The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Explanations for Inconsistency-Tolerant Query Answering under Existential Rules

Thomas Lukasiewicz,! Enrico Malizia,” Cristian Molinaro®
1University of Oxford, UK, 2University of Exeter, UK, 3University of Calabria, Italy
thomas.lukasiewicz @cs.ox.ac.uk, e.malizia@exeter.ac.uk, cmolinaro@dimes.unical.it

Abstract

Querying inconsistent knowledge bases is a problem that has
attracted a great deal of interest over the last decades. While
several semantics of query answering have been proposed,
and their complexity is rather well-understood, little attention
has been paid to the problem of explaining query answers.
Explainability has recently become a prominent problem in
different areas of Al In particular, explaining query answers
allows users to understand not only what is entailed by an
inconsistent knowledge base, but also why. In this paper, we
address the problem of explaining query answers for existen-
tial rules under three popular inconsistency-tolerant semantics,
namely, the ABox repair, the intersection of repairs, and the
intersection of closed repairs semantics. We provide a thor-
ough complexity analysis for a wide range of existential rule
languages and for different complexity measures.

Introduction

Existential rules from the context of Datalog™® and descrip-
tion logics (DLs) are popular ontology languages. In real-
world ontology-based applications, it may very well be the
case that the data are inconsistent with the ontology. To pro-
vide meaningful answers to users’ queries in the presence of
inconsistency, different inconsistency-tolerant semantics of
query answering have been proposed over the years.

One of the most popular is the ABox repair (AR) se-
mantics, first developed for relational databases (Arenas,
Bertossi, and Chomicki 1999) and then generalized for sev-
eral DLs (Lembo et al. 2010). Its basic idea is to consider
a query answer valid if it can be inferred from each of the
repairs of the knowledge base, that is, the inclusion-maximal
consistent subsets of the database.

The intersection of repairs (IAR) (Lembo et al. 2010) and
the intersection of closed repairs (ICR) (Bienvenu 2012)
semantics have been introduced as approximations of the
AR semantics. An answer is considered to be valid under
the IAR (resp., ICR) semantics if it can be inferred from
the intersection of the repairs (resp., the intersection of the
closure of the repairs), along with the ontology. Besides be-
ing natural under-approximations of the AR semantics, they

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2909

come with additional advantages of practical relevance. For
instance, they are amenable to preprocessing, since the inter-
section of the (closed) repairs can be computed offline, and
then standard query answering algorithms can be employed
online. Indeed, the latter approach has been adopted in the
implementation of the IAR semantics (Lembo et al. 2015),
while for the ICR semantics, it has been already remarked
in (Bienvenu and Bourgaux 2016).

While the complexity of the above semantics is rather
well-understood (see, e.g., (Lembo et al. 2010; Bien-
venu 2012; Bienvenu and Rosati 2013; Bienvenu, Bour-
gaux, and Goasdoué 2014; Lembo et al. 2015; Bien-
venu and Bourgaux 2016) for inconsistency-tolerant query
answering in DLs, and, e.g., (Lukasiewicz, Martinez,
and Simari 2012; 2013; Lukasiewicz et al. 2015; Eiter,
Lukasiewicz, and Predoiu 2016; Lukasiewicz, Malizia,
and Molinaro 2018; Lukasiewicz, Malizia, and Vaice-
navicius 2019) for inconsistency-tolerant query answering
under existential rules), less attention has been paid to the
problem of explaining query answers under such semantics.
Explainability has recently become a prominent problem in
different areas of Al In our setting, explaining query answers
allows users to understand not only what is entailed by an
inconsistent knowledge base under a particular semantics,
but also why it is entailed.

In this paper, we study explanations of query entailment
under inconsistency-tolerant semantics in the presence of
existential rules. Although DLs are popular formalisms for
modeling ontologies, it is generally agreed that rule-based on-
tologies are well-suited for data intensive applications, since
they allow us to conveniently deal with higher-arity relations,
which naturally occur in standard relational databases.

Explaining query answers under inconsistency-tolerant se-
mantics has been recently addressed in the literature (Ar-
ioua, Tamani, and Croitoru 2015; Hecham et al. 2017;
Bienvenu, Bourgaux, and Goasdoué 2015; 2016; 2019).
Specifically, Arioua, Tamani, and Croitoru (2015) addressed
the problem of explaining query entailment under the ICR
semantics in the presence of existential rules for which the
Skolemized chase is finite. Their definition of explanation
is based on abstract argumentation. Their approach along
with interactive explanation methods based on dialectical

approaches has been experimentally evaluated by Hecham
et al. (2017). In this paper, we also consider the AR and
IAR semantics for several classes of existential rules (includ-
ing classes for which the chase may not terminate, such as
guarded and sticky existential rules), and provide a thorough
complexity analysis under different complexity measures.

Bienvenu, Bourgaux, and Goasdoué (2015; 2016; 2019)
considered the lightweight description logic DL-Lite . They
defined explanations for positive and negative answers under
the brave, AR, and IAR semantics, and investigated the data
complexity of different related problems. In this paper, in con-
trast, we consider a different formalism based on existential
rules, define explanations under the ICR semantics, and carry
out a complexity analysis also under the combined, bounded-
arity-combined, and fixed-program-combined complexities,
besides the data complexity.

Ceylan et al. (2019) studied the problem of explaining
query answers under existential rules, restricting to consistent
knowledge bases (consisting only of TGDs).

The contribution of this paper is a thorough complexity
analysis for query explanations under the AR, IAR, and ICR
semantics (as customary, we will focus on the decision variant
of the problem), for a wide spectrum of Datalog® languages,
and under the data, fixed-program-combined, bounded-arity-
combined, and combined complexity measures.

Preliminaries

In this section, we briefly recall some basics on existen-
tial rules from the context of Datalogi (Cali, Gottlob, and
Lukasiewicz 2012).

General. We assume a set C of constants, a set N of la-
beled nulls, and a set V of variables. A term t is a con-
stant, null, or variable. We also assume a set of predicates,
each associated with an arity, i.e., a non-negative integer.
An atom has the form p(tq,...,t,), where p is an n-ary
predicate, and ¢4, . .., t,, are terms. An atom containing only
constants is also called a fact. Conjunctions of atoms are
often identified with the sets of their atoms. An instance 1
is a (possibly infinite) set of atoms p(t), where t is a tuple
of constants and nulls. A database D is a finite instance
that contains only constants. A homomorphism is a substitu-
tionh: CUNUYV — CUNUYV that is the identity on C
and maps N to CUN. With a slight abuse of notation, homo-
morphisms are applied also to (sets/conjunctions of) atoms.
A conjunctive query (CQ) ¢ has the form IY ¢(X,Y), where
¢(X,Y) is a conjunction of atoms without nulls. The answer
to ¢ over an instance I, denoted ¢(I), is the set of all tuples
t over C for which there is a homomorphism h such that
h(#(X,Y)) C I and h(X) =t. A Boolean CQ (BCQ) ¢ is
aCQ IY¢(Y), i.e., all variables are existentially quantified;
q is true over I, denoted I = g, if q(I) # (), i.e., there is a
homomorphism h with h(¢(Y)) C I.

Dependencies. A tuple-generating dependency (TGD) o is
a first-order formula VXVY ¢(X,Y) — 3Z p(X, Z), where
X, Y, and Z are pairwise disjoint sets of variables, p(X,Y)
is a conjunction of atoms, and p(X, Z) is an atom, all without
nulls; ¢(X,Y) is the body of o, denoted body (o), while

2910

p(X, Z) is the head of o, denoted head (o). For clarity, we
consider single-atom-head TGDs; however, our results extend
to TGDs with a conjunction of atoms in the head. An instance
I satisfies o, written I |= o, if the following holds: whenever
there exists a homomorphism h such that h(¢(X,Y)) C I,
then there exists i’ O h|x, where h|x is the restriction of i
on X, such that &' (p(X, Z)) € I. A negative constraint (NC)
v is a first-order formula VX p(X) — L, where X C 'V,
©(X) is a conjunction of atoms without nulls, called the body
of v and denoted body(v), and L denotes the truth constant
false. An instance [satisfies v, written I |= v, if there is no
homomorphism A such that h(¢(X)) C I. Given a set X of
TGDs and NCs, I satisfies %, written I = %, if I satisfies
each TGD and NC of Y. For brevity, we omit the universal
quantifiers in front of TGDs and NCs, and use the comma
(instead of A) for conjoining atoms. Given a class of TGDs
C, we denote by C the formalism obtained by combining
C with arbitrary NCs. Finite sets of TGDs and NCs are also
called programs, and TGDs are also called existential rules.

Knowledge Bases. A knowledge base is a pair (D, Y),
where D is a database, and ¥ is a program. For pro-
grams Y, X7 and X ¢ are the subsets of X containing
the TGDs and NCs of 3, respectively. The set of mod-
els of KB=(D,Y), denoted mods(KB), is the set of in-
stances {I | I O D AT | X}. We say that KB is con-
sistent if mods(KB) # 0, otherwise KB is inconsistent.
The answer to a CQ q relative to KB is the set of tuples
ans(q, KB) = N{q(I) | I € mods(KB)}. The answer to a
BCQ q is true, denoted KB k= g, if ans(q, KB) # (). The
decision version of the CQ answering problem is: given a
knowledge base KB, a CQ ¢, and a tuple of constants t, de-
cide whether t € ans(q, KB). Since CQ answering can be
reduced in LOGSPACE to BCQ answering, we focus on BCQs.
Following Vardi (1982), the combined complexity of BCQ an-
swering considers the database, the set of dependencies, and
the query as part of the input. The bounded-arity-combined
(or ba-combined) complexity assumes that the arity of the
underlying schema is bounded by an integer constant. The
fixed-program-combined (or fp-combined) complexity consid-
ers the sets of TGDs and NCs as fixed; the data complexity
also assumes the query fixed.

The Datalog® languages that we consider to guarantee
decidability are among the most frequently analyzed in the
literature, namely, linear (L) (Cali, Gottlob, and Lukasiewicz
2012), guarded (G) (Cali, Gottlob, and Kifer 2013), sticky
(S) (Cali, Gottlob, and Pieris 2012), and acyclic TGDs (A),
along with the “weak” (proper) generalizations weakly sticky
(WS) (Cali, Gottlob, and Pieris 2012) and weakly acyclic
TGDs (WA) (Fagin et al. 2005), as well as their “full” (i.e.,
existential-free) proper restrictions linear full (LF), guarded
full (GF), sticky full (SF), and acyclic full TGDs (AF), re-
spectively, and full TGDs (F) in general. We also recall the
following further inclusions: L € G and F C WA C WS.

We refer to (Eiter, Lukasiewicz, and Predoiu 2016) for a
more detailed overview. Table 1 recalls complexity results of
BCQ answering for the above languages, which are used in
the complexity analysis done in this paper.

Complexity Classes. We briefly recall the complexity
classes that we encounter. The complexity class AC is the
class of all decision problems that can be solved by uniform
families of Boolean circuits of polynomial size and constant
depth. PSPACE (resp., P, EXP, 2EXP) is the class of all prob-
lems that can be decided in polynomial space (resp., polyno-
mial time, exponential time, double exponential time) on a
deterministic Turing machine. NP and NEXP are the classes of
all problems that are decidable in polynomial and exponential
time on a nondeterministic Turing machine, respectively, and
co-NP and co-NEXP are their complementary classes, where
‘yes” and ‘no’ instances are interchanged. PN*** is the class
of all problems that are decidable in deterministic polyno-
mial time using a NEXP oracle. The class XF is the class of
all problems that can be decided in nondeterministic poly-
nomial time using an NP oracle, and 11} is the complement
of 5. The class D’ = NP A co-NP (resp., D = X5 A 1I5)
is the class of all problems that are the conjunction of a
problem in NP (resp., ¥5) and a problem in co-NP (resp.,
I1%). The above complexity classes and their inclusion rela-
tionships (which are all currently believed to be strict) are:
AcY C P C NP,co-NP C D" C X8 1T} C D5 C PSPACE C
EXP C NEXP, co-NEXp C PNE*P C 2EXP.
Inconsistency-Tolerant Semantics for Query Answering.
We now recall three prominent inconsistency-tolerant se-
mantics for ontology-based query answering under exis-
tential rules (Lukasiewicz, Malizia, and Molinaro 2018),
namely, the ABox repair (AR) semantics, its approxima-
tion by the intersection of repairs (IAR), and the intersec-
tion of closed repairs (ICR) semantics (Lembo et al. 2010;
Bienvenu 2012); all three are based on the notion of repair,
which is a maximal consistent subset of the given database.

Let KB=(D,Y) be a knowledge base. A repair of
KB is an inclusion-maximal subset R of D such that
mods((R,%)) # (). We use Rep(KB) to denote the set of
all repairs of KB. The closure Cn(KB) of KB is the set of
all atoms without variables, built from constants in D and X,
entailed by D and the TGDs of 3. Let ¢ be a BCQ.

e KB entails ¢ under the ABox repair (A R) semantics if, for
all R € Rep(KB), itholds that (R, Y) = q.

e KB entails g under the intersection of repairs (IAR) se-
mantics if (D;,X) = ¢, where Dy = (\{R | R €
Rep(KB)}.

e KB entails g under the intersection of closed repairs (ICR)
semantics if (D¢,) | g, where Do = ({Cn((R, X)) |
R € Rep(KB)}.

We refer to (Lukasiewicz et al. 2015) and (Lukasiewicz,
Malizia, and Molinaro 2018) for an overview of the complex-
ity of AR- and IAR-/ICR-query answering, respectively, for
different existential rule languages and complexity measures.

Explanations for Query Answers

In this section, we introduce the notions of explanations and
minimal explanations, both under standard BCQ answering
and under the AR, IAR, and ICR semantics. In the rest of this
section, KB is a knowledge base (D,), and ¢ is a BCQ.

2911

Data fp-comb. ba-comb. Comb.

L, LF, AF in Ac® NP NP PSPACE
S,SF inac? NP NP EXP
A in AC? NP NEXP NEXP
G P NP EXP 2EXP
F, GF p NP NP EXP
WS, WA p NP 2EXP 2EXP

Table 1: Complexity of BCQ answering (Lukasiewicz et al.
2015). All non-“in” entries are completeness results.

An explanation for ¢ w.r.t. KB is a subset EY of D such
that (E, X) is consistent and (E, X)) = ¢q. A minimal expla-
nation E, or MinEx, for ¢ w.r.t. KB is an explanation for ¢
w.r.t. KB that is inclusion-minimal, i.e., there isno £’ C F
that is an explanation for ¢ w.r.t. KB.! Unlike the definition
of (minimal) explanations provided by Ceylan et al. (2019),
we require a (minimal) explanation to be consistent, because
in our setting the knowledge base can be inconsistent.

We now introduce the notions of explanation and minimal
explanation under the AR, TAR, and ICR semantics.

Definition 1. An A R-explanation for ¢ w.r.t. KB is a set of
explanations £ = {FEy,..., E,} for ¢ w.r.t. KB such that
every repair of KB contains some F;.

An IAR-explanation for ¢ w.r.t. KB is a singleton set of
explanations £ = {E'} for ¢ w.r.t. KB such that £ C R for
every repair R € Rep(KB).

An ICR-explanation for ¢ w.r.t. KB is a set of explana-
tions &€ = {En,..., E,} for ¢ w.r.t. KB such that (i) every
repair of KB contains some FE; and (ii) (Ec, X) = g, where

In the previous definition, an IAR-explanation could be
analogously defined simply as an explanation F for ¢ w.r.t.
KB such that F is included in every repair of KB, rather
than modeling it as the singleton set { E'}. We chose the latter
to treat all the three types of explanations in a uniform way
(i.e., as sets of sets of facts) and thus ease presentation.

Definition 2. For any S € {AR,IAR, ICR}, an S-expla-
nation £ = {Fy,..., E,} for ¢ wr.t. KB is an S-minimal
explanation, or S-MinEx, if every F; € £ is a MinEx for ¢
w.r.t. KB,andno £ C & is an S-explanation for ¢ w.r.t. KB.

Intuitively, S-minimal explanations are succinct sum-
maries: besides explaining why a query is entailed under
a particular inconsistency-tolerant semantics, they do not
contain more information than actually needed for entailing
the query. We point out that our definitions of AR-minimal
and IAR-minimal explanations are equivalent to positive ex-
planations under the AR and TAR semantics of (Bienvenu,
Bourgaux, and Goasdoué 2016; 2019).

Example 3. Consider the database
D = {Prof (p, cs), Postdoc(p, math), Group(g)},

"Note that the concept of minimal explanations in this paper is
equivalent to the concept of causes in (Bienvenu, Bourgaux, and
Goasdoué 2016; 2019).

asserting that p is a professor working in the cs department,
p is a postdoc working in the math department, and ¢ is a
research group. Consider also the program . consisting of
the following dependencies:

Prof (X,Y) — Researcher(X),
Postdoc(X,Y) — Researcher(X),
Prof (X,Y) — Dept(Y),
Postdoc(X,Y) — Dept(Y),

Prof (X,Y), Postdoc(X,Z) — L,

expressing that Prof and Postdoc have Researcher as do-
main and Dept as range, and one cannot be both a professor
and a postdoc.

It is easy to see that the knowledge base KB = (D, Y) is
inconsistent, since p violates the negative constraint.

The knowledge base admits the following two repairs:

D' = {Prof(p,cs), Group(g)},
D" = {Postdoc(p, math), Group(g)}.

Notice that the intersection of the two repairs is Dy
{Group(g)}, while the intersection of their closures is Do =
{Group(g), Researcher(p)}.

The Boolean query 3X Group(X) is entailed by KB un-
der the TAR (and thus also under the ICR and AR) semantics.
The set {{ Group(g)}} is an IAR-minimal (as well as ICR-
and AR-minimal) explanation for the query w.r.t. KB. Indeed,
Group(g) is the fact in D; that entails the query.

The Boolean query 3X Researcher(X) is entailed by
KB under the ICR (and thus also under the AR) se-
mantics, but not under the IAR semantics. The set
{{Prof (p, cs)}, { Postdoc(p, math)}} is an ICR-minimal
(as well as AR-minimal) explanation for the query w.r.t.
KB. Indeed, Researcher(p) is the fact in D¢ that entails
the query, and the reason why Researcher(p) belongs to
the closures of D’ and D" are the facts Prof(p,cs) and
Postdoc(p, math) of D" and D", respectively.

The Boolean query 3X Dept(X) is entailed by KB only
under the AR semantics. An AR-minimal explanation for the
query w.r.t. KB is {{Prof (p, cs)}, {Postdoc(p, math)}}.
Indeed, Prof(p,cs) is the fact of D’ entailing the query,
while Postdoc(p, math) is the fact of D" entailing the query.

We point out that a natural decision counterpart of the prob-
lem of computing S-minimal explanations is deciding the
existence of an S-minimal explanation. Such explanation ex-
ists iff the query is entailed under the S semantics, and hence
the complexity of deciding the existence of an S-minimal
explanation equals the complexity of inconsistency-tolerant
reasoning, which has already been investigated in the
literature. Thus, in this paper, we focus on the following
decision problems: deciding whether a set of sets of facts is
an S-MinEx for ¢ w.r.t. KB, foreach S € {AR, IAR, ICR}.

Problem: S-MinEx, with S € {AR, IAR, ICR).

Input: A knowledge base KB = (D,Y), a BCQ ¢, and
&€ C P(D), with P(D) being the powerset of D.

Question: Is £ an S-MinEx for ¢ w.r.t. KB?

By the inconsistency-tolerant semantics definitions, if KB
entails ¢ under the ICR (resp., IAR) semantics, then KB

2912

entails ¢ also under the AR (resp., ICR) semantics. Thus,
a natural property is that an ICR (resp., IAR)-explanation
should be also an AR (resp., ICR)-explanation (for the same
query and knowledge base), and the same should hold when
talking of minimal explanations. The following lemma states
that this property is indeed enjoyed by our definitions of
S-(minimal) explanations.

Lemma 4. An ICR-(minimal) explanation for g w.r.t. KB is
also an A R-(minimal) explanation for q w.r.t. KB.

An IAR-(minimal) explanation for q w.r.t. KB is also an
ICR-(minimal) explanation for q w.r.t. KB.

Overview of Complexity Results

We give a precise picture of the complexity of S-MinEXx, for
each S € {AR,IAR, ICR}. An overview of the results is
reported in Table 2 (AR and ICR semantics) and Table 3
(IAR semantics). Our results range from membership in P to
2EXP-completeness.

An interesting question is whether the complexity drops
when moving from the AR semantics to the IAR and ICR
semantics. Unfortunately, this is not the case for ICR, as the
complexity of ICR-MinEx and AR-MinEx is the same in all
cases. In contrast, the IAR semantics offers some computa-
tional benefits. In the data complexity, there is a decrease
in complexity for all languages. Specifically, the complex-
ity decreases from DP-completeness to membership in P for
linear, sticky, and acyclic existential rules (as well as their
sublanguages), and to co-NP-completeness for the remaining
languages. In the ba-combined complexity, there is a decrease
in complexity only for linear, sticky, and full existential rules
(and their sublanguages), with the complexity going from D5-
to II5-completeness. The complexity of IAR-MinEx remains
the same as that of AR-MinEx for all fragments of existential
rules in the fp-combined and combined complexities.

Another question is whether explaining query answering in
the presence of inconsistency increases the complexity w.r.t.
the consistent case, which was studied by Ceylan et al. (2019).
Table 4 recalls complexity results for the [S-MINEX problem,
that is, deciding whether a subset of the database is a MinEx
for a query w.r.t. a knowledge base—notice that the languages
reported in Table 4 do not include negative constraints, as the
problem concerns consistent knowledge bases.

As expected, each semantics incurs an increase of com-
plexity in some cases, even though there are cases where the
complexity remains the same as in the consistent case.

More specifically, in the data complexity, moving from the
consistent case to the IAR semantics, the complexity goes
from P-completeness to co-NP-completeness only for guarded
full existential rules and their generalizations (G, F, WS,
and WA |). When we move to the AR or ICR semantics, the
complexity increases for all languages to DP-completeness.

In the ba-combined complexity, when moving from
Is-MINEX to TAR-MinEXx (resp., AR- and ICR-MinEXx), there
is an increase of complexity from D”-completeness to II5-
completeness (resp., D5-completeness) for linear, full, and
sticky existential rules, and their sublanguages.

For acyclic existential rules, all the three inconsistency-
tolerant semantics increase the ba-combined and combined

Data fp-comb. ba-comb. Comb.

L,,LF,,AF DP D” D} PSPACE
S,,SF, Df D° D} EXP
AJ_ DP DP PNEXP PNEXP
G, D? D EXP 2EXP
Fi,GFL Df D° D} EXP
WS, WA, DP D 2EXP 2EXP

Table 2: Complexity of AR- and ICR-MinEx. All entries are
completeness results. Hardness results in the data and fp-
combined complexity also follow from (Bienvenu, Bourgaux,
and Goasdoué 2019).

Data fp-comb. ba-comb. Comb.

L,,LF,, AF @n P D 115 PSPACE
Si.SF, inP DF I EXP
AJ_ in P DP PNEXP PNEXP
G, CO-NP D EXP 2EXP
F,..GF, cO-NP D I8 EXP
WS |, WA | CO-NP D 2EXP 2EXP

Table 3: Complexity of IAR-MinEx. All entries without “in”
are completeness results.

DEXP PNEXP

complexities from -completeness to -completeness.

In all the remaining cases, the complexity of the consistent
and inconsistent cases is the same.

Deciding whether £ is an S-MinEx involves checking
whether £ is an S-explanation and checking whether & is
minimal as per Definition 2. The former problem is some-
how related to the query answering problem under the S
semantics (because we need to check whether £ witnesses
entailment under the .S semantics), while the latter is related
to the IS-MINEX problem (because it in turn requires check-
ing if each element of £ is a MinEx). Since, as discussed
above, the complexity of S-MinEXx is always at least that of
Is-MINEX, an interesting question is: when the complexity
of query answering under the S’ semantics is greater than that
of IS-MINEX, does the complexity of S-MinEx get to that of
query answering under the S semantics? The answer is that
this is not always the case. For example, in the fp-combined
complexity, IS-MINEX and ICR reasoning are D”-complete
and ©F-complete, respectively, in all the Datalog® languages
considered. Nonetheless, ICR-MinEx is D-complete. Intu-
itively, the reason is that checking whether £ witnesses entail-
ment is somehow easier than checking whether entailment
holds, because £ is given, and thus we do not need to look
for something witnessing entailment.

Complexity Analysis

In this section, we first discuss membership results and then
hardness results.

Membership Results

The following theorem proves all the upper bounds in Table 2
for the AR semantics and in Table 3, but the ones in the fp-

2913

Data fp-comb. ba-comb. Comb.

L,LF, AF inP DP D? PSPACE
S, SF inP D D EXP
A inP DP DEXP DEXP
G P D EXP 2EXP
F, GF P DF DP EXP
WS, WA P D 2EXP 2EXP

Table 4: Complexity of IS-MINEX (Ceylan et al. 2019). All
non-“in” entries are completeness results.

combined complexity and the P results in Table 3, for which
we need tighter statements.

Theorem 5. Let L be one of the Datalog™ languages of this
paper. If BCQ answering from knowledge bases over L is
in C, then AR-/IAR-MinEx can be answered by the follow-
ing sequence of checks:

(a) a co-(NPC) check,
(b) (only for AR-MinEx) an NP check,

(c) (only for AR-MinEx) a linear number of C checks/
(only for IAR-MinEx) a C check, and

(d) a linear number of co-C checks.

Proof sketch. Verifying that £ is an S-MinEx for ¢ w.r.t. KB
requires checking the following conditions (we recall that for
IAR-MinEx & = {E}): (1) verify that all E; € £ are MinExs
of ¢ w.r.t. KB (which implies verifying that: (1a) all E; € £
are consistent; (1b) all E; € £ entail ¢; and (I¢) all E; € £
are minimal); (2) verify that all the repairs are “covered” by
&, i.e., for each repair R there is a MinEx E; € & such that
R D E;; and (3) (only for AR-MinEXx) verify that the “cover
by £ is minimal”, i.e., there is no &’ C & that “covers” all the
repairs (for IAR-MinEx, we simply check that |€| = 1).

We start by checking conditions (2) and (3), which give
rise to the checks (a) and (b) in the statement, respectively.
Checking these conditions at the beginning ensures that all
E; € & are consistent (condition (1a)), and hence the subse-
quent checks of conditions (1b) and (1c) will be meaningful.

The complement of condition (2) is in NPC: an NP machine
M guesses a set R C D such that, forall E; € £, R 2 E;.
Then, via oracle calls in C, M checks that R is a repair.

(Only for AR-MinEx) Condition (3) is in NP€: minimality
of £ is proven by showing the “criticality” in £ of all E; € &,
i.e., that there is a repair R; such that R; O F; and R; 2 E;,
for all j # i (see the notion of “critical vertex” in minimal
transversals, Gottlob and Malizia 2014; 2018). Hence, an NP
machine, for each F; € £, guesses aset F/; C R; C D, then,
it checks that R; 2 Ej; for all j # 4, and via oracle calls in
C, R; is checked to be a repair.

Checking conditions (1b) and (1c) give rise to checks (c)
and (d) in the statement, respectively. To check (1b), with
|€|-many checks in C, one for each E; € £, we check that
all E; € £ entail the query. Condition (1c) can be verified by
a linear number of checks in co-C: for each set E; € £, we
remove each single fact in F; in turn, and verify with a check
in co-C that the set obtained does not entail the query. [

The following theorem proves all the upper-bounds in
Table 2 for the ICR semantics in the data, ba-combined, and
combined complexities. The fp-combined setting requires a
tighter statement. The basic idea of the proof of this result is
as follows. Verifying that a set € = {F1, ..., F,} is an ICR-
MinEx for a query w.r.t. a knowledge base requires to check
conditions (1), (2), and (3) in the proof of Theorem 5, and
the additional condition that the intersection of the closure of
all the F;’s has to entail the query. Verifying the latter can be
reduced to ICR reasoning over a suitable knowledge base.

Theorem 6. Let L be one of the Datalog*® languages of
this paper. If BCQ answering (resp., inconsistency-tolerant
BCQ answering under the ICR semantics) from knowledge
bases over L is in C (resp., in D), then ICR-MinEx can be
answered by the following sequence of checks:

(a) a co-(NPC) check,

(b) an NP check,

(¢) a D check, and

(d) a linear number of co-C checks.

The following theorem proves the fp-combined complexity
upper-bounds in Tables 2 and 3. The result is obtained from
the proofs of Theorems 5 and 6 with two additional remarks.
First, in the fp-combined setting, for the Datalog™ languages
considered, checking whether a set of facts is a repair is in P.
Second, for the ICR case, we also need to notice that, in the
fp-combined setting, checking whether the intersection of
the closure of the I;’s entails the query is in NP.

Theorem 7. AR-/IAR-/ICR-MinEx is in D' in the fp-
combined complexity for the Datalog* languages of this
paper.

The following theorem proves the P upper-bounds in Ta-
ble 3. A key observation is that the intersection of the repairs

in the stated fragments is computable in polynomial time
(Lukasiewicz, Martinez, and Simari 2012; 2013).

Theorem 8. [AR-MinEx from knowledge bases over L,
AL, and S isin P in the data complexity.

Hardness Results

The hardness results not explicitly proven in this section
follow from the hardness of deciding whether a set of facts is
a MinEx over consistent KBs (Ceylan et al. 2019).

The two following theorems provide the co-NP-hardness
and the II5-hardness results in Table 3, respectively. For
the first, we use a reduction from the problem of deciding
the unsatisfiability of a 3CNF Boolean formula ¢(X), and
for the second, a reduction from the problem of deciding
the validity of a quantified Boolean formula VX3Y ¢(X,Y),
where ¢(X,Y") is in 3CNF. The idea at the base of the reduc-
tions is to employ the repairs to encode assignments to the
Boolean variables X, and then check whether the formulas
¢(X) and ¢(X,Y) are satisfied and satisfiable, respectively,
in the given repair. The two constructions are considerably
different, because the first result is in the data complexity and
hence the program must be independent from ¢(X), while
in the second we can encode the satisfiability of ¢(X,Y") in
the TGDs of the program. The second reduction is a simplifi-
cation of the one in the proof of Theorem 13.

2914

Theorem 9. [AR-MinEx from knowledge bases over GF |
is co-NP-hard in the data complexity.

Theorem 10. A R-MinEx from knowledge bases over LF |,
AF |, and SF | is 1I5-hard in the ba-combined complexity.

The following theorem provides the PN**"-hardness results
in Tables 2 and 3. The result can be shown via a reduction
from the problem ETP defined by Eiter, Lukasiewicz, and
Predoiu (2016): given a triple (m, TPy, TP5), where m is a
number in unary, and 7Py and TP are two tiling problems
for the exponential square 2" x 2™, decide whether, for all
initial tiling conditions w of length m, T'P; has no solution
with w or TP has a solution with w. The idea of the reduc-
tion is to have the various repairs encoding the possible initial
tiling conditions. Then, there are rules that allow to derive
the query if T'P; has no solution with the initial condition w
encoded in the repair or T'P5 has a solution with w.
Theorem 11. For any S € {AR,IAR,ICR}, S-MinEx
from knowledge bases over A is PN***-hard in the ba-
combined complexity.

The following theorem provides the DP-hardness results
in Table 2. The results are obtained via a reduction from the
DP-complete problem MINIMAL UNSATISFIABILITY (Pa-
padimitriou and Wolfe 1988): given a Boolean formula ¢,
decide whether ¢ is minimally unsatisfiable, which means
decide whether ¢ is unsatisfiable, and removing any clause
from ¢ makes the formula satisfiable.

In this case, a repair encodes an assignment for ¢. We
devise a reduction in which the candidate AR-/ICR-MinEx
contains MinExs F; encoding ways of not satisfying the
clauses of ¢. The various E; cover all the repairs if ¢ is un-
satisfiable, and they are also minimal if removing any clause
from ¢ makes the formula satisfiable. We point out that an al-
ternative proof can be obtained by translating the knowledge
base used in the reduction of the proof of Proposition 5.12
in (Bienvenu, Bourgaux, and Goasdoué 2019) to existential
rule languages.

Theorem 12. For S € {AR,ICR}, S-MinEx from knowl-
edge bases over LF |, AF |, and SF | is D"-hard in the data
complexity.

The theorem below provides the D5-hardness in Table 2.

Theorem 13. For S € {AR,ICR}, S-MinEx from knowl-
edge bases over LF |, AF |, and SF |, is D5-hard in the ba-
combined complexity.

Proof sketch. We reduce to S-MinEx, with S € {AR, ICR}
the D5-hard problem QBFQC: {,V) oA QBFg];,V F. given two
quantified Boolean formulas & IXVY-¢(X,Y) and
U = VXIYY(X,Y), decide whether & and U are valid.
The D5-hardness holds even if ¢ and v are in 3CNF.

From an instance (®, ¥) of QBFgIVVfi A QBFQCZJEVF, we
build the following instance (KB=(D,X),q,&) of S-
MinEx. Arguing similarly as in the proof of Theorem 3.9
in (Lukasiewicz and Malizia 2017), we can assume w.l.o.g.
that the variables X and Y of ® and ¥ are the same.

From (®, ¥), we build the database D as follows. For each
variable z; € X, in D, there are facts:

Va’l('riaf) Va’l(xia t)7

where z;, f, and ¢ are constants representing the variables
in X and the Boolean values false and true, respectively.

There are facts in D that are used to impose the consistency
of the truth assignments to the literals:

SimLit(f,f) OppLit(f,t) SimLit(t,t) OppLit(t,f).

The predicate SimLit(-, -) will be used to impose that when a
variable appears twice as a positive or a negative literal in two
different places in the formulas, then the two literals must
have the same truth value. On the other hand, the predicate
OppLit(-,-) will be used to impose that when a variable
appears as a positive literal in one place in the formula and
as a negative literal in another place of the formula, then the
two literals must have different truth values.

There are facts in D that are used to select possible ways
of satisfying the clauses in the formulas:

ClSat(f,t,t) ClSat(t,t,t) ClSat(t,f,t)
ClSat(f,t,f) CilSat(t,t,f) ClSat(t,f,[).

ClSat(f,f,t)

The predicate ClSat(-,-,-) states what truth assignments to
the literals (and not to the variables) satisfy a clause.

SimLit, OppLit, and ClSat, are the structural facts, and
we denote by D? the sets of structural facts of D.

To conclude, the following atoms are part of D: Sat?(),
NonSat®(), Sat?(), Saty (), and NonSat? ().

We now describe the rules >. We start with the NCs, and
then show the TGDs. The NCs’ aim is to verify the validity of
® and U. An NC selects in a repair a meaningful assignment
to the variables X, and other NCs encode the formulas.

The first NC above mentioned is as follows:

Val(X, f), Val(X,t) — L.

The NCs encoding the formulas are built by various pieces.
Some of these NCs check the validity of ®, while others the
validity of W. These NCs can be told apart by the superscript
¢ and 1), for formulas ® and W, respectively, used in some
predicates. We now describe these various pieces. A first
piece checks the presence of all the structural facts in a repair:

Config = /\ p(c).
p(e)eD™
A second piece “reads” onto the variables 7; the assign-
ment on the variables in X encoded in the repair:

n
AssignX = /\ Val(x;, T;).

i=1

Below, we use this notation: Zﬁk (resp., fﬁk) is the k1
literal in the j clause of formula ¢(X,Y) (resp., ¥(X,Y)),
and vjq.i & (resp., v;/fk) is the variable of Eﬁ & (resp., K?j o)

A third piece “copies” the assignment of each variable x;
onto a positive occurrence of x; in ¢(X,Y) and (X, Y):

Copy® = /\ SimLit(T;, T5Y,),
i=1
where the superscript « is one among {¢,t¢}, and in

each predicate SimLit(T}", T}Y,), 1% is a variable for the

2915

Boolean value of the literal Eﬁ x = T (resp., ﬁgf e = Tj)in
$(X,Y) (resp.. (X, Y)),

A fourth piece forces the values f and ¢ assigned to the
variables 77, , simulating the assignments to the literals to be
consistent. Below, E?k ~ ﬂ;‘, » means that literals 6?‘ i and
(5, 1 are both positive or negative, while £5'; 74 (7, ,, means
that one literal is positive and the other is negative.

A

V(15 1)
[-’
s.t. ”_j,k*”j/,k//\

Consist® = SimLit (T3, Ty)

a a
AT
Za,k Z]’,k’

N

V8)
& _a
SL VG =05 g A
(o3 [e3
G R PG g

OppLit(Tﬁk, Tjof,k,)7

where the superscript « is a one among {¢, ¢}, and TP isa

variable with the same meaning as above.
A last piece checks ¢(X,Y) and ¢)(X,Y)’s satisfiability:

Satisfied® = |\ CISat(Tyy, 7, Tf),
j=1
where the superscript « is one among {¢, ¥ }.
We can now state the NCs. The NCs for ® are:

Config, AssignX, C’opyd’7 Consist?,
Satisfied?, NonSat®() — L

Config, AssignX , NonSat®(), Sat®() — L.

The NCs for ¥ are:
Config, AssignX, Copy¢, Consist?,
Satisfied? , NonSat¥ () — L
Config, AssignX , NonSat® 0, Satqlb)—L
Config, AssignX , NonSat¥ (), Satép () — L.

A last NC is:
Config, AssignX , NonSat®(), Satg() — L.
The TGDs are:

NonSat®() — Auz() Sat¥ () — Auz(),

which are linear (and hence guarded), acyclic, sticky, and full.
The query is ¢ = Sat? (), Auz(). To conclude, the explana-
tion is: & = {Ey, By}, where By = {Sat? (), Saty ()} and
Ey = {Sat¥ (), NonSat®()}. It can be shown that (&, ¥) is
a ‘yes’-instance iff £ is a “minimal cover” of the repairs. [

Summary and Outlook

We have presented a complexity analysis of the problem of ex-
plaining query answering under three popular inconsistency-
tolerant semantics, for a wide range of existential rules, and
under different complexity measures. Explanations are a suc-
cinct summary why certain query answers hold. In some
scenarios, the existential rules used to derive query answers
from the explanation may be useful as well. Furthermore, vi-
sualization techniques may help to present all this in a more

illustrative way to users. Also, explanations may not neces-
sarily be intended to users only, but also be used by Al and
domain experts to develop, verify, and debug Al systems.

This paper opens up several interesting avenues for further
research. An interesting problem is to analyze the complexity
of other related problems, such as deciding whether a fact is
necessary (i.e., belonging to every S-minimal explanation)
or relevant (i.e., belonging to at least one S-minimal explana-
tion), as done by Bienvenu, Bourgaux, and Goasdoué (2016;
2019) for DL-Lite . Another interesting problem is explain-
ing why a query is not entailed under an inconsistency-
tolerant semantics—e.g., see (Bienvenu, Bourgaux, and Goas-
doué 2016; 2019). Also, it would be interesting to study prop-
erties and complexity issues when natural ranking criteria
among S-minimal explanations are defined.

Acknowledgments. This work was supported by the Alan
Turing Institute under the UK EPSRC grant EP/N510-
129/1, the AXA Research Fund, and the EPSRC grants
EP/R013667/1, EP/L012138/1, and EP/M025268/1.

References

Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Consis-
tent query answers in inconsistent databases. In Proc. PODS,
68-79.

Arioua, A.; Tamani, N.; and Croitoru, M. 2015. Query
answering explanation in inconsistent Datalog+/— knowledge
bases. In Proc. DEXA, 203-219.

Bienvenu, M., and Bourgaux, C. 2016. Inconsistency-tolerant
querying of description logic knowledge bases. In Reasoning
Web, 156-202.

Bienvenu, M., and Rosati, R. 2013. Tractable approximations
of consistent query answering for robust ontology-based data
access. In Proc. IJCAI, 775-781.

Bienvenu, M.; Bourgaux, C.; and Goasdoué, F. 2014. Query-
ing inconsistent description logic knowledge bases under
preferred repair semantics. In Proc. AAAI 996-1002.

Bienvenu, M.; Bourgaux, C.; and Goasdoué, F. 2015. Explain-
ing query answers under inconsistency-tolerant semantics
over description logic knowledge bases (extended abstract).
In Proc. DL.

Bienvenu, M.; Bourgaux, C.; and Goasdoué, F. 2016. Explain-
ing inconsistency-tolerant query answering over description
logic knowledge bases. In Proc. AAAL 900-906.

Bienvenu, M.; Bourgaux, C.; and Goasdoué, F. 2019. Com-
puting and explaining query answers over inconsistent DL-
Lite knowledge bases. J. Artif. Intell. Res. 64:563-644.
Bienvenu, M. 2012. On the complexity of consistent query
answering in the presence of simple ontologies. In Proc.
AAAI 705-711.

Cali, A.; Gottlob, G.; and Kifer, M. 2013. Taming the
infinite chase: Query answering under expressive relational
constraints. J. Artif. Intell. Res. 48:115-174.

Cali, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general
Datalog-based framework for tractable query answering over
ontologies. J. Web Sem. 14:57-83.

2916

Cali, A.; Gottlob, G.; and Pieris, A. 2012. Towards more ex-
pressive ontology languages: The query answering problem.
Artif. Intell. 193:87-128.

Ceylan, I. I.; Lukasiewicz, T.; Malizia, E.; and Vaicenavi¢ius,
A. 2019. Explanations for query answers under existential
rules. In Proc. IJCAI, 1639-1646.

Eiter, T.; Lukasiewicz, T.; and Predoiu, L. 2016. Generalized
consistent query answering under existential rules. In Proc.
KR, 359-368.

Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theor. Com-
put. Sci. 336(1):89-124.

Gottlob, G., and Malizia, E. 2014. Achieving new upper
bounds for the hypergraph duality problem through logic. In
Proc. LICS, 43:1-43:10.

Gottlob, G., and Malizia, E. 2018. Achieving new upper
bounds for the hypergraph duality problem through logic.
SIAM J. Comput. 47(2):456—492.

Hecham, A.; Arioua, A.; Stapleton, G.; and Croitoru, M.
2017. An empirical evaluation of argumentation in explaining
inconsistency-tolerant query answering. In Proc. DL.

Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2010. Inconsistency-tolerant semantics for description
logics. In Proc. RR, 103-117.

Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2015. Inconsistency-tolerant query answering in
ontology-based data access. J. Web Sem. 33:3-29.

Lukasiewicz, T., and Malizia, E. 2017. A novel character-
ization of the complexity class @kp based on counting and
comparison. Theor. Comput. Sci. 694:21-33.

Lukasiewicz, T.; Martinez, M. V.; Pieris, A.; and Simari, G. 1.
2015. From classical to consistent query answering under
existential rules. In Proc. AAAI, 1546—-1552.

Lukasiewicz, T.; Malizia, E.; and Molinaro, C. 2018. Com-
plexity of approximate query answering under inconsistency
in Datalog+/—. In Proc. IJCAI, 1921-1927.

Lukasiewicz, T.; Malizia, E.; and Vaicenavicius, A. 2019.
Complexity of inconsistency-tolerant query answering in
Datalog+/— under cardinality-based repairs. In Proc. AAAI
2962-2969.

Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2012.
Inconsistency-tolerant query rewriting for linear Datalog+/—.
In Proc. Datalog 2.0, 123-134.

Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2013.
Complexity of inconsistency-tolerant query answering in
Datalog+/—. In Proc. OTM, 488-500.

Papadimitriou, C. H., and Wolfe, D. 1988. The complexity
of facets resolved. J. Comput. Syst. Sci. 37(1):2-13.

Vardi, M. Y. 1982. The complexity of relational query
languages (extended abstract). In Proc. STOC, 137-146.

