clustering loss can be given as

Ldc =
1

nt

nt∑
i=1

‖hi
t − cŷi

t
‖22 (13)

where ŷit is the assigned pseudo-label of xi
t, cŷi

t
∈ R

L de-
notes its estimated class center. As we perform update based
on mini-batch, the centers can not be accurately estimated
by a small size of samples. Therefore, we update the class
center in each iteration via moving average method. That is,

ct+1
j = αctj + (1− α)Δctj (14)

Δcj =

∑b
i=1 δ(ŷi = j)hi

t

1 +
∑b

i=1 δ(ŷ
i
t = j)

(15)

where α is the learning rate of the center. ctj is the class
center of j-th class in t-th iteration. δ(ŷit = j) = 1 if xi

t
belongs to j-th class, otherwise it should be 0.

Full Objective Function

Based on the aforementioned analysis, to enable effective
unsupervised domain adaptation, we propose a holistic ap-
proach with an integration of (1) source domain loss min-
imization, (2) domain alignment with the higher-order mo-
ment matching and (3) discriminative clustering in the target
domain. The full objective function is as follows,

L = Ls + λdLd + λdcLdc (16)

where Ls is the classification loss in the source domain,
Ld is the domain discrepancy loss measured by the higher-
order moment matching, and Ldc denotes the discriminative
clustering loss. Note that in order to obtain reliable pseudo-
labels for discriminative clustering, we set λdc = 0 during
the initial iterations, and enable the clustering loss Ldc after
the total loss tends to be stable.
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Experiments

Setup

Dataset. We conduct experiments on three public visual
adaptation datasets: digits recognition dataset, Office-31
dataset, and Office-Home dataset. The digits recognition
dataset includes four widely used benchmarks: MNIST,
USPS, Street View House Numbers (SVHN), and SYN
(synthetic digits dataset). We evaluate our proposal across
three typical transfer tasks, including: SVHN→MNIST,
USPS→MNIST and SYN→MNIST. The details of this
dataset can be seen in (Chen et al. 2019). Office-31 is an-
other commonly used dataset for real-world domain adapta-
tion scenario, which contains 31 categories acquired from
the office environment in three distinct image domains:
Amazon (product images download from amazon.com),
Webcam (low-resolution images taken by a webcam) and
Dslr (high-resolution images taken by a digital SLR cam-
era). The office-31 dataset contains 4110 images in total,
with 2817 images in A domain, 795 images in W domain
and 498 images in D domain. We evaluate our method on
all the six transfer tasks as (Long et al. 2017). The Office-
Home dataset (Venkateswara et al. 2017) is a more challeng-
ing dataset for domain adaptation, which consists of images
from four different domains: Artistic images (A), Clip Art
images (C), Product images (P) and Real-world images (R).
The dataset contains around 15500 images in total from 65
object categories in office and home scenes.
Baseline Methods. We compare our proposal with the
following methods, which are most related to our work:
Deep Domain Confusion (DDC) (Tzeng et al. 2014), Deep
Adaptation Network (DAN) (Long et al. 2015), Deep Cor-
relation Alignment (CORAL) (Sun and Saenko 2016),
Domain-adversarial Neural Network (DANN) (Ganin et
al. 2016), Adversarial Discriminative Domain Adaptation
(ADDA) (Tzeng et al. 2017), Joint Adaptation Network
(JAN) (Long et al. 2017), Central Moment Discrepancy
(CMD) (Zellinger et al. 2017) Cycle-consistent Adversar-
ial Domain Adaptation (CyCADA) (Hoffman et al. 2018),
Joint Discriminative feature Learning and Domain Adapta-
tion (JDDA) (Chen et al. 2019). Specifically, DDC, DAN,
JAN, CORAL and CMD are representative moment match-
ing based methods, while DANN, ADDA and CyCADA are
representative adversarial training based methods.
Implementation Details. In our experiments on digits
recognition dataset, we utilize the modified LeNet whereby
a bottleneck layer with 90 hidden neurons is added before
the output layer. Since the image size is different across dif-
ferent domains, we resize all the images to 32 × 32 and
convert the RGB images to grayscale. For the experiments
on Office-31, we use ResNet-50 pretrained on ImageNet as
our backbone networks. And we add a bottleneck layer with
180 hidden nodes before the output layer for domain match-
ing. It is worth noting that the relu activation function can
not be applied to the adapted layer, as relu activation func-
tion will make most of the values in the high-level tensor
hi
s
⊗p to be zero, which will make our HoMM fail. There-

fore, we adopt tanh activation function in the adapted layer.
Due to the small samples size of Office-31 and Office-Home

Table 1: Test accuracy (%) on digits recognition dataset for
unsupervised domain adaptation based on modified LeNet

Method SN→MT US→MT SYN→MT Avg

Source Only 67.3±0.3 66.4±0.4 89.7±0.2 74.5
DDC 71.9±0.4 75.8±0.3 89.9±0.2 79.2
DAN 79.5±0.3 89.8±0.2 75.2±0.1 81.5

DANN 70.6±0.2 76.6±0.3 90.2±0.2 79.1
CMD 86.5±0.3 86.3±0.4 96.1±0.2 89.6

ADDA 72.3±0.2 92.1±0.2 96.3±0.4 86.9
CORAL 89.5±0.2 96.5±0.3 96.5±0.2 94.2

CyCADA 92.8±0.1 97.4±0.3 97.5±0.1 95.9
JDDA 94.2 ±0.1 96.7±0.1 97.7±0.0 96.2

HoMM(p=3) 96.5±0.2 97.8±0.0 97.6±0.1 97.3
HoMM(p=4) 95.7±0.2 97.6±0.0 97.6±0.0 96.9

KHoMM(p=3) 97.2±0.1 97.9±0.1 98.2±0.1 97.8
Full 98.8±0.1 99.0±0.1 99.0±0.0 98.9

KHoMM+Lent 99.0±0.0 99.1±0.1 99.2±0.0 99.1

We denote SVHN, MNIST, USPS as SN, MT and US
respectively.

datasets, we only update the weights of the full-connected
layers (fc) as well as the final block (scale5/block3), and fix
other parameters pretrained on ImageNet. Follow the stan-
dard protocol of (Long et al. 2017), we use all the labeled
source domain samples and all the unlabeled target domain
samples for training. All the comparison methods are based
on the same CNN architecture for a fair comparison. For
DDC, DAN, CORAL and CMD, we embed the official im-
plementation code into our model and carefully select the
trade-off parameters to get the best results. When training
with ADDA, our adversarial discriminator consists of 3 fully
connected layers: two layers with 500 hidden units followed
by the final discriminator output. For other compared meth-
ods, we report the results in the original paper directly.
Parameters. Our model is trained with Adam Opti-
mizer based on Tensorflow. Regarding the optimal hyper-
parameters, they are determined by applying multiple ex-
periments using grid search strategy. The optimal hyper-
parameters may be distinct across different transfer tasks.
Specifically, the trade-off parameters are selected from λd =
{1, 10, 102, · · · , 108}, λdc ∈ {0.01, 0.03, 0.1, 0.3, 1.0}. For
the digits recognition tasks, the hyper-parameter λd is set
to 104 for third-order HoMM and set to 107 for fourth-order
HoMM. For the experiments on Office-31 and Office-Home,
λd is set to 300 for the third-order HoMM and set to 3000
for the fourth-order HoMM. Besides, the hyper-parameter
γ in RBF kernel is set to 1e-4 across the experiments, the
learning rate of the centers is set to α = 0.5 for digits
dataset and set to α = 0.3 for Office-31 and Office-Home
dataset. The threshold η of the predicted probability is cho-
sen from {0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, and the
best results are reported. The parameter sensitivity can be
seen in Fig. 5.

Experimental results

Digits Dataset For the experiments on digits recognition
dataset, we set the batch size as 128 for each domain and
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Table 2: Test accuracy (%) on Office-31 dataset for unsupervised domain adaptation based on ResNet-50

Method A→W D→W W→D A→D D→A W→A Avg

Source Only 73.1±0.2 93.2±0.2 98.8±0.1 72.6±0.2 55.8±0.1 56.4±0.3 75.0
DDC (Tzeng et al. 2014) 74.4±0.3 94.0±0.1 98.2±0.1 74.6±0.4 56.4±0.1 56.9±0.1 75.8
DAN (Long et al. 2015) 78.3±0.3 95.2±0.2 99.0±0.1 75.2±0.2 58.9±0.2 64.2±0.3 78.5

DANN (Ganin et al. 2016) 73.6±0.3 94.5±0.1 99.5±0.1 74.4±0.5 57.2±0.1 60.8±0.2 76.7
CORAL (Sun and Saenko 2016) 79.3±0.3 94.3±0.2 99.4±0.2 74.8±0.1 56.4±0.2 63.4±0.2 78.0

JAN (Long et al. 2017) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.4 68.6±0.3 70.0±0.4 84.3
CMD (Zellinger et al. 2017) 76.9±0.4 94.6±0.3 99.2±0.2 75.4±0.4 56.8±0.1 61.9±0.2 77.5

CyCADA (Hoffman et al. 2018) 82.2±0.3 94.6±0.2 99.7±0.1 78.7±0.1 60.5±0.2 67.8±0.2 80.6
JDDA(Chen et al. 2019) 82.6±0.4 95.2±0.2 99.7±0.0 79.8±0.1 57.4±0.0 66.7±0.2 80.2

HoMM(p=3) 87.6±0.2 96.3±0.1 99.8±0.0 83.9±0.2 66.5±0.1 68.5±0.3 83.7
HoMM(p=4) 89.8±0.3 97.1±0.1 100.0±0.0 86.6±0.1 69.6±0.3 69.7±0.3 85.5

KHoMM(p=4) 90.5±0.2 98.3±0.1 100.0±0.0 87.7±0.2 70.4±0.2 70.3±0.2 86.2
Full 91.7±0.3 98.8±0.0 100.0±0.0 89.1±0.3 71.2±0.2 70.6±0.3 86.9

KHoMM+Lent 90.8±0.1 99.3±0.1 100.0±0.0 87.9±0.2 69.3±0.3 69.5±0.4 86.1

Table 3: Test accuracy (%) on Office-Home dataset for un-
supervised domain adaptation based on ResNet-50

Method A→P A→R C→R P→R R→P

Source Only 50.0 58.0 46.2 60.4 59.5
DDC 54.9 61.3 50.5 64.1 65.9
DAN 57.0 67.9 60.4 67.7 74.3

DANN 59.3 70.1 60.9 68.5 76.8
CORAL 58.6 65.4 59.8 68.3 74.7

JAN 61.2 68.9 61.0 70.3 76.8

HoMM(p=3) 60.7 68.3 61.4 69.2 76.7
HoMM(p=4) 63.5 70.2 64.6 72.6 79.3

KHoMM(p=4) 63.9 70.5 65.3 73.3 79.8
Full 64.7 71.8 66.1 74.5 81.2

KHoMM+Lent 64.2 70.1 65.5 73.2 80.1

set the learning rate as 1e-4 throughout the experiments.
Table 1 shows the adaptation performance on three typical
transfer tasks based on the modified LeNet. As can be seen,
our proposed HoMM yields notable improvement over the
comparison methods on all of the transfer tasks. In partic-
ular, our method improves the adaption performance sig-
nificantly in the hard transfer tasks SVHN→MNIST. With-
out bells and whistles, the proposed third-order KHoMM
achieve 97.2% accuracy, improving the second-order mo-
ment matching (CORAL) by +8%. Besides, the results also
indicate that the third-order HoMM outperforms the fourth-
order HoMM and slightly underperforms the KHoMM.
Office-31 Table 2 lists the test accuracies on Office-31
dataset. We set the batchsize as 70 for each domain. The
learning rate of the fc layer parameters is set as 3e-4 and the
learning rate of the conv layer (scale5/block3) parameters
is set as 3e-5. As observed, the fourth-order HoMM outper-
forms the third-order HoMM and achieves the best results
among all the moment-matching based methods. Besides,
it is worth noting that the fourth-order HoMM outperforms

the second-order statistics matching (CORAL) by more than
10% on several representative transfer tasks A→W, A→D
and D→A, which demonstrates the merits of our proposed
higher-order moment matching.
Office-Home Table 3 gives the results on the challenged
Office-Home dataset. The parameter settings are the same
as in Office-31. We only evaluate our method on 5 out of 12
representative transfer tasks due to the space limitation. As
we can see, on all the five transfer tasks, the HoMM outper-
forms the DAN, CORAL, DANN by a large margin and also
outperforms the JAN by 3%-5%. Note that the experimental
results of the compared methods are reported from (Wang et
al. 2019) directly.

The results in Table 1, Table 2 and Table 3 reveal sev-
eral interesting observations: (1) All the domain adaptation
methods outperform the source only model by a large mar-
gin, which demonstrates that minimizing the domain dis-
crepancy contributes to learning more transferable represen-
tations. (2) Our proposed HoMM significantly outperforms
the discrepancy-based methods (DDC, CORAL, CMD), and
the adversarial training based methods (DANN, ADDA and
CyCADA), which reveals the advantages of matching the
higher-order statistics for domain adaptation. (3) The JAN
performs slightly better than the third-order HoMM on sev-
eral transfer tasks, but it’s always not as good as the fourth-
order HoMM in spite of aligning the joint distributions of
multiple domain-specific layers across domains. The perfor-
mance of our HoMM will be improved as well if we uti-
lize such a strategy. (4) The kernelized HoMM (KHoMM)
consistently outperforms the plain HoMM, but the improve-
ment seems limited. We believe the reason is that, the higher-
order statistics are originally the high-dimensional features,
which conceals the advantages of embedding the features
into RKHS. (5) In all transfer tasks, the performance in-
creases consistently by employing the discriminative clus-
tering in target domain. In contrast, entropy regularization
improves the transfer performance when the test accuracy is
high, but it helps little or even downgrades the performance
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(a) Source Only (b) KMMD (c) CORAL (d) HoMM(p=3) (e) Full Loss

Figure 4: 2D visualization of the deep features generated by different model on SVHN→MNIST. Red and green points in (a)
denote the source and target domain samples respectively, while each color in (b)-(e) represents different categories.

(a) λd (b) λdc (c) N (d) η (e) Convergence

Figure 5: Analysis of parameter sensitivity (a)-(d) and convergence analysis (e). The dash line in (b) and (d) indicate the
performance of HoMM without the clustering loss Ldc

when the test accuracy is not that confident.

Table 4: Test accuracy (%) comparison of different-order
moment matching on three transfer tasks

order 1 2 3 4 5 6 10

SN→MT 71.9 89.5 96.5 95.7 94.8 91.5 58.6
A→W 74.4 79.3 87.6 89.8 86.6 85.3 80.2
A→P 54.9 58.6 60.7 63.5 60.9 58.2 57.3

We denote SVHN and MNIST as SN and MT respectively.

Analysis

Feature Visualization We utilize t-SNE to visualize the
deep features on the tasks SVHN→MNIST by ResNet-50,
KMMD, CORAL, HoMM(p=3) and the Full Loss model. As
shown in Fig. 4, the feature distributions of the source only
model in (a) suggests that the domain shift between SVNH
and MNIST is significant, which demonstrates the necessity
of performing domain adaptation. Besides, the global dis-
tributions of the source and target samples are well aligned
with the KMMD (b) and CORAL (c), but there are still many
samples being misclassified. With our proposed HoMM, the
source and target samples are aligned better and categories
are discriminated better as well.
First/Second-order versus Higher-order We also provide
the performance of different order moment matching on
three typical transfer tasks. As shown in table 4, the order is
chosen from p ∈ {1, 2, 3, 4, 5, 6, 10}. The results show that
the third-order and fourth-order moment matching signifi-
cantly outperform the other order moment matching. When
p ≤ 3, the higher the order, the higher the accuracy. When
p ≥ 4, the accuracy will decrease as the order increases. Re-
garding why the fifth-order and above perform worse than
the fourth-order, one reason we believe is that the fifth-order

and above moments can’t be accurately estimated due to the
small sample size problem (Raudys and Jain 1991).
Parameter Sensitivity and Convergence We conduct em-
pirical parameter sensitivity on SVHN→MNIST and A→W
in Fig. 5(a)-(d). The evaluated parameters include two trade-
off parameters λc, λdc, the number of selected values in Ran-
dom Sampling Matching N , and the threshold η of the pre-
dicted probability. As we can see, our model is quite sensi-
tive to the change of λdc and the bellshaped curve illustrates
the regularization effect of λd and λdc. The convergence per-
formance is provided in Fig. 5(e), which shows that our pro-
posal converges fastest compared with other methods. It is
worth noting that, the test error of the Full Loss model has a
obvious mutation at the 2.0× 104 iteration where we enable
the clustering loss Ldc, which also demonstrates the effec-
tiveness of the proposed discriminative clustering loss.

Conclusion

Minimizing statistic distance between source and target dis-
tributions is an important line of work for domain adapta-
tion. Unlike previous methods that utilize the second-order
or lower statistics for domain alignment, this paper exploits
the higher-order statistics for domain alignment. Specifi-
cally, a higher-order moment matching is presented, which
integrates the MMD and CORAL into a unified framework
and generalizes the existing first- and second-order moment
matching to arbitrary-order moment matching. We experi-
mentally demonstrate that the third- and fourth-order mo-
ment matching significantly outperform the existing mo-
ment matching methods. Besides, we also extend the HoMM
into RKHS and learn the discriminative clusters in the target
domain, which further improves the adaptation performance.
The proposed HoMM can be easily integrated into other do-
main adaptation model, and it is also expected to benefit the
knowledge distillation and image style transfer.
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