
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Exact and Efficient Inference for Collective Flow
Diffusion Model via Minimum Convex Cost Flow Algorithm

Yasunori Akagi,1 Takuya Nishimura,1 Yusuke Tanaka,1 Takeshi Kurashima,1 Hiroyuki Toda1

1NTT Service Evolution Laboratories, NTT Corporation,
1-1 Hikari-no-oka, Yokosuka-Shi, Kanagawa, 239-0847, Japan

{yasunori.akagi.cu, takuya.nishimura.fk, yusuke.tanaka.rh, takeshi.kurashima.uf, hiroyuki.toda.xb}@hco.ntt.co.jp

Abstract

Collective Flow Diffusion Model (CFDM) is a general frame-
work to find the hidden movements underlying aggregated
population data. The key procedure in CFDM analysis is
MAP inference of hidden variables. Unfortunately, existing
approaches fail to offer exact MAP inferences, only approx-
imate versions, and take a lot of computation time when ap-
plied to large scale problems. In this paper, we propose an
exact and efficient method for MAP inference in CFDM.
Our key idea is formulating the MAP inference problem as a
combinatorial optimization problem called Minimum Convex
Cost Flow Problem (C-MCFP) with no approximation or con-
tinuous relaxation. On the basis of this formulation, we pro-
pose an efficient inference method that employs the C-MCFP
algorithm as a subroutine. Our experiments on synthetic and
real datasets show that the proposed method is effective both
in single MAP inference and people flow estimation with EM
algorithm.

1. Introduction

With recent advances in GPS, Wi-Fi, and various sensors,
the importance of location information has grown and is be-
ing utilized in various fields. However, it is often difficult
to obtain data about individual movements because of pri-
vacy concerns or the difficulty of tracking individuals over
time. Instead, aggregated count data is relatively easy to ob-
tain as it does not include individual movement informa-
tion. For example, mobile spatial statistics (Terada, Nagata,
and Kobayashi 2013), which is the hourly population data
of fixed size square grids calculated from mobile network
operational data, are available for purchase in Japan. As an-
other example, traffic data is often obtained not in the form
of tracking data of individual cars, but in the form of count
data acquired by cameras or sensors installed on road net-
works (Yang and Zhou 1998; Morimura, Osogami, and Idé
2013).

Although there are various uses for these aggregated
count data, their applicability is limited because they do
not contain explicit information about people movements.
In order to utilize such data, Collective Graphical Model

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(CGM)(Sheldon and Dietterich 2011), which enables us
to conduct learning and inference with aggregated count
data, was proposed. In particular, Collective Flow Diffusion
Model (CFDM) (Kumar, Sheldon, and Srivastava 2013),
which is a special case of CGM, has been proposed to in-
fer people flows between the areas by modeling individual
movements via a Markov chain approach; it has been applied
to the analysis of the hidden movements behind observed
count data in a traffic network (Kumar, Sheldon, and Srivas-
tava 2013), urban space (Iwata et al. 2017; Akagi et al. 2018;
Iwata and Shimizu 2019), amusement park (Du, Kumar,
and Varakantham 2014) and exhibition halls (Tanaka et al.
2018).

An important function in CFDM analysis is MAP (maxi-
mum a posteriori) inference of the number of moving people
from observed population data and parameters of the proba-
bilistic model. This process is mainly used in two ways: (i)
As a method for recovering people flow given observed pop-
ulation data and a human mobility model. Even if we can
design a probabilistic model of human mobility using do-
main knowledge or estimate the model using another small
set of movement (trajectory) data, we have to conduct MAP
inference in order to know the number of people moving be-
tween areas. (ii) As a method for conducting E-step in the
EM (Expectation Maximization) algorithm to estimate peo-
ple flow and parameters of the probabilistic model simul-
taneously. Although E-step was implemented by the well-
designed MCMC (Sheldon and Dietterich 2011) in the orig-
inal CFDM proposal, its scalability was problematic. In or-
der to address this issue, a method that uses MAP infer-
ence as an alternative to the regular expectation operation
was widely used in subsequent research (Iwata et al. 2017;
Akagi et al. 2018; Tanaka et al. 2018).

Although methods for realizing MAP inference for
CFDM are very important, previous proposals have several
crucial drawbacks. (i) They do not provide exact MAP infer-
ence because they use continuous relaxation and Stirling’s
approximation. (ii) Each optimum solution element is non-
integer because of continuous relaxation. As a result, the op-
timum solutions are dense with many non-zero elements and
each solution occupies a lot of memory. (iii) When we deal
with large scale problems, a lot of computation time is still

3163

needed to solve the optimization problem.
In this paper, we propose a novel method for MAP infer-

ence in CFDM that overcomes the shortcomings of previous
approaches. Our key idea is formulating the MAP inference
problem in CFDM as a combinatorial optimization problem
called (non-linear) Minimum Cost Flow Problem (MCFP).
Moreover, we prove that all cost functions of the MCFP are
“discrete convex functions”, discrete analogues of the con-
tinuous convex function. This fact indicates that the formu-
lated MCFP is a Minimum Convex Cost Flow Problem (C-
MCFP) variant, which is an efficiently solvable subclass of
MCFP. On the basis of this formulation, we propose an effi-
cient inference method that employs the C-MCFP algorithm
as a subroutine. The proposal has the following advantages:

1. It offers exact MAP inference as no approximation is
used.

2. Optimum solution elements are integers, which is con-
sistent with the number of moving people. Moreover, the
solution tends to be sparse and we can hold it with less
memory by use of the sparse matrix data structure.

3. By utilizing efficient algorithms for C-MCFP, fast estima-
tion is possible. In addition, it is easy to use in practice
because it is not necessary to set hyperparameters, and
the calculation time is relatively insensitive to the proba-
bilistic models and the optimum solutions.

Our results are significant in that they bridge two distinct
research topics, graph algorithms and CFDM inference. This
work is the first to regard CFDM inference as a discrete op-
timization problem on a graph (all efficient existing methods
transform the inference problem into a continuous optimiza-
tion problem via approximation). Our non-trivial finding of
the discrete convexity of the cost function is an important
key in revealing the hidden relationship between graph al-
gorithms and inference in collective flow diffusion.

Experiments on synthetic and real datasets show that the
proposed method is effective for MAP inference in terms of
both running time and solution quality such as sparsity. Of
particular note, running time is accelerated 10 times or more
and sparsity of optimum solution is dramatically increased
in most cases. Moreover, we use the proposal to conduct
people flow estimation via the EM algorithm and confirm
its effectiveness.

2. Problem Setting

For positive integer k, we denote [k] := {1, . . . , k}. Suppose
that the target space is discretized into n distinct areas. The
people who were in area i ∈ [n] at timestep t will stay in
i or move to another area to be observed in area j ∈ Γi at
timestep t+ 1, where Γi ⊆ [n] is the set of areas that can be
moved to from area i. This process will be repeated for each
t ∈ [T − 1], where T is the total number of timesteps.

The problem we address in this paper is formulated as
follows. Suppose we are given the population of area i at
timestep t, Nt,i(i ∈ [n], t ∈ [T]). Our goal is to estimate the
number of people who leave area i at time t and whose next
area is j at time t + 1, Mtij(i ∈ [n], j ∈ [n], t ∈ [T − 1]).
Figure 1 shows an example of this problem setting.

��������
�,�

	�
�����

��
�������� ����
����������

���������
���

	��
����
������
������������� ���
�������� ����

��
�������������
��� ����
�������� � ��

	
 1 	
 3	
 2

��������� � 1 ��	�� � 2 ��������� � 2 ��	�� � 3

������

�
�,�

� �	

�����

�
�,�

� �	

������

�
�,�

� �	

������

�
�,�

� �	

�����

�
�,�

�
	

������

�
�,�

� �	

������

�
�,�

� 	

�����

�
�,�

� ��

������

�
�,�

� ��

�����

����

�����

�����

����

�����

�
�,�,�

� �	 �
�,�,�

� �	

�
�,�,�

�

Figure 1: An example of the problem setting where the num-
ber of areas n = 3 and the number of total timesteps T = 3.

3. Background

3.1 Collective Flow Diffusion Model (CFDM)

Let θi = {θij}j∈Γi
(
∑

j∈Γi
θij = 1) be the transition prob-

ability from area i to other areas (including i itself). We here
assume θi does not depend on timestep t. Given population
Nt,i and transition probability θi, the transition population
Mti = {Mtij}j∈Γi

(t ∈ [T − 1], i ∈ [n]) is assumed to be
decided by the following multinomial distribution: Mti ∼
Multi(Nt,i,θi). Given N = {Nt,i | t ∈ [T], i ∈ [n]} and
M = {Mti | t ∈ [T − 1], i ∈ [n]} , the likelihood function
of θ = {θi | i ∈ [n]} is given by

P (M |N ,θ) ∝
T−1∏
t=1

∏
i∈[n]

⎛
⎝ Nt,i!∏

j∈Γi
Mtij !

∏
j∈Γi

θ
Mtij

ij

⎞
⎠ .

(1)

In addition, the population in each area, Nt,i, and the
transition population between areas, Mti, satisfy the fol-
lowing two relationships Nt,i =

∑
j∈Γi

Mtij , Nt+1,i =∑
j∈Γi

Mtji (t ∈ [T − 1], i ∈ [n]) , which represent the
law of conservation in the number of people.

Our purpose is to estimate the true number of people mov-
ing between areas. We consider two problems: (i) estima-
tion of M given N and θ, and (ii) estimation of M and θ
given only N . The first problem, includes, for example, the
case where it is possible to design a human movement model
(i.e. θ) in the target space based on domain knowledge, geo-
graphical information, or other data related to people move-
ment such as a small amount of trajectory data. The second
problem corresponds to the case that there is no clue as to θ
and it is necessary to estimate everything from N .

In any case, an important subroutine in achieving our pur-

3164

pose is solving the following MAP inference problem:

max
M

. P (M |N ,θ)

s.t. Nt,i =
∑
j∈Γi

Mtij (t ∈ [T − 1], i ∈ [n]),

Nt+1,i =
∑
j∈Γi

Mtji (t ∈ [T − 1], i ∈ [n]),

Mtij ∈ Z≥0 (t ∈ [T − 1], i ∈ [n], j ∈ Γi).

(2)

In the first problem, the optimum solution of (2) is the de-
sired answer. A common approach to solving the second
problem is to estimate, alternatively, M and θ by the EM
algorithm considering M as a hidden variable and θ as pa-
rameter of a probabilistic model. Since high computational
cost is incurred in calculating the expected value of hidden
variable M by MCMC, a method to replace the expected
value with the solution of the MAP inference problem has
already been proposed (Sheldon et al. 2013) and is being
widely used to conduct E-step. This approach solves the op-
timization problem (2) iteratively.

3.2 Minimum Cost Flow Problems

(Non-linear) Minimum Cost Flow Problem (MCFP) is a
combinatorial optimization problem defined as follows. Let
G = (V,E) be a directed graph, where each node i ∈ V has
supply value bi ∈ Z, and each edge (i, j) ∈ E has capac-
ity lij ∈ Z≥0 and cost function cij : Z≥0 → R. If bi > 0
we call node i to be source, and if bi < 0 we call sink.
MCFP is the problem of finding a minimum cost flow on G
that satisfies the supply constraints at all nodes and capacity
constraints at all edges. MCFP can be described as follows:

min
x∈Z|E|

.
∑

(i,j)∈E

cij(xij)

s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = bi (i ∈ V),

0 ≤ xij ≤ lij ((i, j) ∈ E).

(3)

Note that this paper considers the problems that restrict fea-
sible x to integer values i.e. x ∈ Z

|E|. Generally, MCFP (3)
is NP-hard and difficult to solve efficiently. However, spe-
cial cost functions make it possible to derive efficient opti-
mization algorithms. For example, MCFP with linear cost
functions, which is the most famous special case of MCFP,
is polynomial-time solvable and many efficient algorithms
have been developed (Kiraly and Kovacs 2012). Moreover,
Minimum Convex Cost Flow Problem (C-MCFP), in which
every cost function cij satisfies “discrete convexity” cij(x+
1) + cij(x − 1) ≥ 2 · cij(x) (x = 1, 2, . . .), is known to be
an efficiently solvable subclass of MCFP (Ahuja, Magnanti,
and Orlin 1993).

4. Proposed Method

4.1 Formulation as C-MCFP

We show that the optimization problem (2) can be
formulated as C-MCFP. After taking the logarithm of

Input

Area 1 Area 2 Area 3Area 1 Area 2 Area 3

(0, 20)

(0, 30)

(0, 40) (0, 60)

(0, 20)

(0, 10)

(cost, capacity)(,)
MCFP Formulation

Figure 2: An example of MCFP formulation when the num-
ber of areas n = 3. o is the source and d is the sink of the
flow network. The capacity of edge (o, ui) equals to Nt,i and
the capacity of edge (vi, d) equals to Nt+1,i.

the objective function (1) and omitting terms that
do not depend on M , the objective function equals∑

t∈[T−1]

∑
i∈[n]

∑
j∈Γi

(− logMtij !+Mtij log θij). Since
we can split (2) into independently solvable T − 1 subprob-
lems by t, all we have to do is solve the minimization prob-
lems described as follows for each t ∈ [T − 1]:

min
Mt

.
∑
i∈[n]

∑
j∈Γi

(logMtij !−Mtij log θij)

s.t. Nt,i =
∑
j∈Γi

Mtij (i ∈ [n]),

Nt+1,i =
∑
j∈Γi

Mtji (i ∈ [n]),

Mtij ∈ Z≥0 (i ∈ [n], j ∈ Γi).

(4)

In order to formulate the problem (4) as MCFP, we con-
struct an instance by the procedure described below (an ex-
ample is shown in Figure 2):

1. Let V = {ui}i∈[n] ∪ {vi}i∈[n] ∪ {o, d}. ui and vi corre-
spond to area i at timestep t and timestep t + 1, respec-
tively. o is the source node and d is the sink node of the
flow network.

2. For i ∈ [n], add edge (o, ui) with cost function 0 (con-
stant function) and capacity Nt,i.

3. For i ∈ [n], add edge (vi, d) with cost function 0 and
capacity Nt+1,i.

4. For i ∈ [n] and j ∈ Γi , add edge (ui, vj) with cost
function fij(x) := log x!− x · log θij and capacity +∞.

5. Set bo =
∑

i∈[n] Nt,i, bd = −bo = −∑
i∈[n] Nt,i and

bui = bvi = 0 (i ∈ [n]).

For the MCFP instance constructed above, the following
holds.

Proposition 1. For M∗
t defined by M∗

tij = x∗
uivj

(i ∈
[n], j ∈ Γi) where x∗ is the optimum solution of the MCFP

3165

instance constructed above, M∗
t is an optimum solution of

the optimization problem (4).

Proof of Proposition 1. Let x to be a feasible solution of the
constructed MCFP. From the non-negativity of xij and flow
conservation constraints at node o and d, xoui = Nti and
xvid = Nt+1,i (∀i ∈ [n]) must be satisfied. From these facts
and flow conservation constraints at node ui and vi, Nt,i =∑

j∈Γi
xuivj

and Nt+1,i =
∑

j∈Γi
xvjui

(∀i ∈ [n]) hold.
Since we restrict x to integer values and total MCFP cost
is
∑

i∈[n]

∑
j∈Γi

(log xuivj !−xuivj log θij), the constructed
MCFP is equivalent to the optimization problem (4), so the
proposition holds.

Proposition 2. For the MCFP instance constructed above,
all cost functions satisfy discrete convexity, i.e. cij(x+1)+
cij(x− 1) ≥ 2 · cij(x) (x = 1, 2, . . .).

Proof of Proposition 2. It is clear that a constant function
satisfies discrete convexity, so it is sufficient to check for
fij . We have fij(x + 1) + fij(x − 1) − 2 · fij(x) =
log(x+1)!+log(x−1)!−2·log x! = log(x+1)−log x ≥ 0.
This confirms the discrete convexity of fij .

Proposition 1 says that by solving MCFP we can get an
optimum solution of problem (4). Proposition 2 shows that
the constructed MCFP instance belongs to C-MCFP. Since
C-MCFP is an efficiently solvable subclass of MCFP as de-
scribed in 3.2, we can design efficient algorithms to tackle
the original MAP inference problem (4).

Note that problem (4) may not have any feasible solution
if
∑

i∈[n] Nt,i �=
∑

i∈[n] Nt+1,i holds or |Γi| (i ∈ [n]) is
small. Such cases occur frequently when dealing with noisy
real data. Even in such cases, our method with slight mod-
ification can output reasonable solutions. We describe this
modification in Section 4.3.

4.2 Algorithm

We describe here an algorithm that can find exact optimum
solutions of C-MCFP, called Capacity Scaling algorithm
(CS) (Minoux 1986). CS is an algorithm that successively
augments flow along the shortest path from source to sink
in a residual graph, which is an auxiliary graph calculated
from the current flow. By maintaining a scalar value, called
potential, on each node and modifying edge costs to ensure
that they are non-negative, we can utilize Dijkstra’s algo-
rithm (Dijkstra 1959), which is a fast algorithm for shortest
path search in graphs with non-negative edge costs. In or-
der to reduce the number of shortest path searches, CS is
designed to carry sufficiently large number of flows in each
path augmentation. The algorithm utilized in our work is the
one described in Chapter 14.5 of (Ahuja, Magnanti, and Or-
lin 1993). Although this algorithm is based on the idea of
(Minoux 1986), some changes have been made, so its com-
putation complexity differs from that of (Minoux 1986).

Given a C-MCFP instance with graph G = (V,E), The-
orem 14.1 of (Ahuja, Magnanti, and Orlin 1993) claims that
CS runs in O(|E| · logU ·S), where U := maxi∈V |bi| is the
maximum absolute value of flow demand and S is the time
complexity for solving a shortest path problem in graph G

Algorithm 1 Algorithm for solving MAP inference problem
(2) via capacity scaling algorithm
Require: Population of each area and time N , transition

matrix θ
for all t ∈ [T − 1] do

Construct C-MCFP instance based on Nt,Nt+1,θ by
the procedure described in Section 4.1
Get optimum solution x∗ of constructed C-MCFP by
capacity scaling algorithm
for all i ∈ [n] do

for all j ∈ Γi do
M∗

tij ← x∗
uivj

end for
end for

end for
return M∗

with non-negative edge costs. According to Dijkstra’s algo-
rithm with binary heap, S is bounded by O(|E| · log |V |), so
the total time complexity is O(|E|2 · log |V | · logU). When
this algorithm is used to solve problem (4), its time complex-
ity is O(m2 · log n · logF), where n is the number of areas,
m is the number of edges of the adjacency graph between
the areas determined by Γi (i ∈ [n]) and F :=

∑
i∈[n] Nt,i

is the total population of targeted areas. Note that, the to-
tal complexity does not depend on the maximum value of
edge capacity, and it is guaranteed that the algorithm runs
efficiently even if the graph contains an edge with infinite
capacity.

CS is a suitable algorithm for solving our problem in
the following sense: When dealing with real-world datasets,
sometimes F is extremely large (for example, in mobile spa-
tial statistics in the Greater Tokyo Area, which consists of
population distribution data by time and area, F is about
106–107). Therefore, the algorithm used to solve the formu-
lated C-MCFP should have sub-linear time complexity with
respect to F . Accordingly, CS is appropriate since its time
complexity is proportional to logF .

The overall algorithm for solving the original MAP infer-
ence problem (2) is summarized in Algorithm 1.

4.3 Handling with Infeasible Cases

As mentioned in Section 4.1, when dealing with real-world
data, there may not be feasible solution to problem (4). To
address this problem and output a reasonable solution, we
add a few more steps in the instance construction procedure
described in Section 4.1.

First, we add edge (o, d) with linear cost function Cx,
where C is a sufficiently large constant, and capacity +∞.
Next, we set bo = S, bd = −S, bui = bvi = 0 (i ∈ [n]),
where S := max(

∑
i∈[n] Nt,i,

∑
i∈[n] Nt+1,i). This newly

formulated MCFP always has a feasible solution and still
belongs to C-MCFP, so we can solve this by CS.

In this case, M∗
t calculated from the optimum solu-

tion of the MCFP does not necessarily satisfy the pop-
ulation conservation law Nt,i =

∑
j∈Γi

M∗
tij , Nt+1,i =∑

j∈Γi
M∗

tji(i ∈ [n]), which are the constraints of the origi-

3166

nal problem (4). We can interpret these discrepancies as fol-
lows: Nt,i −

∑
j∈Γi

M∗
tij is outflow from area i to some-

where outside the targeted areas, and Nt+1,i −
∑

j∈Γi
M∗

tji

is inflow from somewhere outside the targeted areas to area
i between timesteps t and t+ 1.

5. Experimental results

Here, we use numerical experiments to demonstrate the
practical utility of the proposed method. All experiments are
conducted on a 64-bit CentOS 7.3 machine with Xeon(R)
Gold 6126 CPU(2.60GHz)x2 and 512 GB memory. The ca-
pacity scaling algorithm is implemented in C++ (g++ 4.8.5
with the -O3 option); other codes were written in python
2.7.12 with SciPy (Jones et al. 2001).

5.1 Compared methods

We compare the proposed method with commonly used ones
used in CFDM inference (Iwata et al. 2017; Akagi et al.
2018; Tanaka et al. 2018). In this method, we solve an op-
timization problem that has the following objective function
f(Mt) +

λ
2 · g(Mt) under constraints Mtij ∈ R≥0 , where

f(Mt) =
∑

i∈[n],j∈Γi

(Mtij logMtij −Mtij(1 + log θij)) ,

g(Mt) =
∑
i∈[n]

⎡
⎣(Nt,i −

∑
j∈Γi

Mtij)
2 + (Nt+1,i −

∑
j∈Γi

Mtji)
2

⎤
⎦

and λ is a hyperparameter. This problem is derived by ap-
plying Stirling’s approximation and continuous relaxation
to the objective function of (4), and adding constraints of
people conservation law to objective function as penalty
terms. λ controls the strength of penalty terms. This op-
timization problem has a convex objective function and
bound constraints, so we can get the global optimum by L-
BFGS-B method (Byrd et al. 1995), which is implemented
in scipy.optimize. Our experiments explored three methods
with λ values of {1, 10, 100}.
5.2 MAP inference: Synthetic data

First, we compare running times and characteristics of the
optimum solutions of MAP inference problem (2) obtained
by each method using synthetic data. We randomly generate
synthetic instances of the MAP inference problem (2). We
consider an L × L grid space, where each cell corresponds
to one area. Γi is set to be [n] for ∀i ∈ [n] (i.e. we consider
the “fully connected” situation). We set T = 2 and Nt,i ∼
Multi(F,pt) (t = 1, 2), where F is the total population in
the grid space and p1,p2 ∼ Dirichlet(1). θ is generated in
two ways as follows.

1. θi ∼ Dirichlet(1) for each i ∈ [n] independently. We
call this generation procedure “Dirichlet”.

2. θij = exp(−dist(i, j))/∑j∈Γi
exp(−dist(i, j)), where

dist(i, j) is the Euclidean distance between cell i and j.
We call this procedure “Exponential decay”. This proce-
dure reflects the characteristics typical of movements that
people are likely to take over short distances rather than
long ones.

To clarify the dependence of computation time on the num-
ber of areas, L2, and total population, F , we solve the MAP
inference problem for L = 10, 20, 30 fixing F to 104, and
for F = 104, 105, 106 fixing L to 20. We generate 10 ran-
dom instances for each evaluation.

The average running times (seconds) for 10 instances by
each algorithm are summarized in Table 1. Each experiment
is executed with the time limit of 1000 seconds. If run-
ning time exceeds the time limit, running time of the trial
is recorded as 1000 seconds. In such a case, the averaged
value is underestimated. To clarify this, we tag average run-
ning time in the table with “>” if the time limit is exceeded
in even one instance. In the parentheses, standard deviation
of running times are shown if all 10 trials are completed in
the time limit. L-BFGS-B methods have longer running time
than the proposed method and varies with parameter settings
and instances. This unstable behavior will be problematic in
practical usage. The proposed method outperforms all other
methods in all settings. In particular, it offers the advantage
that it can solve problems with small computational time and
work stably even when L and F are large.

In order to compare the characteristics of optimum solu-
tions output by the proposed method and L-BFGS-B (λ =
1), we solve two examples with L = 5, F = 102, “Expo-
nential decay” and L = 5, F = 103, “Exponential decay”
instances and checked the solutions in detail. The results are
shown in Figure 3. In this figure, the L2 × L2 optimum so-
lution matrix obtained by each method are presented as a
heatmap. To investigate the sparsity structure of the solution,
the maximum value of heatmap is set to 1 and minimum
value to 0. While the solution obtained by L-BFGS-B is
blurred and contains a lot of small but non-zero elements (el-
ements with light colors) because of continuous relaxation,
proposed method is able to produce sparse solutions. We cal-
culated the sparseness of each solution by (# of near-zero
(< 10−4) elements)/(# of whole elements); the yielded val-
ues are 90%, 67% with proposed method and 0%, 0 % with
L-BFGS-B. This implies that the memory needed to hold the
solution can be reduced significantly by using sparse matrix
structure. Although we can get sparse solutions by rounding
the solutions of existing methods, this operation violates the
constraint of population conservation and degrades solution
quality.

5.3 MAP inference: Real data

We evaluate running times and characteristics of the opti-
mum solutions using real-world spatio-temporal population
data. We use mobile spatial statistics (Terada, Nagata, and
Kobayashi 2013), which is the hourly population data for
fixed size square grids calculated from mobile network op-
erational data. We use Tokyo and Kanagawa prefecture data,
which is the main part of the capital region of Japan, on
April 1st, 2015 (weekday) and April 5th, 2014 (holiday).
Nt is the population of each area at the clock time of t-
hour for t ∈ {0, 1, . . . , 22} on each day. In order to com-
pare the performances of the methods at different cell width,
we aggregate population data of each cell and made datasets
with cell sizes of 5km × 5km, 2km × 2km, and 1km ×
1km. The resulting datasets contain 200, 1017, 3711 cells,

3167

Table 1: The average running time (seconds) of 10 synthetic instances when F is fixed to 104 (above) and when L is fixed to 20
(below). The best running time is highlighted for each problem size. Values with “>” are underestimates due to the time limit.
Standard deviation is shown in parentheses if all 10 trials are completed in the time limit.

type of θ Dirichlet Exponential decay
L 10 20 30 10 20 30

Proposed 0.05 (0.00) 0.61 (0.01) 4.54 (0.16) 0.03 (0.00) 0.46 (0.03) 6.29 (2.60)
L-BFGS-B (λ = 1) 6.51 (0.91) 132.86 (15.46) 357.32 (39.76) 13.51 (2.00) 273.25 (18.86) >911.22 (−)

L-BFGS-B (λ = 10) 7.40 (1.27) 143.14 (13.25) 387.09 (56.31) 13.87 (1.69) 281.40 (19.18) >936.14 (−)
L-BFGS-B (λ = 100) 9.65 (2.01) 169.83 (17.19) 440.77 (69.87) 15.79 (1.36) 297.40 (20.42) >975.64 (−)

type of θ Dirichlet Exponential decay
F 104 105 106 104 105 106

Proposed 0.71 (0.09) 4.19 (0.85) 14.25 (1.56) 0.68 (0.22) 2.44 (0.58) 4.93 (0.94)
L-BFGS-B (λ = 1) 140.16 (15.34) 434.25 (114.80) >804.52 (−) 323.87 (30.86) >1000.00 (−) >1000.00 (−)

L-BFGS-B (λ = 10) 149.29 (14.35) 503.72 (117.16) >880.68 (−) 340.96 (41.54) >1000.00 (−) >1000.00 (−)
L-BFGS-B (λ = 100) 175.65 (18.26) 793.54 (146.68) >899.83 (−) 356.24 (48.56) >1000.00 (−) >887.22 (−)

Table 2: The average running time (seconds) for real data. The best running time is highlighted for each cell width. Values with
“>” are underestimates due to the time limit. Standard deviation is shown in parentheses if all 10 trials are completed in the
time limit.

dataset April 1st, 2015 April 5th, 2015
cell width 5km 2km 1km 5km 2km 1km
Proposed 0.84 (0.16) 9.16 (1.49) 59.40 (22.38) 0.41 (0.01) 6.52 (1.15) 54.00 (10.70)

L-BFGS-B (λ = 1) 196.46 (139.61) >1000.00 (−) >1000.00 (−) 68.76 (25.43) >940.84 (−) >1000.00 (−)
L-BFGS-B (λ = 10) 14.96 (34.63) >1000.00 (−) >1000.00 (−) 10.90 (19.85) >1000.00 (−) >1000.00 (−)

L-BFGS-B (λ = 100) 2.04 (0.73) >811.94 (−) >1000.00 (−) 0.99 (0.89) >697.78 (−) >1000.00 (−)

respectively. We construct θ by the same procedure as “Ex-
ponential decay” in the synthetic data experiment and set
Γi = {j | j ∈ [n], dist(i, j) ≤ 5}, where dist(i, j) is Eu-
clidean distance between cell i and cell j in the grid space.

The results are summarized in Table 2. Time limit is set to
be 1000 seconds, and average running time standard devia-
tion are calculated in the same way as in the experiment on
synthetic data. As shown, proposed method is able to solve
all instances in about 60 seconds. On the other hand, com-
pared methods fail to process 2km × 2km and 1km × 1km
datasets regardless of the value of λ. This shows the effec-
tiveness of the proposed method.

5.4 EM algorithm: Synthetic data

As mentioned, MAP inference is used for conducting E-
step of EM algorithm to estimate the number of moving
people and probabilistic model parameters. Here, we com-
pare EM algorithm performance achieved with the proposed
method and with the existing method using simulation data.
We consider people movement in an L× L sized grid space
(L = 10, 12). We construct transition matrix θtrue by θij ∝
si · exp(−β · dist(i, j)), where si > 0 (i ∈ [n]) is a param-
eter that represents how likely people are to gather at area
j, and β is a parameter that controls the decay of transition
probability with increasing distance between i and j. This
transition matrix is a variant of the one used in (Akagi et
al. 2018). We set βtrue = 0.5 and struei as follows: first, we
randomly selected 3 areas from [n] and set struei = 10. For
other areas, we set struei = 1. We generate the population

of each area, N , and number of moving people between ar-
eas, M , by simulating people movement following the pro-
cedure written in Section 3.1 until timestep T = 10 using
transition matrix θtrue. We set initial population N1,i to 104

(i ∈ [n]).
Our task is to estimate the number of moving peo-

ple, M , from observed population N by the EM algo-
rithm. For details of the EM algorithm, please see (Ak-
agi et al. 2018). In the algorithms, Γi is set to be [n] for
∀i ∈ [n]. We evaluate algorithm performance by Normal-
ized Absolute Error (NAE) of M , which is calculated by∑

t,i,j

∣∣M true
tij −M estimated

tij

∣∣ /∑t,i,j M
true
tij . EM algorithm

is iterated 200 times for each method. Figure 4 plots NAE
versus the elapsed time for the EM algorithm with proposed
method and previous method. It can be seen that the pro-
posed method yields better NAE values more quickly than
the previous method, especially at large L. For example, in
the case of L = 12, it took the L-BFGS-B method about
9657 seconds to reach 1.15 for NAE (the dashed line in Fig-
ure 4). The proposed method, on the other hand, took only
24 seconds or so, which is about 400 times faster.

6. Related Work

Several methods have been proposed to realize MAP in-
ference efficiently in CGM, which is a general framework
including CFDM, (Sheldon et al. 2013; Sun, Sheldon, and
Kumar 2015; Nguyen et al. 2016; Vilnis et al. 2015). Note
that existing methods provide non-exact MAP inference and
output non-integer solutions. In (Akagi et al. 2018), an ef-

3168

to

fro
m

Proposed
 Spartsity: 90%

to
fro

m

L-BFGS-B (λ=1)
 Sparsity: 0%

to

fro
m

Proposed
 Spartsity: 67%

to

fro
m

L-BFGS-B (λ=1)
 Sparsity: 0%

Figure 3: Comparison of optimum solution matrix in an
L × L grid space obtained by proposed method and L-
BFGS-B (λ = 1) with θ type of “Exponential decay”.
The left is when (L,F) = (5, 102) and the right is when
(L,F) = (5, 103), where F is the total population of the
targeted areas. Sparsity pattern of obtained L2 × L2 solu-
tion matrix is presented as a heatmap. (i, j)-element of so-
lution matrix represents the number of moving people from
area i to area j. In order to investigate sparsity structure of
solutions, maximum value of color map is set to be 1 and
minimum value is 0. The output of L-BFGS-B method is
blurred and contains a lot of small but non-zero elements. In
contrast, solution by proposed method is noticeably sparse.

ficient optimization method for CFDM is proposed, but it
can be used only under a specially factorized probabilistic
model, which is designed to model human movements in ur-
ban spaces. In contrast, the proposal of this paper is widely
available and poses no excessive constraints on the underly-
ing transition model structure.

There is a lot of work on people flow estimation via
CFDM. For example, (Iwata et al. 2017; Akagi et al. 2018;
Iwata and Shimizu 2019) deal with the estimation of peo-
ple flows in urban spaces by utilizing variational inference,
a factorized probabilistic model, or neural networks. In (Ku-
mar, Sheldon, and Srivastava 2013) and (Tanaka et al. 2018),
the inflow and outflow of each area at each timestep are
assumed to be available, while (Tanaka et al. 2018) con-
siders a time delay between before and after movement.
Thus, there are many variations in terms of the observation
model and the probabilistic model underlying movement.
The method proposed herein can be used as a subroutine
in any of these approaches by appropriately constructing in-
stances of MCFP to suit the problem.

Attempts to estimate human movement from aggregated

0 1 2 3
elapsed time (seconds) 1e3

0.6

0.8

1.0

1.2

1.4

1.6

N
A

E

L=10
Proposed
L-BFGS-B (λ=1)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
elapsed time (seconds) 1e4

0.75

1.00

1.15
1.25

1.50

1.75

N
A

E

L=12
Proposed
L-BFGS-B (λ=1)

Figure 4: NAE (Normalized Absolute Error) as a function
of elapsed time for EM algorithm with each MAP inference
method.

count data have received a lot of attention. As a particularly
relevant study, Xue et al. proposed an algorithm for recov-
ering personal trajectories from aggregated count data for
the purpose of evaluating privacy risk for publishing such
data (Xu et al. 2017). Sheldon et al. proposed a method
to reconstruct sample paths of a Markov chain from par-
tial observations for the purpose of analyzing bird migra-
tion patterns (Sheldon, Elmohamed, and Kozen 2008). Al-
though those methods are similar to our method in the sense
of solving combinatorial assignment problems to recover
movement from aggregated data, there are two distinct dif-
ferences: (i) Those methods focus on recovering each indi-
vidual trajectory, not the collective movement of targets. (ii)
Those method do not have a mechanism to estimate the pa-
rameters of movement models.

Many studies on another direction, predicting population
or people flow in cities, have been published (Konishi et al.
2016; Zhang et al. 2019; Jiang et al. 2019). Their approach is
to forecast future city dynamics at each area from past data
or other features in a supervised way, using classical regres-
sion models or deep learning architecture, etc. Our purpose
is estimating people flows between areas from only popu-
lation snapshots at incremental timesteps in a unsupervised
way, which is a totally different task from future prediction.

7. Conclusion

In this paper, we proposed a novel method for MAP infer-
ence in collective flow diffusion model. First, we showed
that the MAP inference problem can be formulated as a min-
imum convex cost flow problem. Based on this formulation,
we proposed an efficient algorithm for MAP inference prob-

3169

lem using capacity scaling algorithm. Extensive evaluations
on both real and synthetic datasets showed that our algo-
rithm outperforms previous alternatives in terms of running
time and optimum solution quality.

References

Ahuja, R. K.; Magnanti, T. L.; and Orlin, J. B. 1993.
Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Inc.
Akagi, Y.; Nishimura, T.; Kurashima, T.; and Toda, H. 2018.
A fast and accurate method for estimating people flow from
spatiotemporal population data. In IJCAI, 3293–3300.
Byrd, R. H.; Lu, P.; Nocedal, J.; and Zhu, C. 1995. A lim-
ited memory algorithm for bound constrained optimization.
SIAM Journal on Scientific Computing 16(5):1190–1208.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1):269–271.
Du, J.; Kumar, A.; and Varakantham, P. 2014. On under-
standing diffusion dynamics of patrons at a theme park. In
AAMAS, 1501–1502.
Iwata, T., and Shimizu, H. 2019. Neural collective graphical
models for estimating spatio-temporal population flow from
aggregated data. In AAAI, 3935–3942.
Iwata, T.; Shimizu, H.; Naya, F.; and Ueda, N. 2017. Esti-
mating people flow from spatiotemporal population data via
collective graphical mixture models. ACM Transactions on
Spatial Algorithms and Systems 3(1):1–18.
Jiang, R.; Song, X.; Huang, D.; Song, X.; Xia, T.; Cai, Z.;
Wang, Z.; Kim, K.-S.; and Shibasaki, R. 2019. Deepurban-
event: A system for predicting citywide crowd dynamics at
big events. In KDD, 2114–2122. ACM.
Jones, E.; Oliphant, T.; Peterson, P.; et al. 2001–. SciPy:
Open source scientific tools for Python.
Kiraly, Z., and Kovacs, P. 2012. Efficient implementations
of minimum-cost flow algorithms. Acta Univ. Sapientiae
4(1):67–118.
Konishi, T.; Maruyama, M.; Tsubouchi, K.; and Shimosaka,
M. 2016. Cityprophet: City-scale irregularity prediction us-
ing transit app logs. In Ubicomp, 752–757. ACM.
Kumar, A.; Sheldon, D.; and Srivastava, B. 2013. Collective
diffusion over networks: Models and inference. In UAI.
Minoux, M. 1986. Solving integer minimum cost flows with
separable convex cost objective polynomially. In Netflow at
Pisa. Springer. 237–239.
Morimura, T.; Osogami, T.; and Idé, T. 2013. Solving in-
verse problem of Markov chain with partial observations. In
NIPS, 1655–1663.
Nguyen, T.; Kumar, A.; Lau, H. C.; and Sheldon, D. 2016.
Approximate inference using DC programming for collec-
tive graphical models. In AISTATS, 685–693.
Sheldon, D. R., and Dietterich, T. G. 2011. Collective graph-
ical models. In NIPS, 1161–1169.
Sheldon, D.; Sun, T.; Kumar, A.; and Dietterich, T. 2013.
Approximate inference in collective graphical models. In
ICML, 1004–1012.

Sheldon, D.; Elmohamed, M.; and Kozen, D. 2008. Collec-
tive inference on markov models for modeling bird migra-
tion. In NIPS, 1321–1328.
Sun, T.; Sheldon, D.; and Kumar, A. 2015. Message passing
for collective graphical models. In ICML, 853–861.
Tanaka, Y.; Iwata, T.; Kurashima, T.; Toda, H.; and Ueda,
N. 2018. Estimating latent people flow without tracking
individuals. In IJCAI, 3556–3563.
Terada, M.; Nagata, T.; and Kobayashi, M. 2013. Popula-
tion estimation technology for mobile spatial statistics. NTT
DOCOMO Technical Journal 14(3):10–15.
Vilnis, L.; Belanger, D.; Sheldon, D.; and McCallum, A.
2015. Bethe projections for non-local inference. In UAI,
892–901.
Xu, F.; Tu, Z.; Li, Y.; Zhang, P.; Fu, X.; and Jin, D. 2017.
Trajectory recovery from ash: User privacy is not preserved
in aggregated mobility data. In WWW, 1241–1250.
Yang, H., and Zhou, J. 1998. Optimal traffic counting loca-
tions for origin–destination matrix estimation. Transporta-
tion Research Part B: Methodological 32(2):109–126.
Zhang, J.; Zheng, Y.; Sun, J.; and Qi, D. 2019. Flow pre-
diction in spatio-temporal networks based on multitask deep
learning. IEEE Transactions on Knowledge and Data Engi-
neering.

3170

