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Abstract

We investigate the complexity of learning query inseparable
ELH ontologies in a variant of Angluin’s exact learning model.
Given a fixed data instance A∗ and a query language Q, we are
interested in computing an ontology H that entails the same
queries as a target ontology T on A∗, that is, H and T are
inseparable w.r.t. A∗ and Q. The learner is allowed to pose two
kinds of questions. The first is ‘Does (T ,A) |= q?’, with A an
arbitrary data instance and q and query in Q. An oracle replies
this question with ‘yes’ or ‘no’. In the second, the learner asks
‘Are H and T inseparable w.r.t. A∗ and Q?’. If so, the learning
process finishes, otherwise, the learner receives (A∗, q) with
q ∈ Q, (T ,A∗) |= q and (H,A∗) �|= q (or vice-versa).
Then, we analyse conditions in which query inseparability
is preserved if A∗ changes. Finally, we consider the PAC
learning model and a setting where the algorithms learn from
a batch of classified data, limiting interactions with the oracles.

Introduction

Ontologies are a formal and popular way of representing
knowledge. Taxonomies, categorisation of websites, products
and their features, as well as more complex and specialized
domain knowledge, can be represented with ontologies. Do-
main experts use ontologies while sharing and annotating
information in their fields because in this way knowledge
can be unambiguously understood and easily distributed.
Medicine, for example, has produced large, standardised, and
scalable ontologies (e.g. Galen and SNOMED CT). Broad
and general so called knowledge graphs are emerging such
as DBPedia (Bizer et al. 2009), Wikidata (Vrandečić and
Krötzsch 2014), YAGO (Suchanek, Kasneci, and Weikum
2008). An ontology enables machines to process relations
and definitions and reason about that knowledge. Sharing
information, formalising a domain, and making assumptions
explicit are some of the main reasons for using an ontology.

Designing ontologies is a hard and error-prone task. The
research community has approached the problem by develop-
ing editors that help ontology engineers to build ontologies
manually (Knublauch et al. 2004) and defined design princi-
ples (Stuckenschmidt, Parent, and Spaccapietra 2009). Even
with tools, building ontologies is a laborious task that also
needs expertise. An expert in designing ontologies is called
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an ontology engineer. Such an expert is normally familiar
with the tools, languages, and techniques necessary to design
an ontology through the communication with domain experts.
The ontology engineer must communicate and understand
the knowledge given by domain experts and then design an
ontology that captures what is relevant in the domain.

One of the main challenges in the process of building an
ontology is that it often relies on the communication between
the ontology engineer (or multiple ontology engineers) and
domain experts that, in order to share knowledge, use the
ambiguous natural language. Indeed, it can happen that some
errors are made while designing it due to the difficulty of shar-
ing knowledge. The ontology engineer can misunderstand
the domain experts or they can inadvertently omit precious
details. Moreover, knowledge can be implicit and while de-
signing an ontology it is not easy to understand what are
the real relationships between concepts and imagine all the
possible consequences of designing concepts and their rela-
tionships in a particular way. There are several aspects which
can influence the difficulty of creating an ontology.

Following the approach by (Konev et al. 2018; Konev,
Ozaki, and Wolter 2016), we focus on the problem of finding
how concepts should be logically related, assuming that the
relevant vocabulary is known by the domain experts, which
can share this information with the ontology engineer. In this
approach, the problem of building an ontology is treated as a
learning problem in which the ontology engineer plays the
role of a learner and communicates with the domain experts,
who play the role of a teacher (also called an oracle). We
assume that (1) the domain experts know the relevant knowl-
edge about the domain and act in a consistent way as a single
teacher; (2) the vocabulary that should be used in the ontol-
ogy is known by the teacher and the learner; (3) the learner
can pose queries to the teacher in order to acquire missing
knowledge or check if it has learned enough in order to stop
learning. The described model can be seen as an instance of
Angluin’s exact learning model (Angluin 1988) with mem-
bership and equivalence queries. The queries asked by the
learner in order to acquire knowledge can be considered as
membership queries and the queries that ask if the hypothesis
of the learner correctly represents the relevant knowledge of
the domain experts can be treated as equivalence queries.

In the exact learning literature, one of the main goals is
to determine the complexity of learning an abstract target.
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Table 1: Polynomial query learnability of learning frame-
works.

The complexity depends on the number and size of queries
posed by the learner. In the work by (Konev et al. 2018;
Konev, Ozaki, and Wolter 2016) it has been shown that ex-
actly learnability of ontologies formulated in the very popular
ELH (Baader et al. 2007a) ontology language is not possi-
ble with polynomially many polynomial size queries. Here,
we investigate a more flexible setting, where the ontology
does not need to be logically equivalent but only insepara-
ble w.r.t. a query language (Lutz and Wolter 2010) and a
fixed data instance1. Query inseparability is the basic require-
ment for ontology mediated query answering (OMQA) (Bi-
envenu 2016). In OMQA, relevant tasks such as ontology
versioning, modularisation, update, and forgetting, depend
on comparisons between ontologies based on answers given
to queries (Botoeva et al. 2019). We study polynomial query
and time learnability of the ELH ontology language in the
OMQA setting. The query languages considered are atomic
queries (AQ), instance queries (IQ), conjunctive queries (CQ)
and a fragment of CQs called rooted CQs (denoted CQr). In
particular, we show that in our setting the picture is brighter
and ELH can be polynomially learned from IQs, however, it
is still not possible to learn this language from CQs.

Table 1 shows the different results obtained by previous
works (Konev et al. 2018; Konev, Ozaki, and Wolter 2016) for
logical equivalence and our results (shaded in gray) for query
inseparability, taking into account the ontology (upper side)
and the query languages (left side). � means a positive result,
i.e. polynomial query learnability; − means that the query
language is not expressive enough for exchanging informa-
tion and � means that polynomial query learnability cannot
be achieved. Polynomial time learnability implies polynomial
query learnability but the converse does not hold. All positive
results for AQs, IQs, and CQrs also hold for polynomial time
learnability. Since the learned ontology is not equivalent to
the target, it may be the case that after the data is updated the
learned ontology and the target are no longer query insepara-
ble. We thus investigate conditions under which query insep-
arability is preserved when the data changes, which means
that no further learning steps are needed after the change. In

1Here the term ‘query’ refers to queries in the context of
databases and query answering. Our data instances are ABoxes.

many applicaton scenarios, interactions with teachers may
not be a viable option. We also consider learnability when
the learner has only access to a batch of classified exam-
ples. Finally, we adapt the Probably Approximately Correct
(PAC) model (Valiant 1984) to our OMQA setting, which
we separate from the exact and query inseparable problem
settings (Theorem 15). Our polynomial time results for query
inseparability are transferable to the PAC model extended
with membership queries (Theorem 14). Omitted proofs are
available at https://arxiv.org/abs/1911.07229.
Related Work. To cover the vast literature on ontology learn-
ing, we point to the collection edited by (Lehmann and
Völker 2014) and surveys authored by (Cimiano, Völker,
and Buitelaar 2010) and (Wong, Liu, and Bennamoun
2012). The closest works are the already mentioned pa-
pers on exact learning of lightweight description logics
(DLs) (Konev et al. 2018; Duarte, Konev, and Ozaki 2018;
Konev, Ozaki, and Wolter 2016). Exact learning of con-
cepts formulated in the DL CLASSIC has been investi-
gated by (Cohen and Hirsh 1994) and (Frazier and Pitt
1996). Some other works which are more closely related
include works on learning EL concepts (Funk et al. 2019;
Lehmann and Haase 2009). Formal Concept Analysis has
been applied for learning DL ontologies (Rudolph 2004;
Baader et al. 2007b; Borchmann and Distel 2011; Borchmann
2014; Ganter et al. 2016). Learnability of EL ontologies from
finite interpretations has also been investigated (Klarman
and Britz 2015). Association rule mining has been used to
learn DL ontologies (with concept expressions of limited
depth) (Sazonau and Sattler 2017; Völker and Niepert 2011;
Fleischhacker, Völker, and Stuckenschmidt 2012; Völker,
Fleischhacker, and Stuckenschmidt 2015).

Basic Definitions

Ontologies and Queries. The ELH syntax is defined upon
mutually disjoint countably infinite sets of concept names
NC, denoted with A,B, role names NR, denoted with r, s,
and individual names NI, denoted with a, b. EL-concept ex-
pressions C are defined inductively according to the rule
C ::= A | � | C � C | ∃r.C, where A ∈ NC and r ∈ NR.
For simplicity, we omit EL- from EL-concept expressions.
An ELH ontology, also called TBox, is a finite set of concept
inclusions (CI) C � D, where C,D are concept expressions,
and role inclusions (RI) r � s, where r, s ∈ NR. We call an
ELH TBox T a terminology if for all C � D ∈ T either C
or D is a concept name2 and T has at most one3 inclusion of
the form A � C for every A ∈ NC. From now on we assume
all ELH TBoxes we deal with are terminologies. An ABox
A is a finite set of expressions of the form A(a) or r(a, b),
called assertions, with A ∈ NC, r ∈ NR and a, b ∈ NI. We
denote by ind(A) the set of individual names occurring in an

2In the literature, the term terminology commonly refers to sets
of concept inclusions A � C and concept definitions A ≡ C, with
no concept name occurring more than once on the left. As A ≡ C
can be equivalently rewritten as A � C and C � A, our definition
is a natural extension of this one.

3If a terminology contains A � C and A � D one can always
rewrite it into A � C �D.
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ABox A. The signature ΣT of a TBox T is the set of concept
and role names occurring in it, and similarly for the signature
ΣA of an ABox A. A knowledge base (KB) is a pair (T ,A)
where T is a TBox and A is an ABox. We investigate classi-
cal query languages considered in the OMQA literature. An
AQ takes the form of an assertion. An IQ is of the form C(a)
or r(a, b), where C is a concept expression, r ∈ NR and
a, b ∈ NI. A CQ is a first-order sentence ∃�xϕ(�a, �x), where
ϕ is a conjunction of atoms of the form r(t1, t2) or A(t),
where t1, t2, t (called terms) can be individual names from
�a or individual variables from �x. With an abuse of notation,
we denote by AQ, IQ and CQ the sets of atomic, instance
and conjunctive queries q, respectively, and we call a query
language a set Q ∈ {AQ, IQ,CQ}. The size of a concept
expression C (TBox T , ABox A, query q), denoted by |C|
(and, respectively, |T |, |A|, |q|) is the length of the string that
represents it, where concept, role, and individual names are
considered to be of length one.

The semantics of ELH is given as follows. An interpreta-
tion is a pair I = (ΔI , ·I), where ΔI is a non-empty set,
called domain, and ·I is a function that maps every a ∈ NI to
aI ∈ ΔI , every A ∈ NC to AI ⊆ ΔI and every r ∈ NR to
rI ⊆ ΔI ×ΔI . The function ·I extends to other concept ex-
pressions as follows: �I = ΔI , (C �D)I := CI ∩DI and
(∃r.C)I := {d ∈ ΔI | there is e ∈ CI : (d, e) ∈ rI}. An
interpretation I satisfies a CI C � D if CI ⊆ DI , and an RI
r � s if rI ⊆ sI . It satisfies an assertion A(a) if aI ∈ AI ,
and an assertion r(a, b) if (aI , bI) ∈ rI . I satisfies an AQ if
it satisfies the corresponding assertion, and it satisfies an IQ
C(a), or r(a, b), if aI ∈ CI , or (aI , bI) ∈ rI . I satisfies a
CQ q (or there is a homomorphism from q to I) if there is
a function π, mapping terms of q to elements of ΔI , such
that: π(t) = tI , if t ∈ NI; π(t) ∈ AI , for every A(t) of q;
and (π(t1), π(t2)) ∈ rI , for every r(t1, t2) of q. We write
I |= α to state that I satisfies a CI, RI, assertion, or query α.
I satisfies a TBox T , if it is a model of every CI and RI in T ,
and it satisfies an ABox A if it satisfies every assertion in A.
I satisfies a KB K = (T ,A), written I |= K, if it satisfies
both T and A. A KB K entails a CI, an RI, an assertion, or
query α, written K |= α, if, for all interpretations I, I |= K
implies I |= α. A KB K entails a KB K′, written K |= K′, if
I |= K implies I |= K′; K and K′ are equivalent, in symbols
K ≡ K′, if K |= K′ and K′ |= K. We may also speak of
entailments and equivalences of TBoxes and ABoxes, defined
as usual (Baader et al. 2007a). For Q ∈ {AQ, IQ, CQ}, the
KBs K and K′ are Q-inseparable, in symbols K ≡Q K′, if
for every query q ∈ Q, we have that K |= q iff K′ |= q.
Tree Representation and Homomorphisms. We will also
represent a concept expression C as a finite directed tree
TC = (VC ,EC , lC), where VC is the set of all vertices,
with the root denoted by ρC , EC is the set of all edges, and
lC is a labelling function that maps every node to a set of
concept names and every edge to a role name. This tree
representation of C uniquely represents the corresponding
concept expression, and it is inductively defined as follows:

• for C=�, VC = {ρC} and lC(ρC) = ∅;

• for C=A, where A ∈ NC, VC = {ρC} and lC(ρC) = A;

• for C = ∃r.D, TC is obtained from TD by adding a new

root ρC and an edge from ρC to the root ρD of TD with
label lC(ρC , ρD) = r (we call ρD an r-successor of ρC);

• for C=D1 �D2, TC is obtained by identifying the roots
of TD1

and TD2
, with lC(ρC) = lD1

(ρD1
) ∪ lD2

(ρD2
).

The ABox representation of C, AC , is the ABox encoding
the tree representation TC of C, defined as follows. For each
v ∈ VC , we associate av ∈ NI. Then, for every u ∈ VC

and every (u, v) ∈ EC , we put: A(au) ∈ AC iff lC(u) = A;
r(au, av) ∈ AC iff lC(u, v) = r. Given A,A′ be ABoxes, a
function h : ind(A) → ind(A′) is called an ABox homomor-
phism from A to A′ if: for every C(a) ∈ A, C(h(a)) ∈ A′;
and, for every r(a, b) ∈ A, r(h(a), h(b)) ∈ A′.
Learning Model. We provide basic notions related to the
exact learning model, extending the notation in (Konev et al.
2018). A learning framework F is a quadruple (E ,S,L, μ),
where E is a set of examples, S is a subset of E , L is a set
of concept representations (also called hypothesis space),
and μ is a mapping from L to 2E . We omit S if S = E . Each
element l of L is assumed to be represented using a set of
symbols Σl (if l is a TBox T , ΣT is the signature of T ). We
say that e ∈ E is a positive example for l ∈ L if e ∈ μ(l) and
a negative example for l if e 
∈ μ(l).

Given a learning framework F = (E ,S,L, μ), we are
interested in the exact identification of a target concept rep-
resentation t ∈ L w.r.t. the subset S of examples, by posing
queries to oracles. Let MQF,t be the oracle that takes as
input some e ∈ E and returns ‘yes’ if e ∈ μ(t) and ‘no’
otherwise. A membership query is a call to the oracle MQF,t.
For every t ∈ L, we denote by EQF,t the oracle that takes
as input a hypothesis concept representation h ∈ L and re-
turns ‘yes’ if μ(h) ∩ S = μ(t) ∩ S and a counterexample
e ∈ (μ(h)⊕ μ(t)) ∩ S otherwise, where ⊕ denotes the sym-
metric set difference. There is no assumption regarding which
counterexample in (μ(h)⊕μ(t))∩S is chosen by the oracle.
An equivalence query with respect to S is a call to the oracle
EQF,t (if S = E , we omit ‘with respect to S’).

An (exact) learning algorithm for F = (E ,S,L, μ) is a
deterministic algorithm that, for a fixed but arbitrary t ∈
L, takes Σt as input, is allowed to make queries to MQF,t

and EQF,t (without knowing what the target t to be learned
is), and that eventually halts and outputs some h ∈ L with
μ(h) ∩ S = μ(t) ∩ S. We say that the learning algorithm is
positive bounded if, in addition, μ(h) ⊆ μ(t). We say that F
is exact learnable if there is a learning algorithm for F and
that F is polynomial query learnable if it is exact learnable by
an algorithm A such that at every step the sum of the sizes of
the inputs to membership and equivalence queries made by A
up to that step is bounded by a polynomial p(|t|, |e|), where t
is the target and e ∈ S is the largest counterexample seen so
far (Arias 2004). Similarly, F is polynomial time learnable if
it is exact learnable by an algorithm A such that at every step
(we count each call to an oracle as one step of computation)
of computation the time used by A up to that step is bounded
by a polynomial p(|t|, |e|), where t ∈ L is the target and
e ∈ S is the largest counterexample seen so far. We denote
by PQUERYL and PTIMEL the class of learning frameworks
which are, respectively, polynomial query and polynomial
time learnable. Clearly, PTIMEL ⊆ PQUERYL.
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We now introduce the special case of learning frameworks
which we focus in this work, called OMQA learning frame-
works. Let L, A∗, and Q be, respectively, an ontology lan-
guage, a fixed but arbitrary ABox, and a query language. An
OMQA learning framework F(L,A∗,Q) is a learning frame-
work (E ,S,L, μ) where E is the set of all pairs (A, q) with
A an ABox (may be different from A∗) and q ∈ Q; L is the
set of all TBoxes formulated in L sharing a common finite
signature (we write ΣT to refer to the signature of the target,
which is assumed to be same as the one used for the hypoth-
esis); S is the set of elements (A, q) of E where A = A∗;
and, for all T ∈ L, μ(T ) = {(A, q) ∈ E | (T ,A) |= q}.
We assume that the signature of q, i.e., the set of concept
and role names occurring in q, is ΣT ∪ ΣA. Moreover, we
define the size of an example (A, q), denoted by |(A, q)|, as
the sum of the size of A and q. Given an OMQA learning
framework F(L,A∗,Q) = (E ,S,L, μ), for all H, T ∈ L, if
μ(H) ∩ S = μ(T ) ∩ S, then H, T are Q-inseparable w.r.t.
A∗. Since an equivalence query in an OMQA learning frame-
work with S 
= E is in fact asking whether a given TBox is
query inseparable from the target TBox w.r.t. a fixed ABox
and a query language, we may call it an inseparability query.

Polynomial Learnability

We investigate whether, for a given fixed ABox and query
language, the problem of learning query inseparable ELH
TBoxes is polynomial. We first discuss the relationship be-
tween our OMQA setting and the data retrieval one (Konev,
Ozaki, and Wolter 2016). The difference between the two set-
tings is that here the oracle can only choose counterexamples
of the form (A∗, q), with the fixed ABox A∗ given as input,
whereas in the mentioned work the ABox in a counterex-
ample can be arbitrary. In both settings the learner can pose
membership queries with an arbitrary ABox in the examples.

Formally, given an ontology language L and a query lan-
guage Q, we denote by F(L,Q) the learning framework
(E ,S,L, μ), where E is the set of all pairs (A, q) with A an
ABox and q ∈ Q; L is the set of all TBoxes formulated in L;
E = S; and, for all T ∈ L, μ(T ) = {(A, q) ∈ E | (T ,A) |=
q}. We denote by ELHlhs and ELHrhs the fragments of ELH
which only allow complex concept expressions on the left-
hand side and on the right-hand side of CIs, respectively. It
is known that the learning frameworks F(ELHlhs,AQ) and
F(ELHrhs, IQ) are in PTIMEL, whereas F(ELH, IQ) and
F(ELHrhs,CQ) are not in PQUERYL (Konev, Ozaki, and
Wolter 2016). It follows from our definitions that, for any on-
tology language L, query language Q and ABox A∗, polyno-
mial learnability of F(L,Q) implies polynomial learnability
of F(L,A∗,Q). Thus, the positive results for F(ELHlhs,AQ)
and F(ELHrhs, IQ) hold in the OMQA setting. That is, for
any ABox A∗, the learning frameworks F(ELHlhs,A∗,AQ)
and F(ELHrhs,A∗, IQ) are in PTIMEL.

Proposition 1. For any ontology language L, query lan-
guage Q and ABox A∗, if F(L,Q) is in PTIMEL/ PQUERYL,
then F(L,A∗,Q) is in PTIMEL/ PQUERYL.

In the following, we extend the positive results for ELHlhs

and ELHrhs to the class of ELH terminologies (the union
of ELHlhs and ELHrhs) in the OMQA setting based on IQs.

This is in contrast with the negative result for the class of
ELH terminologies in the data retrieval setting with IQs,
thus, showing that the converse direction of Proposition 1
does not hold. Throughout this section A∗ is a fixed but
arbitrary ABox. We also analyse the learning framework
F(ELHrhs,A∗,CQ), which is also not in PQUERYL in the
OMQA setting.
Learning ELH ontologies with AQ. We argue that the learn-
ing framework F(ELH,A∗,AQ) is in PTIMEL. There are
only polynomially many counterexamples that the oracle can
give since they can only be of the form (A∗, q) with q an
atomic query (using symbols from ΣT ). The set of RIs en-
tailed by T can be learned in polynomial time by adding to
the hypothesis H all RIs r � s such that the membership
oracle replies ‘yes’ given an example ({r(a, b)}, s(a, b)) as
input. Therefore we only need to show that one can compute
concept inclusions that together with A∗ entail precisely the
same atomic queries as the target ontology T on A∗. The
following lemma establishes that indeed one can compute
such concept inclusions in polynomial time.

Lemma 2. Let T and H be resp. the target and the hypothe-
sis (of size polynomial in |T |) terminologies. Given a positive
counterexample (A∗, A(a)), one can compute in polynomial
time in |A∗| and |T | a CI C � B such that (T ,A∗) |= B(b),
(H,A∗) 
|= B(b), and (H ∪ {C � B},A∗) |= B(b), for
some b ∈ ind(A∗). Moreover, T |= C � B.

The main idea for proving Lemma 2 is to transform the
structure of A∗ into a tree shaped structure, as in (Konev,
Ozaki, and Wolter 2016). However, in the mentioned work
only CIs of the form C � A are considered, while in our
case CIs of the form A � C may also be present. With such
CIs the computed tree shaped ABox may be smaller than the
original concept expression in T (as in Example 3).

Example 3. Assume that T = {B � ∃s.B, ∃r.∃s.B � A}
and A = {r(a, b), B(b)}. We have that (T ,A) |= A(a) and
the concept expression ∃r.B encoded in A is smaller than
the original concept expression ∃r.∃s.B in T implying the
concept name A. Intuitively, even though there is no homo-
morphism from A∃r.∃s.B to A, we have that B ‘abbreviates’
∃s.B, because it is implied by B. �

Since there are polynomially many possible counterexam-
ples, our upper bound for AQs follows from Lemma 2.

Theorem 4. F(ELH,A∗,AQ) is in PTIMEL. Moreover,
there is a positive bounded learning algorithm for show-
ing such upper bound which only poses membership queries
(no inseparability queries are needed).

Learning ELH ontologies with IQ. We build on the result
for AQs (Theorem 4) and argue that the learning framework
F(ELH,A∗, IQ) is in PTIMEL. By Theorem 4, CIs of the
form C � A which ensure AQ-inseparability w.r.t. A∗ can be
learned with membership queries. It remains to show how one
can learn CIs of the form A � C, so that H is IQ-inseparable
from T (w.r.t. A∗). By Theorem 4, we can assume that one
can construct a hypothesis H such that T |= H, since there
is a positive bounded learning algorithm. The next lemma
states that if T |= H and (H,A∗) ≡AQ (T ,A∗) then one
can transform a counterexample of the form (A∗, D(a)) into
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a CI such that T |= A � C, and H 
|= A � C, with C a
subconcept of D and A ∈ ΣT such that (H,A∗) |= A(b) for
some b ∈ NI. Since |ΣT | is polynomial in |T | and the number
of subconcepts of D is also polynomial in |D|. One can find
such A � C in polynomial time w.r.t. |T | and |(A∗, D(a))|.
Lemma 5. Let T and H be ELH terminologies and let A∗
be an ABox. Assume (H,A∗) ≡AQ (T ,A∗). If (A∗, D(a)) ∈
μ(T ) \ μ(H) then there is A(b) and a subconcept C of D
such that (H,A∗) |= A(b), T |= A � C, and H 
|= A � C.

Given A � C such that T |= A � C, and H 
|= A � C,
one can compute with polynomially many polynomial size
queries another CI A′ � C ′ entailed by T but not by H
belonging to a class of CIs called T -essential (Konev et al.
2018, Lemma 29). In fact this can be done in polynomial
time given the complexity of entailment checking (Baader,
Lutz, and Brandt 2008) (no inverse roles). Such T -essential
CIs have the property that their size is bounded polynomi-
ally in the size of T (Konev et al. 2018, Lemma 32) and if
α1 = A′ � C1 and α2 = A′ � C2 are T -essential and
not equivalent then one can compute in polynomial time a
T -essential CI A′ � C ′ such that it entails α1 and α2 (Konev
et al. 2018, Lemma 30). All in all, if the learner computes
such T -essential counterexamples and adds/refines them in
the hypothesis (see (Konev et al. 2018, Algorithm 2)) then,
after learning from polynomially many counterexamples, it
will terminate and output a hypothesis IQ-inseparable from
the target (w.r.t. A∗). The presence of CIs of the form C � A
does not affect this result (Duarte, Konev, and Ozaki 2018).
Theorem 6. F(ELH,A∗, IQ) is in PTIMEL.

In contrast, the learning framework F(ELH, IQ) is not in
PQUERYL (Konev, Ozaki, and Wolter 2016). We observe
that the counterexamples used in such hardness proof are
based on an exponential number of ABoxes encoding concept
expressions of the form Cb = �i≤nCi, where b = b1 . . . bn
is a sequence with bi ∈ {0, 1}, Ci = Ai if bi = 1, and
Ci = Bi if bi = 0. In the OMQA setting, the ABox is fixed
and, as stated in Theorem 6, this lowers the complexity.
Learning ELH ontologies with CQ. ELH ontologies are not
polynomial query learnable in the data retrieval setting with
CQs as the query language (in fact not even the fragment
ELHrhs) (Konev, Ozaki, and Wolter 2016). The counterex-
amples used by the oracle in the hardness proof are of the
form ({A(a)}, q) (Konev, Ozaki, and Wolter 2016, proof of
Lemma 8), so {A(a)} can be considered as the fixed ABox
given as part of the input in an OMQA learning framework.
Thus, the mentioned hardness result can be transferred to our
setting. We formalise this result with the next theorem.
Theorem 7. F(ELH,A∗,CQ) is not in PQUERYL.

The hardness proof in the mentioned paper uses a very
simple CQ of the form ∃xM(x), which has a match in the
anonymous part of the model but ‘hides’ the concept on the
right side of a CI that causes the entailment of this query. This
phenomenon makes one wonder whether restricting to the
class of queries in which every variable needs to be reachable
by an individual name (as it happens with IQs) can tame the
complexity of the problem. Our next theorem proves this.

Given a CQ q, we define Gq as the directed graph (V,E)
where the nodes V are the terms of q and the edges E are the

a
x1

x2

x3

x4

x5

r

r

s
s

s
s

→
a x1 x3

r s

Figure 1: Assume T = {A � ∃r.∃s.�}, A∗ = {A(a)}
and H = ∅. A call to EQF,T can output (A∗, ∃�x(r(a, x1) ∧
r(a, x2) ∧ s(x1, x3) ∧ s(x1, x4) ∧ s(x2, x4) ∧ s(x2, x5)),
which can be converted into (A∗, ∃r.∃s.�(a)) by merging
variables and asking MQF,T whether the new query holds.

pairs (t1, t2) such that there is an atom of the form r(t1, t2)
in q. We say that a CQ q = ∃�xϕ(�a, �x) is rooted if for every
x in �x, we have that x is reachable from a node in Gq that is
in �a. We denote by CQr the class of all rooted CQs. The next
lemma establishes that one can transform queries in CQr into
queries in IQ (by posing membership queries).
Lemma 8. Let T and H be ELH TBoxes and assume T
and H entail the same RIs. Given a positive counterexample
(A∗, q) (for T and H), with q ∈ CQr, one can contruct a
positive counterexample (A∗, q

′) with q′ ∈ IQ in polynomial
time in |(A∗, q)||ΣT |.

In Figure 1, it is shown an example of this conversion.
Even though the conversion involves deciding query answer-
ing, which is NP-hard, these checks are on the ‘side’ of the
oracle, and so, they do not affect the complexity of learn-
ing. By Lemma 8 a IQ-inseparable hypothesis can be found
by following the same steps of a learning algorithm for IQ
after q in (A∗, q) is converted into an instance query. For
ELH, if TBoxes entail the same RIs then IQ-inseparability
implies CQr-inseparability. Since RIs can be easily learned
with membership queries, we obtain our next theorem.
Theorem 9. F(ELH,A∗,CQr) is in PTIMEL.

Data Updates

The algorithm presented in the previous section for IQs com-
putes an ontology H that is IQ-inseparable from the target T
w.r.t. a fixed ABox A∗. In this section, we first study when
IQ-inseparability is preserved, without changes to the hy-
pothesis H, if A∗ is updated to an ABox A. Then, given an
OMQA learning framework F(ELH,A∗, IQ) = (E ,S,L, μ),
we determine conditions on an updated ABox A, sufficient
to guarantee that a learning framework (E ,S ′,L, μ) with
S ′ ⊇ S is still in PTIMEL.

To characterise when IQ-inseparability is preserved if A∗
is updated to an ABox A, we use the classical notion of bisim-
ulation. Let I = (ΔI , ·I),J = (ΔJ , ·J ) be two interpreta-
tions. A bisimulation is a non-empty relation Z ⊆ ΔI ×ΔJ

satisfying the following conditions, for all (d, e) ∈ Z: (1)
for all concept names A ∈ NC, d ∈ AI iff e ∈ AJ ; (2) for
all role names r ∈ NR, if (d, d′) ∈ rI , d′ ∈ ΔI , then there
exists e′ ∈ ΔJ such that (e, e′) ∈ rJ and (d′, e′) ∈ Z; (3)
for all role names r ∈ NR, if (e, e′) ∈ rJ , e′ ∈ ΔJ , then
there exists d′ ∈ ΔI such that (d, d′) ∈ rI and (d′, e′) ∈ Z .
If (d, e) ∈ Z , we write (I, d) ∼ (J , e).
Theorem 10. Let T and H be ELH terminologies entailing
the same RIs, and let A∗ and A be ABoxes. If, for all b ∈
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ind(A), there is a ∈ ind(A∗) such that (IA∗ , a) ∼ (IA, b),
then (H,A∗) ≡IQ (T ,A∗) implies (H,A) ≡IQ (T ,A).

Theorem 10 does not hold if we require the ABoxes A∗
and A to be homomorphically equivalent, i.e., if there are
ABox homomorphisms from A∗ to A and from A to A∗.
Example 11. Consider T = {∃r.A1 � B} and A∗ =
{r(a, b), A1(b), A2(b)}. The hypothesis H = {∃r.(A1 �
A2) � B} is IQ-inseparable. However, if A = A∗ ∪
{r(a′, b′), A1(b

′)}, then IQ-inseparability is not preserved,
even though A∗ and A are homomorphically equivalent. �

The problem here is that the left-hand side of CIs in
H could be biased and too specific for the individuals in
A∗. Indeed, in Example 11, if the more general concept
expression ∃r.A1 on the left-side had been learned, then IQ-
inseparability would have been preserved after the update. If
we allow for modifications to the learned hypothesis H, we
can extend the class of updated ABoxes A not only to those
in which every individual in A is bisimilar to an individual
in A∗ but in which a more relaxed condition is required. It
is easy for the learner to make certain kinds of generalisa-
tion, for instance, check whether T |= ∃r.A1 � B and add
such more general CI to H. Therefore, the idea is to suitably
‘generalise’ the left-hand side of CIs in the hypothesis H
computed by the learning algorithm.

Generalisation of C � A ∈ H for T consists of replacing
C by the result C ′ of (1) replacing a concept name B in C
with � or B′ such that T |= B � B′ and T 
|= B′ � B if
T |= C ′ � A; or (2) replacing a role name r in C with s
such that T |= r � s and T 
|= s � r if T |= C ′ � A. We
say that C � A ∈ H is generalised for T if generalization
of C � A ∈ H for T has been exhaustively applied. H is
generalised for T if all the CIs in it are generalised. We may
omit ‘for T ’ if this is clear from the context.

With the following definitions, we define a class of ABoxes
that are guaranteed to preserve IQ-inseparability if the hy-
pothesis is generalised. Given a TBox T and concept names
A,B ∈ ΣT ∩ NC, we say that there is a linear derivation
from A to B if T |= A � B and for all B′ ∈ NC such that
T |= A � B′ we have that T |= B′ � B. Similarly, for
r, s ∈ ΣT ∩ NR, there is a linear derivation from r to s if
T |= r � s and for all s′ ∈ NR such that T |= r � s′ we
have that T |= s′ � s. We write A < A′ if A′ is the result of
replacing A(a) ∈ A by B(a) and there is a linear derivation
from A to B, or if A′ is the result of replacing r(a, b) ∈ A
by s(a, b) and there is a linear derivation from r to s. We
define gT (A∗) as the set of all ABoxes A such that there is a
sequence A1 < . . . < An with A1 = A∗ and An = A.

The following theorem establishes an our upper bound for
learning frameworks extending S with all the examples of
the form (A, q), where A ∈ gT (A∗) and q ∈ IQ.
Theorem 12. Let F be the learning framework that results
from adding all pairs of the form (A, q), with A ∈ gT (A∗)
and q ∈ IQ, to the set S in F(ELH,A∗, IQ) = (E ,S,L, μ),
where T ∈ L. Assume ΣT ⊆ ΣA∗ . Then, F is in PTIMEL.

Learning from Data
The existence of oracles that correctly answer to all the
queries posed by the learner does not naturally fit those set-

tings in which only a direct access to data is available. In this
section, we study how the oracle-based approach presented so
far can be modified so to allow access to examples retrieved
from data, thus reducing the dependency of our learning
model on membership and inseparability queries. Firstly, we
consider a finite batch of examples (Arias, Khardon, and Mal-
oberti 2007), to be used as a representative of the entire data
pool, and study conditions under which it is guaranteed the
existence of such a batch that allows us to learn inseparable
ontologies. Then, we analyse how a data-driven approach
can be used as a basis for a learning model for DL ontolo-
gies based on the well-known PAC learning model, possibly
extended with membership queries (Valiant 1984).
Learning from batch. Given an OMQA learning framework
F(L,A∗,Q) = (E ,S,L, μ), a batch B is a finite subset of E .
One could ask under which conditions a batch that allows
us to construct an ontology H ∈ L which is Q-inseparable
from a target T ∈ L is guaranteed to exist. If no restrictions
are imposed on the form of the examples occurring in B,
the answer is trivial for EL ontologies and IQs. Indeed, for
every C � D ∈ T , consider the set B of examples of the
form (AC , D(ρC)), obtained by representing the concept C
as a labelled tree with root ρC and encoded in the ABox AC .
These examples have the property that, for every T ∈ L,
T |= C � D iff (T ,AC) |= D(ρC). By setting

H = {C � D | (AC , D(ρC)) ∈ B},
we obtain that H is equivalent to (and thus IQ-inseparable,
w.r.t. any ABox, from) T . This construction can be eas-
ily extended to ELH by using examples of the form
({r(a, b)}, s(a, b)). However, instead of allowing the exam-
ples retrieved from our data to have no restrictions in their
size and in the shape of the ABoxes, it would be more natural
to require that these ABoxes contain less information than
A∗, given as a parameter. This intuition can be made precise
by imposing that, for each ABox A in the batch, there is an
ABox homomorphism from A to A∗ and |A| is polynomial
in |T |. Our next theorem states that, under these assumptions,
one can construct a Q-inseparable ELH terminology.
Theorem 13. Let F(ELH,A∗,Q) = (E ,S,L, μ) be an
OMQA learning framework, with Q ∈ {AQ, IQ,CQr}, and
let T ∈ L be such that ΣT ⊆ ΣA∗ . Let X ⊆ E be the
set of examples (A, q) such that there is an ABox homo-
morphism from A to A∗. Then, there is a batch B ⊆ X ,
polynomial in |T |, and an algorithm such that it takes B
as input, it eventually halts, and returns H ∈ L such that
μ(H) ∩ S = μ(T ) ∩ S .
PAC learning. Let F = (E ,S,L, μ) be a learning framework.
A probability distribution D on S is a function D : 2S →
[0, 1] ⊂ R such that D(

⋃
i∈I Xi) =

∑
i∈I D(Xi) for mu-

tually disjoint Xi, where I is a countable set of indices,
Xi ⊆ S, and D(S) = 1. Given a target t ∈ L, let EXD

F,t
be the oracle that takes no input, and outputs a classified
example (e, �t(e)), where e ∈ S is sampled according to the
probability distribution D, �t(e) = 1, if e ∈ μ(t) ∩ S (posi-
tive example), and �t(e) = 0, otherwise (negative example).
An example query is a call to the oracle EXD

F,t. A sample
generated by EXD

F,t is a (multi-)set of indexed classified ex-
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amples, independently and identically distributed according
to D, sampled by calling EXD

F,t. A learning framework F is
PAC learnable if there is a function f : (0, 1)2 → N and a
deterministic algorithm such that, for every ε, δ ∈ (0, 1) ⊂ R,
every probability distribution D on S , and every target t ∈ L,
given a sample of size m ≥ f(ε, δ) generated by EXD

F,t, the
algorithm always halts and outputs h ∈ L such that with
probability at least (1 − δ) over the choice of m examples
in S, we have that D((μ(h) ⊕ μ(t)) ∩ S) ≤ ε. If the time
used by the algorithm is bounded by a polynomial function
p(|t|, |e|, 1/ε, 1/δ), where e is the largest example in the sam-
ple, then we say that F is polynomial time PAC learnable. If,
in addition, the algorithm is allowed to make membership
queries (where each call to MQF,t counts as one step of com-
putation), we say that F is polynomial time PAC learnable
with membership queries.
Theorem 14 ((Angluin 1988), (Mohri, Rostamizadeh, and
Talwalkar 2012)). If F is in PTIMEL, then F is polynomial
time PAC learnable with membership queries.

However, the converse direction of Theorem 14 does not
hold (Blum 1994). The argument in the mentioned paper
is based on the assumption that one-way functions exist
and cannot be easily adapted to serve as a counterexample
for OMQA learning frameworks. Our next result, showing
that the converse direction of Theorem 14 does not hold
in our setting, does not rely on cryptographic assumptions,
however, it is representation-dependent. Given a sequence
σ = σ1σ2 . . . σn, with σi ∈ {r, s}, let the expression ∃σ.C
stand for ∃σ1.∃σ2. . . . .∃σn.C (clearly, there are 2n expres-
sions of this form). Consider the OMQA learning framework
F(L,A∗, Q) where A∗ = {A(a)}; Q is the query language
that extends IQs with a CQ of the form ∃xM(x); and L is
an ontology language allowing only ELHrhs TBoxes of the
form Tσ = {A � ∃σ.M} ∪ T0 to be expressed, where

T0 = {A � X0,M � ∃r.M � ∃s.M} ∪
{Xi � ∃r.Xi+1 � ∃s.Xi+1 | 0 ≤ i < n}.

It can be shown, with an argument similar to the one used
in (Konev, Ozaki, and Wolter 2016, proof of Lemma 8) (and
Theorem 7 above), that such framework is not polynomial
query learnable. However, due to the restrictions on the hy-
pothesis space, it is polynomial time PAC learnable, even
without membership queries.
Theorem 15. There is a polynomial time PAC learnable
OMQA learning framework that is not in PQUERYL.

A learning framework F = (E ,S,L, μ) shatters a set of
examples X ⊆ S if |{μ(h) ∩ X | h ∈ L}| = 2|X |. The
VC-dimension (Vapnik 1995) of F, denoted VC(F), is the
maximal size of a set X ⊆ S such that F shatters X . If F can
shatter arbitrarily large sets then F has infinite VC-dimension.
Example 16. For n ∈ N, let

An
∗ = {r(ai, ai+1), s(ai, ai) | 1 ≤ i < n} ∪ {r(an, a1)}.

Each ai can be identified by Ci = ∃rn−i.∃s.�, since ai 
∈
C

IAn∗
i (∃rk is a shorthand for k nestings of the form ∃r). E.g.,

a1 is the only individual not in (∃r.∃s.�)
IA2∗ (see Figure 2).

a1 a2rs r

Figure 2: For A2
∗, X = {(A∗, A(a1)), (A∗, A(a2))} is shat-

tered because we can find in L: h1 = {∃s.��∃r.∃s.� � A},
h2 = {∃r.∃s.� � A}, h3 = {∃s.� � A}, h4 = h2 ∪ h3.

For all n ∈ N, F(ELH,An
∗ ,AQ) shatters {(An

∗ , A(ai)) |
1 ≤ i ≤ n}. This does not hold if we add s(an, an) to An

∗ . �

For discrete cases, in particular, for fragments of first-order
logic, the lower bounds obtained with the VC-dimension can-
not be larger than the size of the learned expressions assuming
a reasonable encoding scheme (Arias and Khardon 2006).
The authors argue that many VC-dimension bounds in the
literature showing exponential or infinite growth are in terms
of some parameters (number of clauses, etc.) determining the
size of the target, while other parameters (number of literals,
etc.) are ignored. Let Fm = (E ,S,L, μ) be a learning frame-
work where the string size of the elements of L is bounded
by m. Since the VC-dimension is bounded by a logarithm of
|L| (for L finite), VC(Fm) = O(m) (Vapnik 1995).

Proposition 17. For all m ∈ N, Fm(ELH,A∗,CQ) is PAC
learnable with a polynomial number of example queries.

Since the sample complexity (number of classified exam-
ples) is polynomial in the size of the target, polynomial time
PAC learnability amounts to showing that one can compute
a hypothesis in L that is consistent with the classification
of the examples in polynomial time. However, even if A∗ is
fixed, checking whether (A∗, q) is a positive example for a
hypothesis H is NP-hard if the underlying structure of A∗ is
non-bipartite (Hell and Nešetřil 1990). So (unless P = NP)
there is not much hope for polynomial time learnability, even
with membership queries, since in this case one may not be
able to convert the CQ into an IQ (as we did in Theorem 9).

Conclusion

We introduced the OMQA learning setting and investigated
the complexity of learning ELH ontologies in this setting
with various query languages. We then considered what hap-
pens when the data changes and adaptations to settings where
the algorithm learns from classified data, limiting interac-
tions with oracles. Our positive result for IQ-inseparable
ELH TBoxes paves the way for further studies on the com-
plexity of learning ontologies formulated in more expressive
languages. We leave the problem of exactly learning ELH
TBoxes with CQrs as an open problem. Learning with a more
expressive query language is not easier because the oracle
can formulate counterexamples which are not informative.
Neither it is more difficult because on the other hand, with a
more expressive language, the learner can pose more infor-
mative membership queries. It would also be interesting to
investigate a similar data model in which the ABox is fixed
for all the examples, so that the data pool contains examples
in the form of queries alone.
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