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Abstract

We study two forms of least general generalizations in de-
scription logic, the least common subsumer (LCS) and most
specific concept (MSC). While the LCS generalizes from ex-
amples that take the form of concepts, the MSC generalizes
from individuals in data. Our focus is on the complexity of ex-
istence and verification, the latter meaning to decide whether
a candidate concept is the LCS or MSC. We consider cases
with and without a background TBox and a target signature.
Our results range from CONP-complete for LCS and MSC
verification in the description logic EL without TBoxes to
undecidability of LCS and MSC verification and existence
in ELI with TBoxes. To obtain results in the presence of a
TBox, we establish a close link between the problems studied
in this paper and concept learning from positive and negative
examples. We also give a way to regain decidability in ELI
with TBoxes and study single example MSC as a special case.

1 Introduction

Generalization is a fundamental method in relational learn-
ing and inductive logic programming (Plotkin 1970; Mug-
gleton 1991). Given a finite number of positive examples,
one seeks a description in a logical language that encom-
passes all examples and in this sense provides a generaliza-
tion. To ensure that the description is as informative as possi-
ble, one aims at obtaining least general generalizations, that
is, generalizations that cannot be made more specific with-
out losing at least one example. Note that computing least
general generalizations is a form of supervised learning in
which only positive, but no negative examples are given.

In this paper, we study least general generalizations in the
context of description logics (DLs), a widely known family
of ontology languages that underpin the web ontology lan-
guage OWL 2 (Baader et al. 2017). In DLs, concepts are
the building blocks of an ontology and thus a prime target
for being learned through generalization. There are in fact
several applications in which this is useful, including on-
tology design by domain experts that are not sufficiently
proficient in logical modeling (Baader and Küsters 1998;
Baader, Küsters, and Molitor 1999; Baader, Sertkaya, and
Turhan 2007; Donini et al. 2009), supporting the improve-
ment and restructuring of an ontology (Cohen, Borgida, and
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Hirsh 1992; Küsters and Borgida 2001), and creative discov-
ery of novel concepts through conceptual blending (Faucon-
nier and Turner 2008; Eppe et al. 2018). We focus on the two
fundamental DLs EL and ELI, fragments of first-order Horn
logic that can express positive conjunctive existential prop-
erties, ELI extending EL with inverse roles. Both DLs are
natural choices for generalization as their limited expressive
power helps to avoid overfitting, that is, we cannot general-
ize by disjunctively combining descriptions of each single
example, but are forced to find a true generalization. In fact,
least general generalizations in EL have received significant
attention (Baader, Küsters, and Molitor 1999; Baader 2003;
Zarrieß and Turhan 2013) while, somewhat surprisingly,
there appears to be no prior work on DLs with inverse roles.

There are two established notions of least general gener-
alization in the DL context. When the examples are given in
the form of concepts, the desired generalization is the least
common subsumer (LCS), the least general concept that sub-
sumes all examples (Cohen, Borgida, and Hirsh 1992). A
natural alternative is to give examples using relational data,
which in DLs are represented as an ABox. Traditionally, one
uses only a single example, which takes the form of an in-
dividual in the data, and then asks for the most specific con-
cept (MSC), that is, the least general concept that the indi-
vidual is an instance of (Nebel 1990). However, there seems
to be no good reason to restrict the MSC to a single exam-
ple and thus we define it based on multiple examples. In
this way, the LCS becomes a special form of MSC in which
the data consists of a collection of trees. We remark that EL
and ELI concepts can be viewed as natural tree query lan-
guages for graph databases and knowledge graphs and thus
the MSC is useful for data exploration and comprehension,
see e.g. (Colucci et al. 2016). It is also related to generating
referring expressions (Borgida, Toman, and Weddell 2016).

For both the LCS and the MSC, we study the two decision
problems existence and verification. In fact, both the LCS
and the MSC need not exist because there can be an infinite
sequence of less and less general generalizations. In verifi-
cation, one is given a candidate concept and the question is
whether the candidate is the LCS or MSC. Verification is rel-
evant, for example, in approaches that try to find the LCS or
MSC by refinement operators that move towards less general
generalizations in a step-wise fashion (Badea and Nienhuys-
Cheng 2000; Lehmann and Hitzler 2010; Lehmann and
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Haase 2009) and check after each step whether the least
general generalization has already been reached. We con-
sider the case with and without a background TBox and
with and without a target signature that the generalization
should be formulated in. If the generalization does not exist,
one can resort to approximations (Küsters and Molitor 2001;
Baader, Sertkaya, and Turhan 2007).

We now summarize our main complexity and undecid-
ability results. They are based on characterizations in terms
of simulations between products of universal models, mildly
varying characterizations given in (Zarrieß and Turhan 2013;
Funk et al. 2019). We start with the case without TBoxes,
for which we find LCS and MSC verification in EL to be
CONP-complete. It is well-known that the LCS in EL always
exists (Baader, Küsters, and Molitor 1999), and we comple-
ment this by proving that MSC existence in EL is PSPACE-
complete. We then add inverse roles which introduce sig-
nificant technical challenges. In particular, the structure of
the relevant products from the mentioned characterizations
is much more complex. As a consequence, the LCS in ELI
is not guaranteed to exist. We prove that LCS and MSC ex-
istence and verification are PSPACE-hard and in EXPTIME.
The lower bounds require a remarkably intricate construc-
tion and show as a by-product that the product simulation
problem on trees (defined in the paper) is PSPACE-hard.

We then switch to the case with TBoxes, starting
with observing a connection to concept learning (Badea
and Nienhuys-Cheng 2000; Lehmann and Hitzler 2010;
Lehmann and Haase 2009; Lisi 2012; Bühmann et al. 2018;
Sarker and Hitzler 2019) and in particular to the concept
separability problem (Funk et al. 2019) which asks whether
there is a concept that separates given positive examples
from given negative examples. It turns out that its comple-
ment reduces in polynomial time to MSC existence. Using
results from (Funk et al. 2019), this can be used to show
that MSC existence is undecidable in ELI and EXPTIME-
complete in EL. The same is true for verification as the two
problems are mutually reducible in polynomial time when a
TBox can be used. We consider it remarkable that inverse
roles have such a dramatic computational effect. We also
identify a way around undecidability, namely to consider
for the generalization only symmetry free ELI concepts,
that is, ELI concepts that do not admit a subconcept of the
form ∃r.(C � ∃r−.D). In this case, the complexity drops to
EXPTIME again. Up to this point, all mentioned complex-
ity lower bounds and undecidability results hold without a
signature restriction on the target concept while all upper
bounds apply also with such a restriction. We finally con-
sider the MSC of single examples and show that existence
and verification are in PTIME in EL while they are com-
plete for EXPTIME and 2EXPTIME in ELI, depending on
whether or not we assume the signature to be full. Thus once
more, adding inverse roles has a drastic effect.

Note that in the literature, the LCS is sometimes restricted
to only constantly many examples. In all of the above re-
sults, we do not assume a constant bound on the number of
examples. We also make observations regarding that case,
though. Without a TBox, the complexity typically drops to
PTIME and the same is true for EL with TBoxes (Zarrieß

and Turhan 2013). When both inverse roles and TBoxes are
present, however, the complexity tends to not decrease. We
remark that in the decidable cases, our constructions yield
upper bounds on the role depth of the LCS and MSC, if they
exists, which together with the characterizations can be used
to actually construct them.

A full version that contains all proof details is available at
http://www.informatik.uni-bremen.de/tdki/research/.

2 Preliminaries

We introduce the basics of DLs as required for this paper,
for full details see (Baader et al. 2017). Let NC be a set of
concept names and NR a set of role names, both countably
infinite. A role is either a role name or an inverse role r−,
r a role name. For uniformity, we identify (r−)− with r. An
ELI concept is formed according to the syntax rule

C,D ::= � | A | C �D | ∃r.C
where A ranges over concept names and r over roles. An EL
concept is an ELI concept that does not use inverse roles.
The depth of a concept refers to the nesting depth of the
operator ∃r.C.

For any DL L, an L TBox is a finite set of concept inclu-
sions (CIs) C � D, where C and D are L concepts. Let NI

be a countably infinite set of individual names. An ABox A
is a finite set of concept assertions A(a) and role assertions
r(a, b) where A ∈ NC, r ∈ NR, and a, b ∈ NI. We often
use r(a, b) to denote r−(b, a) if r is an inverse role. We use
ind(A) to denote the set of all individual names that occur
in A. An L knowledge base (KB) (T ,A) consists of an L
TBox T and an ABox A.

The semantics of DLs is defined in terms of interpreta-
tions I = (ΔI , ·I), where ΔI is a non-empty set and ·I
maps each concept name A ∈ NC to a subset AI of ΔI

and each role name r ∈ NR to a binary relation rI on ΔI .
We refer to (Baader et al. 2017) for details on how to extend
·I to compound concepts. An interpretation I satisfies a CI
C � D if CI ⊆ DI , a concept assertion A(a) if a ∈ AI ,
and a role assertion r(a, b) if (a, b) ∈ rI . I is a model of a
TBox, an ABox, or a knowledge base if it satisfies all inclu-
sions and assertions in it. The CI C � D is a consequence
of the TBox T , in symbols T |= C � D, if CI ⊆ DI for all
models I of T . For a KB K = (T ,A), a concept C, and an
individual a ∈ ind(A), we write K |= C(a) if a ∈ CI for all
models I of K. For a DL L, L instance checking is the prob-
lem to decide, given an L KB K = (T ,A), an a ∈ ind(A),
and an L concept C, whether K |= C(a).

A signature Σ is a set of concept and role names. An L
concept is an L(Σ) concept if it uses only concept and role
names from Σ, and likewise for other syntactic objects such
as TBoxes and ABoxes. The signature sig(O) of a syntactic
object O is the set of concept and role names that occur in O.
The Σ-reduct I|Σ of an interpretation I is obtained from I
by setting AI = ∅ and rI = ∅ for all concept names A and
role names r not in Σ.

Each interpretation I gives rise to a directed graph GI =
(ΔI , {(d, e) | (d, e) ∈ rI}) and a corresponding undirected
graph Gu

I . We thus apply graph theoretic terminology di-
rectly to interpretations, speaking for example about their
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outdegree. An interpretation is tree-shaped (resp. ditree-
shaped) if Gu

I (resp. GI) is a tree without multiedges, that
is, (d, e) ∈ rI ∩ sI implies r = s for all roles r, s. Each
ELI (resp. EL) concept C can be viewed as a tree-shaped
(resp. ditree-shaped) interpretation and vice versa. All this
also applies to ABoxes, which are only a different way to
present finite interpretations. We use AC to denote the ELI
concept C viewed as a tree-shaped ABox and use ρC to de-
note the root of AC . For example, C = A � ∃r.B � ∃r−.�
gives AC = {A(ρC), r(ρC , b1), B(b1), r(b2, ρC)}.
Lemma 1 For all ELI TBoxes T and ELI concepts C,D,
T |= C � D iff (T ,AC) |= D(ρC).

We introduce simulations, universal models, and direct prod-
ucts. Let I1 and I2 be interpretations. A relation S ⊆
ΔI1 × ΔI2 is an EL(Σ) simulation from I1 to I2 if for all
d, d′ ∈ ΔI1 and e ∈ ΔI2 :
1. d ∈ AI1 and (d, e) ∈ S imply e ∈ AI2 , for all A ∈ Σ;
2. (d, d′) ∈ rI1 and (d, e) ∈ S imply (d′, e′) ∈ S and

(e, e′) ∈ rI2 for some e′ ∈ ΔI2 , for all role names r ∈ Σ.
S is an ELI(Σ) simulation if Condition 2 also holds for
inverse roles r− with r ∈ Σ. Let L ∈ {EL, ELI} and
(d, e) ∈ ΔI1 ×ΔI2 . We write (I1, d) 
L,Σ (I2, e) if there
exists an L(Σ) simulation from I1 to I2 that contains (d, e).
We omit Σ if it is the full signature NC ∪ NR, writing 
L
and speaking of L simulations. It can be checked in poly-
nomial time whether (I1, d) 
L,Σ (I2, e). The following
lemma shows that L(Σ) simulations characterize preserva-
tion of L(Σ) concepts.
Lemma 2 Let L ∈ {EL, ELI}, let I1, I2 be interpretations
with finite outdegree, and let Σ be a signature. The following
are equivalent:
1. (I1, d) 
L,Σ (I2, e);
2. for all L(Σ) concepts C: if d ∈ CI1 , then e ∈ CI2 .

Let K = (T ,A) be a KB and sub(T ) be the set of all
subconcepts of concepts that occur in T . A type for T is a
subset t ⊆ sub(T ) such that T |=

�
t � D implies D ∈ t

for all D ∈ sub(T ). Denote by T the set of all types for T .
When a ∈ ind(A), t, t′ ∈ T , and r is a role, we write
• a �K

r t if K |= ∃r.
�
t(a) and t is maximal with this

condition, and
• t �T

r t′ if T |=
�
t � ∃r.

�
t′ and t′ is maximal with

this condition.
A path p for K is a sequence ar0t1 · · · rn−1tn such that a ∈
ind(A), r0, . . . , rn−1 are roles, t1, . . . , tn ∈ T , a �K

r0 t1,
and ti �T

ri ti+1 for all i < n. Let tail(p) denote the last
element of the path p. Define the universal model UK of K
by taking as ΔUK the set of all paths for K and setting for all
concept names A and role names r:

AUK = {a ∈ ind(A) | T ,A |= A(a)}∪
{p ∈ ΔUK \ ind(A) | A ∈ tail(p)}

rUK = {(a, b) ∈ ind(A)2 | r(a, b) ∈ A} ∪
{(p, prt) | prt ∈ ΔUK}∪{(pr−t, p) | pr−t ∈ ΔUK}

The universal model UT ,C of an ELI TBox T and an ELI
concept C is defined as UK where K = (T ,AC).

Lemma 3 For all ELI KBs K, ELI concepts C, and a ∈
ind(K), K |= C(a) iff a ∈ CUK .

The direct product
∏n

i=1 Ii of interpretations I1, . . . , In is
defined by

Δ
∏n

i=1Ii =ΔI1 × · · · ×ΔIn

A
∏n

i=1Ii =AI1 × · · · ×AIn

r
∏n

i=1Ii = {((d1, . . . , dn), (e1, . . . , en)) |∀i : (di, ei)∈rIi}

If (d1, . . . , dn) ∈ Δ
∏n

i=1 Ii , then we write
∏n

i=1(Ii, di) for
the pair (

∏n
i=1 Ii, (d1, . . . , dn)).

Lemma 4 For all I1, . . . , In, (d1, . . . , dn) ∈ Δ
∏n

i=1 Ii ,
and ELI concepts C, (d1, . . . , dn) ∈ C

∏n
i=1 Ii iff di ∈ CIi

for 1 ≤ i ≤ n.

3 LCS and MSC: Basics

We introduce least common subsumers and most spe-
cific concepts, discuss their relationship, and give model-
theoretic characterizations for verification and existence.
The latter are mild extensions of characterizations estab-
lished in (Zarrieß and Turhan 2013).

Definition 1 Let T be a TBox, C1, . . . , Cn concepts called
examples, L ∈ {EL, ELI}, and Σ a signature. An L(Σ)
concept D is a least common L(Σ) subsumer (L(Σ)-LCS)
of C1, . . . , Cn w.r.t. T if

1. T |= Ci � D for all i = 1, . . . , n;
2. if T |= Ci � D′ for all i = 1, . . . , n, D′ an L(Σ) con-

cept, then T |= D � D′.

If an L(Σ)-LCS w.r.t. a TBox T exists, then it is unique up
to equivalence w.r.t. T . We thus speak about the L(Σ)-LCS.
We omit Σ if it contains sig(T ∪{C1, . . . , Cn}), speaking of
the L-LCS w.r.t. T . Clearly, no L-LCS can contain symbols
that are not in the TBox or the examples. Thus, all signatures
between the finite sig(T ∪{C1, . . . , Cn}) and the full signa-
ture behave in the same way. We also omit T if it is empty,
speaking of the L(Σ)-LCS.

Example 1 (1) Let C1 = ∃attend.MLConf and C2 =
∃attend.KRConf. Then ∃attend.�. is the EL (and ELI)
LCS of C1, C2. Let T = {MLConf � AIConf,KRConf �
AIConf}. Then ∃attend.AIConf is the EL (and ELI) LCS of
C1, C2 w.r.t. T .

(2) The L-LCS, L ∈ {EL, ELI}, of a single L concept
C w.r.t. an L TBox T is just C. For Σ � sig(C), however,
the L(Σ)-LCS of C w.r.t. T does not always exist. Take, for
example, T = {A � ∃r.A} and Σ = {r}. Then neither
the ELI(Σ)-LCS nor the EL(Σ)-LCS of A w.r.t. T exists
as T |= A � ∃rn.� for all n ≥ 0, but there is no ELI(Σ)
concept C with T |= A � C and T |= C � ∃rn.� for all n.

Definition 2 Let K = (T ,A) be a KB, a1, . . . , an ∈
ind(A) individuals called examples, L ∈ {EL, ELI}, and
Σ a signature. An L(Σ) concept C is a most specific L(Σ)
concept (L(Σ) MSC) of a1, . . . , an w.r.t. K if

1. K |= C(ai) for all i = 1, . . . , n;
2. if K |= D(ai) for all i = 1, . . . , n, D an L(Σ) concept,

then T |= C � D.
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Like the LCS, the MSC is unique up to equivalence w.r.t. T
(if it exists) and thus we speak of the MSC. We drop Σ if
Σ ⊇ sig(K). As for the LCS, a symbol that does not occur
in the KB cannot occur in the MSC.
Example 2 (1) In contrast to the EL-LCS, the EL-MSC of
a single example does not always exist, even when the TBox
is empty, due to cycles in the ABox. For example, for A =
{A(a), r(a, a)} the EL-MSC of a w.r.t. K = (∅,A) does not
exist (use that K |= ∃rn.�(a) for all n ≥ 0). In contrast,
the EL-MSC of a w.r.t. K′ = ({A � ∃r.A},A) is A.

(2) A common proposal to generalize from individuals is
to compute the MSC of each individual separately and then
generalize by applying the LCS, provided that all MSCs ex-
ist (Baader, Küsters, and Molitor 1999). It pays off, however,
to directly apply the MSC to multiple individuals. Let, for
example, K = (∅,A), A = {A(a), r(a, a), A(b), s(b, b)}.
Then the EL-MSC of a alone w.r.t. K does not exist, and
likewise for b. In constrast, the EL-MSC of a, b w.r.t. K is A.
The next theorem, which is an immediate consequence of
Lemma 1, shows that the LCS is a special form of MSC.
Theorem 1 Let L ∈ {EL, ELI}, T be an L TBox,
C1, . . . , Cn L concepts, and Σ a signature. Then an L(Σ)
concept D is the L(Σ)-LCS of C1, . . . , Cn w.r.t. T iff D
is the L(Σ)-MSC of ρC1 , . . . , ρCn w.r.t. the KB (T ,A),
A = AC1 ∪ · · · ∪ ACn .
LCS and MSC give rise to the four decision problems stud-
ied in this paper. Let L be a description logic. L-LCS ex-
istence w.r.t. TBoxes means to decide, given L concepts
C1, . . . , Cn, an L TBox T , and a finite signature Σ, whether
the L(Σ)-LCS of C1, . . . , Cn w.r.t. T exists. By the re-
mark made after Definition 1, it is without loss of gen-
erality to consider only finite signatures. In particular, we
can use sig(T ∪ {C1, . . . , Cn}) instead of the full signa-
ture. L-MSC existence w.r.t. TBoxes is defined accordingly,
the input consisting of a KB (T ,A) with T an L TBox,
a1, . . . , an ∈ ind(A), and a finite signature Σ. In L-LCS
(resp. L-MSC) verification w.r.t. TBoxes, we are given as an
additional input a candidate L(Σ) concept C and the ques-
tion is whether C is the L(Σ)-LCS of C1, . . . , Cn w.r.t. T
(resp. the L(Σ)-MSC of a1, . . . , an w.r.t. K).

Theorem 1 provides a reduction from L-LCS existence
w.r.t. TBoxes to L-MSC existence w.r.t. TBoxes, and like-
wise for verification. In this reduction, neither the TBox
nor the signature nor the number of examples change. We
now present a converse reduction which, however, requires
to modify the TBox.
Theorem 2 Let L ∈ {EL, ELI}. Then L-MSC verification
(resp. existence) w.r.t. TBoxes can be reduced in polynomial
time to L-LCS verification (resp. existence). This also holds
in the full signature case if there are at least two examples.
Proof. Let T be an L TBox, A an ABox, a1, . . . , an ∈
ind(A). We may assume w.l.o.g. that A is the disjoint
union of ABoxes A1, . . . ,An such that ai ∈ ind(Ai) for
i = 1, . . . , n. Let Xa be a fresh concept name for every
a ∈ ind(A) and let T ′ be the extension of T with

Xa � A for all A(a) ∈ A,

Xa � ∃r.Xa′ for all r(a, a′) ∈ A.

(If L = ELI, then also add Xa � ∃r−.Xa′ if r(a′, a) ∈
A.) Then for every signature Σ that does not contain
{Xa1

, . . . , Xan
} and every L(Σ) concept D, D is the L(Σ)-

MSC of a1, . . . , an w.r.t. (T ,A) iff D is the L(Σ)-LCS of
Xa1

, . . . , Xan
w.r.t. T ′.

In the case of the full signature, we have to consider the
L(Σ ∪ {Xa1

, . . . , Xan
})-LCS in place of the L(Σ)-LCS.

The assumption that there are at least two examples ensures
that the concept names Xa cannot occur in the LCS. �

We next provide model-theoretic characterizations for
MSC verification and existence based on products and sim-
ulations. Corresponding characterizations for LCS verifica-
tion and existence can be obtained in a straightforward way
via Theorem 1, see the appendix. Note that Point 1 below
can also be viewed as a simulation condition.
Theorem 3 (MSC Verification) Let L ∈ {EL, ELI}, K =
(T ,A) be an L KB, a1, . . . , an ∈ ind(A), and Σ a signa-
ture. An L(Σ) concept C is the L(Σ)-MSC of a1, . . . , an
w.r.t. K iff the following conditions hold:
1. (a1, . . . , an) ∈ CΠn

i=1UK ;
2. Πn

i=1(UK, ai) 
L,Σ UT ,C , ρC .
Proof. By Lemmas 3 and 4, Condition 1 is equivalent to
Condition 1 of the definition of MSCs. By Lemmas 2, 3, and
4, Condition 2 is equivalent to Condition 2 of the definition
of MSCs. �
For an interpretation I and a d0 ∈ ΔI , a d0-path of length
k in I is a sequence d0r0 · · · rk−1dk with (di, di+1) ∈ rIi
for all i < k, each ri a (potentially inverse) role. Denote
by tail(p) the last element of p. The ELI, k-unfolding of I
at d0, denoted (I, d0)↓ELI,k, is the interpretation defined by
taking Δ(I,d0)

↓ELI,k

to be the set of all d0-paths of length at
most k and setting

A(I,d0)
↓ELI,k

= {p | tail(p) ∈ AI}
r(I,d0)

↓ELI,k

= {(p, prt) | prt ∈ Δ(I,a)↓ELI,k} ∪
{(pr−t, p) | prt ∈ Δ(I,a)↓ELI,k}.

The EL, k-unfolding of I at d0, denoted (I, d0)↓EL,k,
is defined accordingly, but only admitting role names in
paths. For L ∈ {EL, ELI} and an L KB K, we use
(Πn

i=1(UK, di))
↓L,k
|Σ to denote the L, k-unfolding of the Σ-

reduct of Πn
i=1(UK, di) at (d1, . . . , dn). It can be verified

that this interpretation is tree-shaped for L = ELI and
ditree-shaped for L = EL and can thus be viewed as an
L concept Ck.
Theorem 4 (MSC Existence) Let L ∈ {EL, ELI}, K =
(T ,A) be an L KB, a1, . . . , an ∈ ind(A), and Σ
a signature. The following are equivalent, for Ck =

(Πn
i=1(UK, ai))

↓L,k
|Σ :

1. the L(Σ)-MSC of a1, . . . , an w.r.t. K exists;
2. Ck is the L(Σ)-MSC of a1, . . . , an w.r.t. K, for a k ≥ 0;
3. Πn

i=1(UK, ai) 
L,Σ (UT ,Ck
, ρCk

) for some k ≥ 0.
Proof. “2 ⇒ 1” is trivial. “3 ⇒ 2” is an immediate con-
sequence of Theorem 3. For “1 ⇒ 3”, let the L(Σ)-MSC
D be of depth k. It then follows from Theorem 3 that
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(a1, . . . , an) ∈ D
∏n

i=1 UK which implies ρCk
∈ DUT ,Ck .

Now Point 3 follows from the definition of the MSC and
Lemmas 2, 3, and 4. �
Note that Theorems 3 and 4 link MSC-verification and exis-
tence, as well as LCS-verification and existence (via Theo-
rem 1) to product simulation problems. For L ∈ {EL, ELI},
the L-product simulation problem is to decide given
(I1, d1), . . . , (In, dn), (J , e), whether

∏n
i=1(Ii, di) 
L

(J , e). These are fundamental problems that have received
attention in several areas such as verification and database
theory (Harel, Kupferman, and Vardi 2002; Barceló and
Romero 2017; ten Cate and Dalmau 2015).

4 Without TBoxes

We start with studying least general generalizations in the
case without TBoxes, beginning with verification in EL.

Theorem 5 In EL, LCS and MSC verification w.r.t. the
empty TBox are CONP-complete. The lower bounds apply
even when the signature is full.

Proof. (sketch) The upper bound uses Theorem 3, the fact
that instance checking in EL is in PTIME, and the observa-
tion that the EL-product simulation problem is in CONP if
the interpretation J is tree-shaped (here, it is even ditree-
shaped). In fact, if (I, d) �
EL,Σ (J , e) with J tree-shaped,
then there is a subinterpretation I0 of I of polynomial size
such that (I0, d) �
EL,Σ (J , e). The lower bound is proved
by reducing the satisfiability problem for propositional logic
to the complement of EL-LCS verification. It also estab-
lishes CONP-hardness of the EL-product simulation prob-
lem in the case that J is tree-shaped. �
Regarding existence, a first well-known observation is that
the EL-LCS always exists, even if the signature is not
full. This follows from Theorem 4 and the fact that if
K = (∅,AC1 ∪ · · · ∪ ACn) then the (reachable part of
the) Σ-reduct of

∏n
i=1(UK, ρCi) is ditree-shaped and co-

incides with Πn
i=1(UK, ρCi

)↓EL,k
|Σ , k the maximum depth of

C1, . . . , Cn. In contrast, the EL-MSC does not always exist
even with the empty TBox, see Example 2.

Theorem 6 In EL, MSC existence w.r.t. the empty TBox is
PSPACE-complete. The lower bound applies even when the
signature is full.

Proof. (sketch) Using Theorem 4, one can show that the
EL(Σ)-MSC of a1, . . . , an w.r.t. a KB K = (∅,A) exists if
and only if there is no infinite Σ-path in An =

∏n
i=1 A that

starts at (a1, . . . , an)—we view ABoxes as finite interpreta-
tions here. We can thus decide existence of the EL(Σ)-MSC
in polynomial space in the standard way: guess an element
a of An and, proceeding step by step, a path through An

that starts at (a1, . . . , an) and follows only role names from
Σ. Reject if the element a is seen twice. The lower bound is
established by reducing the word problem of deterministic
polynomially space-bounded Turing machines. �
We next turn to ELI. In contrast to EL, here the LCS does
not always exist even when the TBox is empty.

Example 3 Consider the following ELI concepts D1, D2

over concept names A1, . . . , A4 and a single role r:

A1, A2

A3 A4

A1

A3, A4

A2

A1

A3 A2

A4

D1 D2 U

The interpretation U is the part of AD1
×AD2

that is reach-
able from its root ◦. One can show that the infinite path in U
labeled with (A1, r, A3, r

−, A2, r, A4, r
−)ω is not ELI sim-

ulated by (U↓ELI,k, ◦), for any k ≥ 0. Thus, the ELI-LCS
of D1, D2 does not exist by Theorem 4.
The next theorem summarizes our results regarding ELI.
Theorem 7 In ELI, LCS and MSC existence and verifica-
tion w.r.t. the empty TBox are PSPACE-hard and in EXP-
TIME. The lower bounds apply when the signature is full.
Proof. (sketch) The main ingredient to the PSPACE lower
bounds is a rather intricate proof that the ELI-product sim-
ulation problem is PSPACE-hard already when restricted
to tree-shaped interpretations. In fact, this is the case even
when interpretations on the left-hand sides are trees of depth
two and the interpretation on the right-hand side is fixed (and
of depth eleven). It is interesting to contrast this with the fact
that the EL-product simulation problem is CONP-complete
on tree-shaped interpretations, see the proof of Theorem 5.
To obtain a PSPACE lower bound for LCS verification and
existence, we then use reductions from ELI-product simu-
lation on tree shaped interpretations.

The upper bound for MSC verification (and thus also for
LCS verification) is obtained by recalling that ELI instance
checking is EXPTIME-complete and adapting the EXPTIME
upper bound from (Zarrieß and Turhan 2013) for the EL-
product simulation problem to ELI.

The EXPTIME upper bound for MSC existence (and thus
also for LCS existence) can be proved similarly to the upper
bound in Theorem 6. The main difference is that we now
work with ELI simulations rather than EL simulations and
thus need to be more careful about the paths we consider.
In fact, we use paths d0, r0, d1, r1, d2, . . . through An =∏n

i=1 A that start at d0 = (a1, . . . , an), follow only Σ-roles,
and satisfy the following for all i ≥ 0: 1. if ri = r−i+1,
then (An, di+2) �
ELI,Σ (An, di); 2. there is no e �= di+1

such that ri(di, e) ∈ An, (An, di+1) 
ELI,Σ (An, e), and
(An, e) �
ELI,Σ (An, di+1). �
All problems studied in this section are solvable in PTIME if
the number of examples is bounded by a constant. This fol-
lows from an analysis of the presented upper bound proofs
and has in some cases also been established before (Baader,
Küsters, and Molitor 1999; Zarrieß and Turhan 2013).

5 With TBoxes

We now add TBoxes to the picture. It turns out that, in this
case, we can transfer results from the concept separabil-
ity problem, which has been considered in concept learning
from positive and negative examples (Funk et al. 2019).
Definition 3 Let L ∈ {EL, ELI}. An L learning instance is
a triple (K, P,N) with K = (T ,A) an L KB and P,N ⊆
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ind(A) sets of positive and negative examples. Let Σ be a
signature. An L(Σ) solution to (K, P,N) is an L(Σ) con-
cept C such that K |= C(a) for all a ∈ P and K �|= C(a)
for all a ∈ N .

This definition gives rise to the decision problem of L
concept separability: given an L learning instance (K, P,N)
and a signature Σ, decide whether it admits an L(Σ) solu-
tion. As the conjunction of L(Σ) solutions to (K, P, {b}),
b ∈ N , is an L(Σ) solution to (K, P,N), it suffices to con-
sider instances with N singleton. Note that in (Funk et al.
2019) only the full signature case is considered.

One can easily derive from (Funk et al. 2019) that
(K, P, {b}) has an L(Σ) solution iff

∏
a∈P (UK, a) �
L,Σ

(UK, b). By encoding b as a concept D as in the proof of
Theorem 2, we can thus view L(Σ) concept separability as
the problem to decide for an L KB K = (T ,A), exam-
ples a1, . . . , an ∈ ind(A), and an L concept D whether∏n

i=1(UK, ai) �
L,Σ (UT ,D, ρD), which is exactly the nega-
tion of Condition 2 of the characterization of MSC verifica-
tion in Theorem 3. This provides the basis for the following.
Theorem 8 For L ∈ {EL, ELI}, the complement of L con-
cept separability can be reduced in polynomial time to L-
MSC verification and existence. This also holds for the full
signature.

Proof. (sketch) We consider EL and the full signature
case. Given K, a1, . . . , an, and D, we extend K by adding
assertions v(ρi, ai), v(ρi, bi), D(bi), where ρi and bi are
fresh individuals, v a fresh role name, and D(bi) stands for
AD rooted at bi. Then

∏n
i=1(UK, ai) �
EL (UT ,D, ρD) iff

∃v.D is the EL-MSC of ρ1, . . . , ρn w.r.t. the extended KB
(under mild assumptions). For the reduction to MSC exis-
tence, we additionally generate infinite r-chains starting at
ai and bi using CIs X � ∃r.X and adding X(ai) and X(bi)
to the ABox, where the concept names X are distinct for
distinct ai but coincide for all bi. If we assume w.l.o.g. that
n ≥ 2, then

∏n
i=1(UK, ai) �
EL (UT ,D, ρD) iff the EL-MSC

of ρ1, . . . , ρn w.r.t. the extended KB exists. �
It is shown in (Funk et al. 2019) that ELI concept separabil-
ity is undecidable already in the full signature case and even
with only two positive examples. We thus obtain the follow-
ing from Theorems 8 and 2 and the fact that the number of
examples remains unchanged under the reductions.
Theorem 9 In ELI, MSC and LCS verification and exis-
tence are undecidable. This is already the case when the
signature is full and there are at most two examples.
It is also shown in (Funk et al. 2019) that EL concept separa-
bility is EXPTIME-hard. In this case, the number of positive
examples is not bounded by a constant.
Theorem 10 In EL, MSC and LCS verification and exis-
tence are EXPTIME-complete. The lower bounds already
apply when the signature is full.
Proof. (sketch) The lower bounds come from Theorems 8
and 2. EXPTIME upper bounds for LCS existence and ver-
ification with the full signature are in (Zarrieß and Turhan
2013), the former explicitly and the latter implicitly. They
extend to other signatures in a straightforward way. To lift
these bounds to the MSC, we use Theorem 2. �

When the number of examples is bounded, then all problems
in Theorem 10 can be solved in PTIME (which was known
for LCS existence (Zarrieß and Turhan 2013)).

We close this section with observing that L-MSC verifi-
cation can be reduced to the complement of concept separa-
bility, and thus, by Theorem 8, to L-MSC existence.

Theorem 11 For L ∈ {EL, ELI}, L-MSC verification can
be reduced in polynomial time to the complement of L con-
cept separability. This also holds for the full signature.

Proof. (sketch) Recall that Condition 2 of Theorem 3
is the complement of concept separability. By Lemmas 3
and 2, Condition 1 is equivalent to requiring UT ,C , ρC 
L
UK, ai, for all i. These simulation checks can be incorpo-
rated into Condition 2 by extending the ABox. �

6 Symmetry Free ELI
An inspection of the proof of the undecidability results in
Theorem 9 reveals that it crucially depends on the MSC and
LCS to contain subconcepts of the form ∃r.(C � ∃r−.D).
Indeed, concept separability is decidable when the TBox is
formulated in ELI while separating concepts are restricted
to EL (Funk et al. 2019). We consider a more general case
by restricting the MSC and LCS to symmetry free ELI con-
cepts (ELIsf concepts for short), that is, ELI concepts that
do not contain such subconcepts. With ELIsf -LCS and MSC
verification and existence w.r.t. ELI TBoxes, we mean that
the TBox is formulated in unrestricted ELI while least gen-
eral generalizations are formulated in ELIsf . For the LCS,
also the examples are formulated in unrestricted ELI.

We start with providing a characterization of ELIsf(Σ)-
MSC existence. To achieve this, we modify the notion of
ELI, k-unfolding of an interpretation I at a d0 ∈ ΔI given
in Section 3 by restricting the domain of the resulting in-
terpretation to symmetry free d0-paths of length k, that is,
to d0-paths d0r0 · · · rm−1dm, m ≤ k, that satisfy ri �= r−i+1

for all i < m. We speak of the ELIsf , k-unfolding of I at d0,
denoted (I, d0)↓ELIsf ,k. We further use (I, d0)↓ELIsf

to de-
note the unbounded ELIsf -unfolding of I at d0, that is, the
union of all (I, d0)↓ELIsf ,k, k ≥ 0. Now let Σ be a signature.
For an ELI KB K, we use (Πn

i=1(UK, di))
↓ELIsf ,k
|Σ to denote

the ELIsf , k-unfolding of the Σ-reduct of Πn
i=1(UK, di) at

(d1, . . . , dn). As this interpretation is tree-shaped, it can be
viewed as an ELI concept which is even an ELIsf concept.

Theorem 12 (ELIsf -MSC Existence w.r.t. ELI TBoxes)
Let K = (T ,A) be an ELI KB, a1, . . . , an ∈ ind(A),
and Σ a signature. The following are equivalent, for Ck =

(Πn
i=1(UK, ai))

↓ELIsf ,k
|Σ :

1. the ELIsf(Σ)-MSC of a1, . . . , an w.r.t. K exists;
2. Ck is the ELIsf(Σ)-MSC of a1, . . . , an w.r.t. K, for a

k ≥ 0;
3. Πn

i=1(UK, ai)
↓ELIsf 
ELI,Σ (UT ,Ck

, ρCk
) for a k ≥ 0.

Since Theorem 1 extends to the case considered in this
section, Theorem 12 also yields a characterization for ELIsf
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LCS existence w.r.t. ELI TBoxes. Theorems 8 and 11 can
also be adapted using a version of concept separability
where the separating concepts are formulated in ELIsf . Thus
verification reduces to existence in polynomial time and we
refrain from giving an explicit characterization.

Theorem 12 provides the basis for proving that symmetry
freeness regains decidability.

Theorem 13 ELIsf -MSC and LCS existence and verifica-
tion with respect to ELI TBoxes are EXPTIME-complete.
The lower bounds hold in the full signature case and with
only one example.

The lower bounds are easy to prove by reduction from the
subsumption of concept names w.r.t. ELI TBoxes (Baader,
Brandt, and Lutz 2008). For the upper bounds, we use an ap-
proach based on automata on infinite trees. Let K = (T ,A)
be an ELI KB, a1, . . . , an ∈ ind(A), and Σ a signa-
ture. Theorem 12 suggests to test emptiness of two tree
automata A and B where A accepts precisely the tree-
shaped interpretations that admit an ELI(Σ) simulation
from U := (Πn

i=1(UK, ai))
↓ELIsf

and B accepts precisely
the tree-shaped interpretations UT ,Ck

, ρCk
, k ≥ 0. In par-

ticular, the automaton A visits all elements of U using its
states, assigning to each of them a simulating element in the
input interpretation. Elements in U are represented by their
type t and the role that led to it—note that these uniquely
determine the successors, and that this is not the case with-
out symmetry freeness. We thus have (at least) exponen-
tially many states. To obtain an EXPTIME upper bound, we
therefore use non-deterministic tree automata (NTA) rather
than alternating ones. To avoid having a state for every set
of types, we must further make sure that every element in
U is simulated by a different element in the input tree. To
have enough room when moving down in the input tree, we
slightly refine our characterization.

A simulation S from I1 to I2 is injective if for all e ∈
ΔI2 , there is at most one d ∈ ΔI1 with (d, e) ∈ S. We write
(I1, d1) 
in

ELI,Σ (I2, d2) if there is an injective ELI(Σ)-
simulation from I1 to I2 that contains (d1, d2). Let I×� de-
note the interpretation that is obtained from a tree-shaped
interpretation I by duplicating every successor in the tree so
that it occurs � times.

Lemma 5 Let N be the outdegree of Πn
i=1UK. Then the

ELIsf(Σ)-MSC of a1, . . . , an w.r.t. K exists iff, for some sub-
concept D of (Πn

i=1(UK, ai))
↓ELIsf

Σ , we have:

(Πn
i=1(UK, ai))

↓ELIsf 
in
ELI,Σ (U×N

T ,D, ρD).

Now, A accepts the tree-shaped interpretations that admit
injective ELI(Σ) simulations from (Πn

i=1(UK, ai))
↓ELIsf

using exponentially many states. Further, B accepts inter-
pretations of the form U×N

T ,D for some D as in the lemma.
We first construct an automaton that works over pairs of
tree-shaped interpretations and verifies that the first compo-
nent represents a suitable D and the second component rep-
resents UT ,D. We then project to the latter and modify the
automaton so as to accept all I×N with I accepted before.

7 Single Example MSC

We consider the MSC of a single example, which is the case
traditionally studied in the literature. A PTIME upper bound
for EL was given in (Zarrieß and Turhan 2013). We show
that adding a signature does not affect this result, and that it
also holds for verification.

Theorem 14 In EL, single example MSC existence and ver-
ification are in PTIME.

Proof. (sketch) This is a consequence of the proof of Theo-
rem 13. Applying the constructions from that proof to an EL
TBox instead of an ELI TBox has two effects: first, all in-
volved automata can be constructed in polynomial time and
are of polynomial size; and second Theorem 12 implies that
if the ELIsf -MSC exists, it is actually an EL concept. �
We next show that the ELI case is dramatically different. In
particular, the complexity is much higher and admitting non-
full signatures causes an exponential jump in complexity.

Theorem 15 In ELI, single example MSC existence
and verification are 2EXPTIME-complete in general and
EXPTIME-complete when the signature is full.

Proof. (sketch) In the full signature case, the lower bound
is by reduction from the subsumption of concept names
w.r.t. ELI TBoxes. For unrestricted signatures, we reduce
the complement of single example ELI concept separabil-
ity, shown 2EXPTIME-hard in (Gutiérrez-Basulto, Jung, and
Sabellek 2018), similar to the proof of Theorem 8.

The upper bounds are shown using an automata based ap-
proach that is in spirit similar to the approach taken in Sec-
tion 6. The main difference is that the automaton A has to be
two-way since it checks for ELI simulations from UK, a. In
case of restricted signature, it has to store types in its states,
while for the full signature ABox individuals suffice. �

8 Discussion

We have analyzed the complexity of LCS and MSC verifica-
tion and existence in the DLs EL and ELI, obtaining various
complexity results and establishing a close link to concept
separability. Topics for future research include tight bounds
on the size of the LCS and MSC and studying cases in which
the TBoxes is formulated in an expressive DL such as ALC
while the LCS and MSC are formulated in EL or ELI (to
avoid overfitting). It would also be interesting to study DLs
that admit role constraints such as transitive roles and ex-
pressive forms of role inclusion. Finally, it would be of in-
terest to study the data complexity, under which the TBox is
not regarded as part of the input.
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Baader, F.; Küsters, R.; and Molitor, R. 1999. Computing
least common subsumers in description logics with existen-
tial restrictions. In Proc. of IJCAI, 96–103.
Baader, F.; Sertkaya, B.; and Turhan, A. 2007. Computing
the least common subsumer w.r.t. a background terminology.
J. Applied Logic 5(3):392–420.
Baader, F. 2003. Least common subsumers and most spe-
cific concepts in a description logic with existential restric-
tions and terminological cycles. In Proc. of IJCAI, 319–324.
Badea, L., and Nienhuys-Cheng, S. 2000. A refinement
operator for description logics. In Proc. of ILP, 40–59.
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