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Abstract

Traffic congestion plagues cities around the world. Recent
years have witnessed an unprecedented trend in applying re-
inforcement learning for traffic signal control. However, the
primary challenge is to control and coordinate traffic lights in
large-scale urban networks. No one has ever tested RL mod-
els on a network of more than a thousand traffic lights. In
this paper, we tackle the problem of multi-intersection traf-
fic signal control, especially for large-scale networks, based
on RL techniques and transportation theories. This problem
is quite difficult because there are challenges such as scal-
ability, signal coordination, data feasibility, etc. To address
these challenges, we (1) design our RL agents utilizing ‘pres-
sure’ concept to achieve signal coordination in region-level;
(2) show that implicit coordination could be achieved by in-
dividual control agents with well-crafted reward design thus
reducing the dimensionality; and (3) conduct extensive exper-
iments on multiple scenarios, including a real-world scenario
with 2510 traffic lights in Manhattan, New York City 1 2.

Introduction

Due to the rapid urbanization, which results in an explosive
increase in household owning cars, urban traffic congestion
has been a significant obstacle to urbanization. Traffic con-
gestion will not only waste fuel but also increase harmful
emissions, including greenhouse gases (e.g., carbon dioxide)
and other particles (e.g., nitrogen oxides) that may harm hu-
man’s health (Bharadwaj et al. 2017). According to existing
studies, the transport sector contributes to 23% of total CO2
emission from fuel combustion (Grote et al. 2016), and road
traffic makes up about three-fourths of them. Further, for
vehicles in urban cities, traffic congestion may increase the
discharge by 40% (Grote et al. 2016). Therefore, mitigating
traffic congestion is extremely urgent. To achieve this, one of
the most effective approaches is to control the traffic signal
more intelligently. Note that, the urban city is densely con-
nected, and the signal control strategies of intersections are

Copyright c© 2020, Association for the Advancement of Artificial
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1A demo video of the Manhattan experiment is provided in
https://traffic-signal-control.github.io/a-thousand-lights.html

2Datasets and code are available at https://traffic-signal-
control.github.io/

highly correlated. Therefore, it is crucial to solve the city-
level signal control, rather than a few regions separately.

Traditional transportation approaches for traffic signal
control can be categorized into following categories: pre-
timed control (Koonce and Rodegerdts 2008), actuated con-
trol (Cools, Gershenson, and D’Hooghe 2013), adaptive
control (Lowrie 1990; Hunt et al. 1981), and optimization-
based control (Varaiya 2013). They either rely heavily on
a given traffic model or depend on pre-defined rules ac-
cording to expert knowledge. Hence, they fail to adjust
to dynamic traffic nicely. Recently, people start to investi-
gate reinforcement learning (RL) techniques for traffic sig-
nal control. Several studies have shown the superior perfor-
mance of RL techniques over traditional transportation ap-
proaches (Wei et al. 2018; El-Tantawy and Abdulhai 2012;
Van der Pol and Oliehoek 2016; Nishi et al. 2018). The
biggest advantage of RL is that it directly learns how to take
the next actions by observing the feedback from the environ-
ment after previous actions.

In this paper, we set out to develop a practical RL-based
traffic signal control method to enable city-level traffic sig-
nal control. The method would take the traffic condition as
input and learn to decide for every intersection about their
next phase. We identify three key issues, that such a method
must be effective to address:
• Scalability. Is the method able to handle large-scale

traffic network? City-level traffic signal control involves
thousands of traffic lights. For example, in Manhattan, NYC,
there are more than about 2800 traffic signals 3. The pro-
posed method should be able to learn effectively on a large
scale, at the same time considering the global optimization
goal.
• Coordination. Is the method able to achieve coordina-

tion so that the global traffic conditions can be optimized?
In urban environments, optimizing signal timings for traf-
fic signals must be done jointly as signals are often in close
proximity, which is commonly known as coordinating signal
timings. Failure to do so can lead to decisions made at one
signal deteriorating traffic operations at the other.
• Data feasibility. Is the method using feasible data

3https://www1.nyc.gov/html/dot/html/infrastructure/signals.
shtml
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Figure 1: Illustration of max pressure control in two
cases (Wei et al. 2019a). In Case A, green signal is set in
the North→South direction; in Case B, green signal is set in
the East→West direction.

source which makes it practical for deployment? In terms
of the deployment difficulty, the RL-based methods should
not use the data that are hard to acquire in the real world.

Although there have been some existing works in using
RL to control traffic signals in small regions (El-Tantawy
and Abdulhai 2012; Van der Pol and Oliehoek 2016; Nishi et
al. 2018), since the above three criteria cannot be met, none
of the methods are applied to a city-level scenario with thou-
sands of signals. Firstly, methods that resort to centralized
optimization of coordinated agents (Prashanth and Bhatna-
gar 2011; Kuyer et al. 2008; Van der Pol and Oliehoek 2016)
cannot satisfy scalability, due to the combinatorially-large
joint action space. Secondly, while most methods that use
decentralized RL methods can easily scale up, it is hard
to assign the global-wise reward function to each intersec-
tion for coordination. Previous works (Nishi et al. 2018;
El-Tantawy and Abdulhai 2012; Van der Pol and Oliehoek
2016) usually adopt common transportation measurements
as the reward function, e.g., average wait time of vehi-
cles (Nishi et al. 2018) and delay (El-Tantawy and Abdulhai
2012; Van der Pol and Oliehoek 2016), but there is no guar-
antee that the overall objective is optimized by letting each
agent maximize its own expected reward. Thirdly, some RL
methods assume the detailed traffic condition can be eas-
ily accessed and use complicated features to represent the
traffic condition, which is unrealistic for real-world deploy-
ment. For example, aerial view about the intersection is used
in (Wei et al. 2018; Van der Pol and Oliehoek 2016), while
it is hard to get aerial images for every intersection in real-
time, which hinders them from being deployed in the real-
world application.

In this paper, we present a decentralized RL model to
tackle the city-level traffic signal control problem that sat-
isfies all the three criteria above. Specifically, we adopt
the decentralized RL paradigm to enable scalability, upon
which we further apply parameter sharing among intersec-
tions. However, naively applying parameter sharing among
all the intersections will lead to inferior performance be-
cause different intersections has different structures and lo-
cal traffic situations, e.g. the model of a major intersec-
tion that controls large flow can not be used to control an
intersection with little traffic. Intuitively, thousands of RL

agents, though controlling different traffic flows and of dif-
ferent structures, are essentially following similar control
logic and their learned knowledge should be shared to en-
hance the speed of learning. To tackle this challenge, we
choose FRAP (Zheng et al. 2019a), as our base model.
FRAP is specifically designed to learning phase competi-
tion, the innate logic for signal control, regardless of the
intersection structure and the local traffic situation. In addi-
tion, for coordination, we incorporate the design of RL agent
with “pressure”, a concept derived from max pressure con-
trol theory and aimed at maximizing the global throughput
in transportation area (Varaiya 2013). Intuitively, the pres-
sure of an intersection could be seen as the difference be-
tween upstream and downstream queue length, which indi-
cates the inequivalence of vehicle distribution. By minimiz-
ing the pressure, our RL agent is able to balance the distri-
bution of the vehicles within the system and maximize the
system throughput. Figure 1 illustrates the concept of pres-
sure. In detail, we design the state and the reward of our RL
agent based on PressLight (Wei et al. 2019a). While the
base model of the PressLight is a simple DQN network, we
utilize FRAP as our base model for its generalizability to
enable parameter sharing among different intersections and
its superior performance. Plus, our RL model utilizes simple
features like queue length (or its derivatives) that are avail-
able in real-world, which makes our model practical. Sim-
ulative experiments and preliminary real-world deployment
shows the effectiveness of our proposed model.

In short, our contributions can be summarized as below.
• It is the first time that an intelligent traffic control algo-

rithm is tested on a scale of thousands of traffic lights.
• We propose a decentralized network level traffic signal

control RL algorithm with parameter sharing which enables
large scale application.

Related Work
Conventional transportation methods for multi-
intersection control usually require the intersections
to have the same cycle length, and traffic of selected
movements is facilitated through modifying the offset
(i.e., the time interval between the beginnings of green
lights) between consecutive intersections. In grid net-
works with homogeneous blocks, like in dense downtown
areas, the coordination can be achieved by setting a
fixed offset among all intersections (Urbanik et al. 2015;
Roess, Prassas, and Mcshane 2011). However, few
networks are so uniform for such simple treatments,
which makes it difficult to provide global opti-
mization through coordination. To solve this prob-
lem, some optimization-based methods (e.g, TRAN-
SYT (Robertson 1969), MaxPressure (Varaiya 2013;
Kouvelas et al. 2014)) are developed to optimize the global
vehicle travel time, throughput, and/or the number of stops
at multiple intersections (Kergaye, Stevanovic, and Martin
2010). However, such approaches still rely on assumptions
to simplify the traffic condition and do not guarantee
optimal results in the real world.

With the superior performance of RL-based single-
intersection methods over conventional transportation meth-
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ods (Wei et al. 2018; Zheng et al. 2019a; 2019b; Xiong
et al. 2019), efforts have been put into developing RL-
based multi-intersection methods (Wei et al. 2019c). For
scalability concerns, one way is to treat all intersections
isolatedly and apply individual traffic signal control meth-
ods (Mannion, Duggan, and Howley 2016; Prashanth and
Bhatnagar 2011). These methods can usually be scaled up
easily, but they usually cannot achieve coordination since
the goal of these methods ignores neighboring intersec-
tions (El-Tantawy, Abdulhai, and Abdelgawad 2013). To
achieve coordination, an alternative way is through cen-
tralized optimization over multiple coordinated agents in an
area to ensure the optimality (Kuyer et al. 2008; Van der
Pol and Oliehoek 2016; El-Tantawy, Abdulhai, and Abdel-
gawad 2013). However, as the network scale expands, the
centralized optimization is infeasible due to the combinatori-
ally large joint action space, which has inhibited widespread
adoption of this method to a city-level control.

There is also a class of methods that tries to take into
account both scalability and coordination with appropriate
reward and state design through decentralized approaches,
i.e., each agent makes decisions for its own (El-Tantawy
and Abdulhai 2012; Arel et al. 2010; LIU et al. 2017;
Nishi et al. 2018; Wei et al. 2019b). However, there are
few of these methods that can perform well under large-
scale networks due to the following issues: 1) the reward
of one agent is only related to the intersection itself (e.g.,
minimizing the number of vehicles waiting to pass the inter-
section) and few reward designs are proposed for direct co-
ordination (El-Tantawy and Abdulhai 2012; LIU et al. 2017;
Nishi et al. 2018). 2) the state design of current RL-based
methods usually include various features that are infeasible
in the real world, e.g, cumulative delay (El-Tantawy and Ab-
dulhai 2012; Arel et al. 2010) and/or positions of the vehi-
cles (Van der Pol and Oliehoek 2016; LIU et al. 2017). With
the above two issues, to the best of our knowledge, none
of the existing RL-based methods controls a signalized net-
work in a city level with thousands of traffic signals. Our
method overcomes above two issues by utilizing simple fea-
tures that are feasible in the real world and integrating the
concept of “pressure” into reward design for coordination 4.

Traffic signal control systems. In many modern cities to-
day, the widely-used adaptive traffic signal control systems
such as SCATS (Lowrie 1990) and SCOOTS (Hunt et al.
1981) heavily rely on manually designed traffic signal plans.
The traffic signal plans are usually generated with expert
knowledge or computed by conventional traffic signal con-
trol methods. Such manually set traffic signal plans are de-
signed to be dynamically selected according to the traffic
volume detected by loop sensors. However, the loop sensors
are activated only when vehicles pass through them. Thus
they can only provide partial information about the vehicle
through them. As a result, the signal cannot perceive and
react to the real-time traffic patterns, and engineers need to

4In the transportation area, methods that aim to optimize the
pressure of intersections has been proved to maximize the through-
put of the system under some conditions (Kouvelas et al. 2014;
Varaiya 2013)

manually change the traffic signal timings in the signal con-
trol system under certain traffic condition scenarios.

Preliminaries

Definition 1 (Traffic movement). A traffic movement is de-
fined as the traffic travelling across an intersection from one
entering lane to an exiting lane. We denote a traffic move-
ment from road l to road m as (l,m). In Figure 2 (a), there
are 12 traffic movements.
Definition 2 (Signal phase). A traffic signal phase s is de-
fined as a set of permissible traffic movements. As is shown
in Figure 2, the intersection has eight phases with phase #2
activated. In this example, the vehicles on the left-turn lane
on the East and the West are allowed to turn left to their cor-
responding exiting lanes. Si denotes the set of all the phases
at intersection i.

North

South

West

East
1 2

5 6

3 4

7 8

(a) Intersection (b) Eight phases 

Figure 2: The illustration of an intersection with eight
phases. In this case, phase #2 is set.

Definition 3 (Pressure of each signal phase). For each sig-
nal phase s, there are several permissible traffic move-
ments (l,m). Denote by x(l,m) the discrepancy of the num-
ber of vehicles on lane l and lane m, for traffic move-
ment (l,m), the pressure of a signal phase p(s) is sim-
ply the total sum of the pressure of its permissable phases∑

(l,m) x(l,m), ∀(l,m) ∈ s.

Definition 4 (Pressure of an intersection). The pressure of
an intersection is the difference between the sum of the queu-
ing vehicles on all the entering lanes and the sum of the
queuing vehicles on all the exiting lanes. As is shown in Fig-
ure 3, the pressure of the middle intersection is 8.

EAST

NORTH

SOUTH

Pressure = |#queueing cars on entering lanes - #queueing cars on exiting lanes|
                = | 3 + 2 + 6 + 1 - 3 - 0 - 1 -  0 | 
                = 8

NORTH

SOUTH

WEST

SOUTH

NORTH

Figure 3: The illustration of intersection pressure.
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Problem 1 (Multi-intersection traffic signal control). Each
intersection is controlled by an RL agent. At time step t,
agent i views part of the environment as its observation oti.
Given the traffic situation and current traffic signal phase,
the goal of the agent is to take an optimal action a (i.e.,
which phase to set), so that the cumulative reward r can be
maximized.
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Figure 4: The framework of MPLight for multi-intersection
signal control.

Method

In this section, we first introduce the concept of pressure-
based control law. Then we present the proposed MPLight
as a typical Deep Q-Network agent and show its learning
process, as shown in Figure 4. For large-scale network signal
control, we leverage parameter sharing among the agents, as
discussed in the last part.

Pressure-based Coordination

For coordination, we incorporate into RL agent design with
“pressure”, a concept derived from max pressure control
theory and aimed at maximizing the global throughput in
transportation area (Varaiya 2013). Intuitively, the pressure
of an intersection could be seen as the difference between
upstream and downstream queue length, which indicates
the inequivalence of vehicle distribution. By minimizing the
pressure, our RL agent is able to balance the distribution
of the vehicles within the system and maximize the system
throughput in return.

In previous work (Varaiya 2013), max pressure control
law is proved to be stability-optimal, i.e., stabilizing and
maximizing the throughput, which utilized only local infor-
mation at each intersection under infinite capacities. The key
idea of the max pressure control law is to set the optimiza-
tion goal as minimizing the pressure for each signal phase.

Max Pressure Control Law Algorithm 1 defines max
pressure control. At intersection i, for each phase s ∈ Si, the
pressure p(s) is computed. Max pressure control law would
select the phase with maximum pressure.

In practice, however, max pressure control is often imple-
mented in a greedy manner, which leads to a local optimum.
Hence, in the following section, we design an RL agent,
PressLight, using the pressure-based reward for long-term
optimization.

Algorithm 1 Max Pressure Control
for each intersection i do

for each phase s do
calculate p(s)

end
next phase← argmax{p(s)|s ∈ Si}

end

DQN Agent

By setting the reward of our RL agents to be the same as
max pressure control objective, each local agent is maximiz-
ing its own cumulative reward, which further maximizes the
network throughput under certain constraints.
• Observation. Each agent observes part of the system

state as its own observation. For a standard intersection with
12 traffic movements, its observation includes the current
phase p and the pressure of the 12 traffic movements. Note
that for the intersection with fewer than 12 movements, the
vector is zero-padded5.
• Action. At time t, each agent chooses a phase p as its

action at, indicating the traffic signal should be set to phase
p. In this paper, agents choose from a full set of eight candi-
date phases, as indicated in Figure 2 . It is shown to be more
flexible than providing only a subset of possible actions (Wei
et al. 2019a; Zheng et al. 2019a). It should be noted that it
doesn’t mean that all the eight phases must be chosen. The
RL algorithm will select the best phase to set.
• Reward. In Figure 3, we define the reward ri for agent

i as the pressure on the intersection, which is simply the dif-
ference between the sum of the queueing vehicles on all the
entering lanes and the sum of the queueing vehicles on all
the exiting lanes.

If we denote the pressure of intersection i by Pi , then the
reward ri should be

ri = −Pi. (1)

By maximizing the reward, the agent is trying to stabilizing
the queues in the system.

FRAP Base Model We adopt FRAP architecture as our
base model. FRAP specially design a network architecture
for learning the phase competition in traffic signal control
problem. By modelling the phase competition relationships,
FRAP has two following advantages: (1) superior perfor-
mance and (2) faster training process compared with other
state-of-the-art signal control methods. These two proper-
ties are especially helpful when tackling a large-scale signal
control problem.

It should be noted that the idea of pressure-based de-
sign is not limited to FRAP and can also be integrated into
other RL base models. As we will show in Section Abla-
tion Study (RQ3), even by using a different base model, it is
still promising to use our proposed pressure-based state and
reward design.

5In this paper, we only consider no more than 12 traffic move-
ments, but the proposed method can be extended to control inter-
sections with more than 12 movements.
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Deep Q-learning Following the base model, we use Deep
Q-Network (DQN) to solve the multi-intersection signal
control problem. Basically, our DQN takes the state features
on the traffic movements as input and predicts the score (i.e.,
Q value) for each action candidate (i.e., phase) as described
in the following Bellman Equation:

Q(st, at) = R(st, at) + γmaxQ(st+1, at+1). (2)

Parameter Sharing In Figure 4, parameters of the
network are shared among all the agents. The single
PressLight model receives observations from different in-
tersections to predict the corresponding actions and learns
from environment rewards for parameter update. Note that
the replay memory is also shared so that all the intersections
can benefit from experiences of the others.

Experiments

In this section, we conduct extensive experiments to answer
the following questions:
• RQ1: How does our proposed method perform compared

with other state-of-the-art?
• RQ2: Is MPLight scalable enough to control a city-level

traffic signals?
• RQ3: What impact does the proposed techniques (e.g.,

pressure-based design, parameter sharing) in MPLight
have on model learning?

300m

Figure 5: 4× 4 road network.

Settings

Following the previous work on traffic signal control
study (Wei et al. 2018), we conduct experiments on
Cityflow (Zhang et al. 2019)6. After the traffic data being
fed into the simulator, a vehicle moves towards its destina-
tion according to the setting of the environment. The sim-
ulator provides the state to the signal control method and
executes the traffic signal actions from the control method.
Following the tradition, each green signal is followed by a
three-second yellow signal and two-second all red time to
clear the intersection.

In a traffic flow dataset, each vehicle is described as
(o, t, d), where o is the origin location, t is time, and d is the
destination location. Locations o and d are both locations on
the road network. Traffic data is fed into the simulator.

6https://cityflow-project.github.io

Datasets Both synthetic and real-world datasets, which fo-
cus on bi-directional and dynamical flows with turning traf-
fic, are used in our experiments.
• Synthetic data on a 4× 4 network is shown in Figure 5.

Each intersection is set to be a four-way intersection, with
four 300-meter long road segments. As listed in Table 1, we
use four configurations to test the signal control models in
different traffic demands: two types of vehicles’ average ar-
riving rate, each with Flat (0.3 variance) and Peak (0.6 vari-
ance) patterns. All the vehicles enter and leave the network
at the rim edges. The turning ratios at the intersection are set
as 10% (left), 60%(straight) and 30% (right) based on the
statistical analysis on real-world datasets.

Table 1: Four configurations of synthetic traffic data

Config Demand Pattern Arrival rate (vehicles/s)

1 Flat 0.388
2 Peak

3 Flat 0.416
4 Peak

(a) Manhattan (b) Manhattan in simulator

Figure 6: Road network of Manhattan in our experiments.

• Real-world data. For the real-world network setting, we
use the road network of Manhattan, New York City from
OpenStreetMap 7 to define the network in the simulator.
For traffic flow data, we use the traffic flow generated from
the open-source taxi trip data8. We set the volume of total
traffic flow as the multiplied volume of taxi data because

7https://www.openstreetmap.org/
8http://www.nyc.gov/html/tlc/html/about/trip record data.

shtml
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the taxi trip can be seen as a sample from real-world trip
distributions. Specifically, in an hour, the total number of
vehicles is approximately 25156. Note that the traffic is not
uniform because it is the real-world taxi data multiplied
by a scaling factor. The road network of Manhattan is
demonstrated in Figure 6. Note that the Manhattan dataset
contains signalized 2510 traffic lights. Vehicles are allowed
to be generated and disappear at any edge in the network.

Compared Methods We compare our methods with the
following baseline methods including both conventional
transportation and RL methods. For a fair comparison, all
the RL methods are learned without any pre-trained process
and the action interval are set as 10 seconds. Each episode
is a 30-minutes simulation, and we report the final results as
the average of the last 10 episodes of testing.
• FixedTime (Koonce and Rodegerdts 2008): a policy

gives a fixed cycle length with a predefined green ratio split
among all the phases. It is widely used for steady traffic.
• MaxPressure (Varaiya 2013): the max pressure con-

trol selects the phase as green, in order to maximize the
pressure according to the upstream and downstream queue
length. It is the state-of-the-art control method in the trans-
portation field for signal control in the network level.
• GRL (Van der Pol and Oliehoek 2016): a deep Q-

learning algorithm for coordinated traffic signal control.
Specifically, the transfer planning and the max-plus coordi-
nation algorithm are employed for large-scale coordination.
• GCN (Nishi et al. 2018): an RL-based traffic signal

control method that employs a graph convolutional neural
(GCN) network for representing geometric features among
multiple intersections.
• PressLight (Wei et al. 2019a): a recently developed

learning-based method that incorporates pressure in the state
and reward design fo the RL model. It has shown superior
performance in multi-intersection control problems.
• NeighborRL (Arel et al. 2010): a multi-agent deep Q-

learning algorithm that feeds the model with both its own
and neighbors’ observations for network-level cooperation.
• FRAP (Zheng et al. 2019a): another state-of-the-art

RL-based traffic signal control method with a modified net-
work structure to capture the phase competition relation be-
tween different traffic movements.

We denote our method as MPLight, which uses the model
(Q-network) structure of FRAP as the base RL model and
integrate “pressure” into state and reward design.

Evaluation Metrics We select the following two repre-
sentative measures to evaluate different methods.
• Travel time. Average travel time of all vehicles in the

system is the most frequently used measure to evaluate the
performance of the signal control method in transportation.
• Throughput. It is defined as the number of trips

completed by vehicles throughout the simulation. A larger
throughput in a given period means a larger number of vehi-
cles have completed their trip during that time and indicates
better control strategy.

Performance Comparison (RQ1)

We show the performance of transportation methods as well
as RL models on synthetic traffic data in Table 2. The pro-
posed MPLight consistently outperforms all the other meth-
ods in the four different scenarios, leading to both the least
travel time of passengers and the maximum throughput. The
maximum reduction of travel time by MPLight is 19.20%
over the second optimal solution PressLight under Config
3, while the maximum enhancement of throughput over the
second-best FRAP is as high as 3.08% under Config 3. The
advantage of MPLight over the other transportation and re-
inforcement learning methods can be attributed to its decent
reward design and feedback learning from the environment
at the same time. Compared with the other RL methods, MP-
Light optimizes the control strategy by reducing the pressure
between the entering and exiting lanes. Although the policy
of MaxPressure also depends on the pressure of different
phases, there is a large performance margin from MPLight
in either travel time or throughput, since it ignores the as-
sessment of previous actions from the environment.

Scalability Analysis (RQ2)

In this part, we turn to experiments on real-world data. We
evaluate our proposed method with other baselines under
Manhattan, New York City, where there are over 2500 sig-
nalized intersections. The problem of such a large scale is
usually difficult to deal with through conventional methods
in the transportation field.

As shown in Table 3, our method achieves the best per-
formance on both travel time and throughput. It should be
noted that two methods, GRL and NeighborRL, cannot be
compared as they are unable to scale to large networks due
to high complexity and computational costs. On the contrary,
our proposed method MPLight can handle traffic signal con-
trol for thousands of lights effectively and efficiently.

Ablation Study (RQ3)

Impact of Pressure-based Design In this section, we
test the performance of different RL-based methods with
and without “pressure”. It should be noted that, since
PressLight already use “pressure” in its reward design, we
remove the pressure design by replacing it with queue length
in the reward which is similar to the reward design in FRAP.

It is shown in Table 4 that the proposed “pressure” con-
cept could significantly boost the performance on different
models, in terms of the average travel time and network
throughput. The results justify the model-agnostic effective-
ness of the “pressure”.

The advantage of “pressure” over its base models can be
attributed to its well-designed reward and state. Compared
with the base models, “pressure” concept helps to optimize
the control strategy by reducing the pressure between the en-
tering and exiting lanes. Moreover, learning-based models
show superior performance compared to MaxPressure be-
cause there is a large performance margin from PressLight
in either travel time or throughput since it ignores the assess-
ment of previous actions from the environment.
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Table 2: Performance comparison of different methods evaluated in the four configurations of synthetic traffic data. For average
travel time, the lower the better while for throughput, the higher the better.

Model
Travel Time Throughput

Config 1 Config 2 Config 3 Config 4 Config 1 Config 2 Config 3 Config 4

FixedTime 573.13 564.02 536.04 563.06 3555 3477 3898 3556
MaxPressure 361.17 402.72 360.05 406.45 4702 4324 4814 4386

GRL 735.38 758.58 771.05 721.37 3122 2792 2962 2991
GCN 516.65 523.79 646.24 585.91 4275 4151 3660 3695
NeighborRL 690.87 687.27 781.24 791.44 3504 3255 2863 2537
PressLight 354.94 353.46 348.21 398.85 4887 4742 5129 5009
FRAP 340.44 298.55 361.36 598.52 5097 5113 5483 4475

MPLight 309.33 262.50 281.34 353.13 5219 5213 5652 5060

Table 3: Performance of different methods on Manhattan, a
large-scale road network with 2510 traffic signals.

Model Travel Time Throughput

FixedTime 974.23 1940
MaxPressure 497.76 2143

GRL -∗ -∗
GCN 653.45 5045
NeighborRL -∗ -∗
PressLight 600.42 3447
FRAP 512.70 6346

MPLight 472.51 6932

∗No result

as GRL and NeighborRL can not scale up to thousands of
intersections in New York’s road network.

Impact of Parameter Sharing To investigate the impact
of parameter sharing in model learning, we compare the
performance of our RL agent design with and without pa-
rameter sharing under synthetic traffic. As is shown in Fig-
ure 7, parameter sharing enables our model to converge
faster, which verifies the effectiveness of parameter sharing
for controlling traffic signals.

Figure 7: Number of episodes for models to converge.

Conclusion

In this paper, we propose a deep reinforcement learning
method to tackle the problem of city-level traffic signal con-
trol. We are the first to evaluate the RL-based traffic signal
control methods in a real-world scenario with thousands of

Table 4: Performance of different RL-based methods with
and without “pressure” on Manhattan network.

Model Travel Time

GCN 653.45
GCN + pressure 646.47

PressLight- pressure 654.04
PressLight 600.42

FRAP 512.70
FRAP + pressure 472.51

traffic lights. Our proposed method has shown its strong per-
formance and generalization ability.

We also acknowledge the limitations of our current ap-
proach. Although by allocating a shared agent for all inter-
sections, the model achieves satisfactory control in the large-
scale road network. However, more elaborate design for co-
ordination and cooperation among neighboring intersections
might further improve performance.
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