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Abstract

In Model-Based Diagnosis (MBD), we concern ourselves
with the health and safety of physical and software systems.
Although we often use different knowledge representations
and algorithms, some tools like satisfiability (SAT) solvers
and temporal logics, are used in both domains. In this paper
we introduce Finite Trace Next Logic (FTNL) models of se-
quential circuits and propose an enhanced algorithm for com-
puting minimal-cardinality diagnoses.
Existing state-of-the-art satisfiability algorithms for minimal
diagnosis use Sorting Networks (SNs) for constraining the
cardinality of the diagnostic candidates. In our approach we
exploit Multi-Operand Adders (MOAs). Based on extensive
tests with ISCAS-89 circuits, we found that MOAs enable
Conjunctive Normal Form (CNF) encodings that are signifi-
cantly more compact. These encodings lead to 19.7 to 67.6
times fewer variables and 18.4 to 62 times fewer clauses.
For converting an FTNL model to CNF, we could achieve a
speed-up ranging from 6.2 to 22.2. Using SNs fosters 3.4 to
5.5 times faster on-line satisfiability checking though. This
makes MOAs preferable for applications where RAM and
off-line time are more limited than on-line CPU time.

Introduction

Model-Based Diagnosis (MBD) is a subdiscipline of Ar-
tificial Intelligence (AI) where we study how systems
fail (Reiter 1987; de Kleer and Williams 1987). Model-
checking (Clarke, Grumberg, and Peled 1999), with its ori-
gins in logic and formal verification, is a topic with appli-
cation to AI where we develop languages and methods for
proving system properties. In MBD, we use a model of a
system’s correct specification and derive diagnoses as fault
sets that offer explanations for what happened in the sys-
tem for given observations of abnormal behavior. In model-
checking, we instead use a model of a possibly incorrect
system and ask whether it complies to the specification—
deriving a proof or a counterexample.

What makes model-checking and MBD close is that in-
stead of a large data set, we reason with a formally specified
model. In MBD, we often abstract a system’s dynamic be-
havior away, in order to (1) make the modeling task simpler,
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and (2) to prevent a combinational blow-up. Model check-
ing, on the other hand, is preoccupied with the temporal as-
pects of a model. As a result, we can exploit model-checking
methods, languages, and tools for the advancement of MBD.

In this context it was shown, e.g., how to exploit Linear-
Temporal Logic (LTL) (Pnueli 1977) for diagnostic pur-
poses and diagnose corresponding models (Pill and Quar-
itsch 2013). To the best of our knowledge, all existing MBD
approaches based on temporal logics make assumptions
about the temporal nature of faults. Examples are constant
intermittency (Abreu, Zoeteweij, and van Gemund 2009) or
persistence (Pill and Quaritsch 2013). These assumptions
greatly simplify the computational complexity of reasoning
but are not realistic, for example, in diagnosing soft-failures
in high-radiation environments such as space. In physical
environments periods of intermittent failures are exception-
ally hard to predict. Our diagnostic framework is based on
Finite Trace Next Logic (FTNL). It is completely general:
any persistent, periodic intermittent, or aperiodic intermit-
tent behavior is going to be diagnosed.

We furthermore propose a novel SAT-based diagnosis al-
gorithm. Since MBD is closer to partial MaxSAT (Tompkins
and Hoos 2004) than to SAT, we have to encode cardinal-
ity constraints (Ası́n et al. 2011; Nica et al. 2013). For this,
we analyze the performance trade-offs of binary constraints
based on digital multipliers and sorting networks.

Our concepts and algorithms help in understanding why
some behavior violates a temporal model, like failed test
cases or counter-examples from model-checking. Further-
more we demonstrate a direct practical application of our
algorithms in analyzing faults in Integrated Circuits (ICs)
such as Field-Programmable Gate Arrays (FPGAs) as, e.g.,
resulting from radiation in space (Petersen 2011). An im-
proved understanding of how individual gates might fail in
space and in time will allow us to create robust, and possibly
even fail-safe designs that are immune to transient failures.

Our research contributes to the field of MBD in multiple
ways. (1) We propose a new framework using FTNL as a
simple temporal logic for diagnosing synchronous sequen-
tial logic where we do not make assumptions about the tem-
poral behavior of multi-faults; (2) We propose a SAT-based
algorithm with a novel, more compact encoding for FTNL
diagnosis that outperforms state-of-the-art MBD SAT-based
algorithms in our tests; (3) We evaluate our approach for IS-
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CAS-89 synchronous circuits (Brglez, Bryan, and Kozmin-
ski 1989) with multiple-faults and characterize the scalabil-
ity of our algorithms.

Finite Trace Next Logic and Diagnostics

Synchronous sequential circuits extend combinational
(Boolean) circuits by introducing memory elements such as
flip-flops. In practice, D-type flip-flops are very attractive,
since we can implement them with a small number of tran-
sistors on one hand, and on the other hand we can use them
to implement also other memory element types.

Figure 1 shows an n-bit counter with D-type flip-flops
in standard VLSI notation (Parhami 2009). The ability to
generate counters of various size by setting n is important
for analysis, benchmarking and for empirically studying al-
gorithmic trade-offs. As a running example we use a 2-bit
counter (n = 2). The 2-bit counter contains two D-type
flip-flops (f1, f2), one AND-gate (a2), and two XOR-gates
(x1, x2).
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Figure 1: n-bit counter

We assume the system to have a single synchronous clock.
Since we can redesign any multi-clock synchronous system
to use a single clock (using counters for deriving the indi-
vidual clocks) this is not a real issue. In principle we could
extend the approach to support also asynchronous clocks,
which is out of the scope of this paper though.

Finite Trace Next Logic

There are several logics like LTL (Pnueli 1977), PSL (Eis-
ner and Fisman 2006), or FLTL (Pill and Wotawa 2018) that
have been successfully used to define specifications of se-
quential circuits and many other systems. With our focus
on the circuits themselves (or describing implementations
in general), we do not need temporal operators like the un-
til (Pnueli 1977). Thus, and in order to support a compact
presentation, we use a simpler logic that considers finite
traces as experienced in practice, and which has only one

temporal operator—for referring to the next step. Compared
to, e.g., FLTL and as can bee seen in Def. 3, we use the weak
semantics for this operator (see (Pill and Wotawa 2018) for
a discussion of strong and weak FLTL semantics).

While LTL is best suitable for proving properties of sys-
tems, handling infinite loops, and supporting various types
of queries such as dead-locks and critical states, FTNL tar-
gets reasoning about digital systems with state. Of course, it
is possible to use LTL for the same task, but the support of
unused operators like until comes at a computational price.

Definition 1 (FTNL Syntax). Let V be a finite set of propo-
sitional variables. An FTNL formula is then defined induc-
tively as follows:

1. for any p ∈ V , p is an FTNL formula;
2. if ϕ and ψ are FTNL formulas, then ¬ϕ, ϕ ∨ ψ, and Xϕ

are also FTNL formulas.

The alphabet Σ = 2V describes variable assignments,
and finite sequences of letters σ ∈ Σ can be used to describe
the finite behavior of a system. We refer to these sequences
also as finite words or traces.

Definition 2 (Finite Trace). Given a set of propositional
variables V , a finite trace τ = τ1, τ2, . . . , τn is a sequence
of letters τi ∈ 2V , i.e., conjunctions of positive or negative
literals.

The ith suffix of τ , starting at i, is denoted as τ i, i.e.,
τ i = τi, τi+1, . . . , τn.

If we have two traces τ and σ of the same length, the
pairwise conjunction of the literals in τ and σ is denoted as
τ · σ. Further, let W ⊆ V . If a trace σ consist only of W -
literals, we call it a W -trace.

Definition 3 (FTNL Semantics). Given a finite trace τ =
τ1, τ2, . . . , τn, τ satisfies an FTNL formula if and only if:

τ i �|= ⊥
τ i |= p iff p ∈ τi
τ i |= ¬ϕ iff τ i �|= ϕ
τ i |= ϕ ∨ ψ iff τ i |= ϕ or τ i |= ψ
τ i |= Xϕ iff i = n or τ i+1 |= ϕ

where i = 1, 2, . . . , n.

Some formula ϕ is satisfiable iff there exists a finite trace
τ such that τ |= ϕ. In many cases, aside the basic operators
of a logic that define its expressiveness, we use additional
operators that simplify modeling and result in more intu-
itive specifications. These higher-level operators are often
referred to as syntactic sugar since they do not change the
expressiveness. In our case we will use also conjunction (∧),
implication (→), exclusive or (⊕), and equivalence, based
on the well-known established semantics of those operators.

Systems and Diagnoses

When employing model-based diagnosis, we use a model
for reasoning about a system’s nominal or faulty device be-
havior.

Definition 4 (System Description). Given a set of vari-
ables V , a system description SD is defined as a triple
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〈M,COMPS,OBS〉 such that M is an FTNL formula over
V , COMPS is a set of special component variables, OBS is
a set of observable variables, and COMPS ∪OBS ⊆ V .

Coming-up with a system model of the device of inter-
est is, in general, a difficult task, especially with a low-level
logic like FTNL. There are cases in which the model cre-
ation can be automated. One such case are models of Inte-
grated Circuits (ICs). These models can be obtained from
reverse-engineered images (netlists) or from languages and
specifications used for synthesizing the ICs. When we are
modeling an IC with state, we typically use variables instead
of wires and FTNL operators to constrain the behavior of the
system.

With SD we aim to capture a system’s behavior such as to
be able to reason about both, nominal and faulty behavior. In
order to introduce possible faults, we use error variables and
fault-models. For a class of fault models such as stuck-at-
zero (S-A-0), stuck-at-one (S-A-1), behave as another com-
ponent, global short-circuit, etc., the required modifications
to the original model are linear (Feldman, Provan, and van
Gemund 2009). (Reiter 1987) used only abnormal predi-
cates without any assumptions on the faulty behavior for
models in first-order logic.

By fault augmentation we mean the introduction of fault
variables and fault constraints (modes) in the model. Con-
sider the 2-bit counter from our running example and allow
each gate’s output to be stuck-at-one. We get the following
FTNL model:

M =

∣
∣
∣
∣
∣
∣
∣
∣
∣

(¬a2 → (e2 ⇔ (e1 ∧ o1))) ∧ (a2 → e2)
(¬x1 → (z1 ⇔ (e1 ⊕ o1))) ∧ (x1 → z1)
(¬x2 → (z2 ⇔ (e2 ⊕ o2))) ∧ (x2 → z2)
(¬f1 → (z1 ⇔ X o1)) ∧ (f1 → z1)
(¬f2 → (z2 ⇔ X o2)) ∧ (f2 → z2)

(1)

Each line in Eq. 1 consists of two conjuncts modeling a
single component. The first one is the healthy mode while
the second mode is a stuck-at-1 fault mode. The three ob-
servable variables are OBS = {e1, o1, o2} where e1 is a
primary input that enables the counter and o1 and o2 are the
primary outputs that give the counter values. There are also
five fault variables: COMPS = {x1, f1, a2, x2, f2}.

Each gate of the 2-bit counter is modeled as a top-level
conjunct in Eq. 1. The flip-flops use the X operator. Notice
that the second conjunct in each gate’s model is the stuck-
at-1 model. For example, the subexpression a2 → e2 means
that when gate a2 is faulty, the wire modeled by variable e2
assumes value � (we have x ≡ x⇔ � for any x).

Definition 5 (Observation). Given a system description SD,
an observation α is defined as an OBS-trace.

The main goal of MBD is to compute diagnoses. A diag-
nosis is an explanation of an observation α. One can think
of COMPS as a set of inputs, that are not set by the user but
by the god of failures and whose values denote if there is a
fault or not. If those values are hypothetical, i.e., guessed by
an algorithm like the one we present in this paper, we get a
diagnosis.

Definition 6 (Diagnosis). Given a system description SD =
〈M,COMPS,OBS〉 and an observation α, a diagnosis ω is
defined as a COMPS-trace, such that α · ω |= M.

An assignment to a fault-variable f3 ↔ �, abbreviated
as f3, means that the respective component is healthy while
assigning falsity (f3 ↔⊥, abbreviated as ¬f3) means that
the component is faulty. In this paper the convention is to use
a positive fault-polarity, i.e., the faults are positive literals.
Counting the number of positive fault literals in a diagnosis
ω gives the cardinality of a diagnosis. The cardinality of a
diagnosis ω is denoted as |ω|.

Definition 7 (Minimal-Cardinality Diagnosis). A diagnosis
≤ω is a minimal-cardinality diagnosis iff there is no other
diagnosis ω′ such that |ω′| < |≤ω|.

Our diagnostic framework consists of two parts: first, we
derive a propositional formula via unrolling M , and second,
we search for diagnoses with a SAT-based algorithm.

Deriving a Propositional Model

We next present an algorithm for obtaining a propositional
model Mf from an FTNL formula M . The algorithm “un-
rolls” the FTNL formula for a time-horizon T where T ∈ N.

Algorithm 1: Convert an FTNL formula to a proposi-
tional logic formula

Input : M, FTNL formula, model
T , integer, horizon

Output: Mf , propositional formula, flat model

for t ∈ {1, 2, . . . , T} do
Mt = COPYINDEXED(M, t)
Recursively replace in Mt:
(i) each Xϕ with ϕt+1

(ii) each variable v with vt
end
Mf =M1 ∧M2 ∧ · · · ∧MT

Algorithm 1 simply copies the FTNL formula T times.
Each iteration adds time-index to each variable and replaces
the temporal operators with propositional operators that con-
nect formulae in the current and successive time-indexed in-
stances of the original formula. The final result is the con-
junction of all time-instances of the formula. Going one in-
stant beyond the horizon T for some internal variables is not
a problem.

If we have |V | variables in the original formula, the un-
rolled propositional formula has T |V | variables. The num-
ber of clauses in the resulting formula converted to Conjunc-
tive Normal Form (CNF) is precisely T times the number of
clauses in the CNF of the original formula.

The result of applying Algorithm 1 to Equation 1 is:
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Mf =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

[¬x11 →
(
z11 ↔ e11 ⊕ o11

)] ∧ [
x11 → · · ·

]
[¬f11 →

(
o21 ↔ z11

)] ∧ [
f11 → · · ·

]

...[¬x21 →
(
z21 ↔ e21 ⊕ o21

)] ∧ [
x21 → · · ·

]
[¬f21 →

(
o31 ↔ z21

)] ∧ [
f21 → · · ·

]

...

(2)

In Equation 2, the upper index denotes the historical time-
index due to the unrolling.

Theorem 1 (Soundness). Let Mf be the result of applying
Algorithm 2 to a system description SD. Let αf be the flat-
tened observation trace α, and ωf the flattened diagnosis ω.
If ωf |=Mf ∧ αf then α · ω |=M .

Proof (Sketch). Showing the soundness of Algorithm 2 re-
quires an induction on the recursion depth. To show the in-
ductive step, we have to analyze the semantics of proposi-
tional logic and FTNL.

While sound, Algorithm 2 is only complete for suffi-
ciently large time horizon T . Computing T for completeness
and analyzing the time horizon is a topic on its own.

Theorem 2 (Completeness). Given a system description
SD, an observation trace α, and a diagnosis ω, there exists
a model encoding in propositional logic Mf and a proposi-
tional assignment αf such that for any diagnostic trace ω for
which α · ω |=M it follows that ωf |=Mf ∧ αf .

Proof (Sketch). Completeness can be shown by using in-
duction on the time horizon T . It follows from the seman-
tics of FTNL (Def. 3), the semantics of propositional logic,
the definitions of observation and diagnosis both in FTNL
and propositional logic (Feldman, Provan, and van Gemund
2010) and Alg. 1.

The process of unrolling of an FTNL model M leads to
a linear increase in the size of M . The number of variables
will be |V | × |T | and the number of propositional operators
will also increase linearly.

Theorem 3 (Complexity). Computing an FTNL minimal-
cardinality diagnosis ω is ΔP

3 [O(log n)]-hard.

Proof. We perform a reduction from a propositional diag-
nostic model whose complexity is shown by Eiter and Got-
tlob to be in ΔP

3 [O(log n)] (Eiter and Gottlob 1995). The
reduction is O(1) due to the fact that Boolean propositional
models are also FTNL models. The resulting trace ω is of
length one and is converted directly to a propositional diag-
nosis.

Having unrolled the FTNL model, we can proceed with
standard propositional MBD.

Diagnostic Algorithms

In this section we introduce a SAT-based algorithm for diag-
nostics. While SAT-solvers have been used extensively both
in MBD (Metodi et al. 2014) and model checking, we pro-
pose a novel encoding that is more compact than state-of-
the-art methods.

Standard Exhaustive Search

We brute-force the two-bit counter from Equation 2. The
time horizon is T = 5. Fig. 2a shows the simulation output
of the counter if all gates are functioning correctly. Fig. 2b
show the effect of a fault in flip-flop f1. Faults in Boolean
systems propagate in a non-intuitive manner.
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Figure 2: Observations and diagnoses of a 2-bit counter

Even the tiny running example has 25 fault variables
when unrolled and the brute-force algorithm has to consider
33 554 432 possible assignments. There are two minimal-
cardinality diagnoses (shown in Fig. 2c and Fig. 2d). From
those, ω1 is the injected fault and it is also discovered in the
correct time. The two single-faults in ω1 and ω2 are indis-
tinguishable due to the limited observability of the model.
There are also 131 070 non-minimal-cardinality diagnoses.

Recall that the computational complexity of the origi-
nal minimal-cardinality diagnosis problem is ΔP

3 [O(log n)]
which is in the second level of the polynomial hierarchy
(Eiter and Gottlob 1995). In practice, however, this worst-
case complexity is rare. Checking diagnostic assumptions
on models of man-made systems such as Integrated Circuits
(ICs) is typically cheap as designs are often close to planar.
The number of small diagnostic assumptions is also con-
strained at design time by having multiple observable vari-
ables and a small number of dense subsystems.

A SAT-Based Diagnostic Algorithm

A single, not necessarily minimal, propositional diagno-
sis ωf can be obtained by calling a SAT-solver as ωf |=
Mf ∧ αf . The process of computing a minimal diagnosis,
however, is closer to partial MaxSAT than to SAT (Feld-
man et al. 2010). To achieve minimality, we add a new type
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of cardinality constraint (Ası́n et al. 2011) as illustrated in
Fig. 3. In our approach, we take the original fault-augmented
model and add propositional formulas that count the number
of faults. We can then tie the outputs of this formula to a con-
stant to achieve a fault-cardinality of given (minimum) size.

The augmented formula shown in Fig. 3 consists of three
parts: the original propositional model M ∧ α, a fault-
counting circuit and a constant k specifying the number of
faults allowed for a diagnosis. We can then initialize k = 0
and increase it until we find a minimal-cardinality diagnosis.

The bit-counting circuit is shown in Fig. 4. It is known
as a multi-operand Boolean adder and is implemented as a
ladder of multi-operand full-adders (see Fig. 4a). Each full-
adder adds one bit to a binary number and consists of k half-
adders where k equals the number of bits necessary for rep-
resenting the binary number (see Fig. 4b). When the number
of inputs is such that it is impossible to have a carry output
(this is the case when the number of inputs is not a power of
two), the multi-operand full-adder is implemented without
a final AND-gate. The multi-operand adder uses full-adders
of increasing size. The first adder has one input, the second
and third have two inputs, the next four have three inputs,
etc.

The number of gates in a MOA is 2k+1(k − 2) − k + 3
where k is the number of outputs. The number of inputs is n
where n = 2k − 1 for k ≥ 2. As a result, the MOA circuit
complexity is O(n log n).

Algorithm 2: SAT-based diagnostic algorithm
Input : M, propositional formula, model

α, propositional assignment, observation
Output: Ω, set of assignment, diagnoses

f ←M ∧ α
S ← ADDMULTIOPERANDADDER(f,COMPS)
Ω← ∅
n← 0
while Ω = ∅ and n ≤ |COMPS| do

β ← BINARYCONSTANT(n)
γ ← FORMULATOCNF(f ∧ β)
while ω ← SOLVECNF(γ) do

Ω← Ω ∪ ω
γ ← γ ∧ ¬ω

end
n← n+ 1

end

Algorithm 2 shows the full-implementation of the di-
agnostic algorithm. The ADDMULTIOPERANDADDER ap-
pends a multi-operand adder to the original formula, cal-
culating the number of faulty-components. The number of
faults is constrained by assigning a binary-encoded number
(the encoding is performed by BINARYCONSTANT). Algo-
rithm 2 first looks for zero-cardinality diagnoses, then for
single-fault diagnoses, and so on. The algorithm terminates
once minimal cardinality diagnoses are found or if n reaches
the number of components in the system. In practice there is
a huge number of diagnoses and we terminate the algorithm
after the first k minimal cardinality diagnoses are found. The

formula is converted to CNF by FORMULATOCNF. The ac-
tual SAT call is done in SOLVECNF.

Once a diagnostic solution has been found by the SAT-
solver (SOLVECNF), it is negated and blocking clauses are
added to the original CNF γ. In general, this increases the
difficulty of subsequent SAT-solving as the problem transits
from under-constrained to constrained.

Algorithm 2 searches for diagnoses from lower-cardi-
nality to higher-cardinality. Depending on the assumptions,
though, more efficient schemes such as binary search, are
possible.

Experimental Results

The algorithms described in this paper are implemented in a
mixture of Python and C. For the SAT solving we have used
LINGELING (Biere 2016).

In addition to the n-counter family introduced in Sec. , we
have also constructed a benchmark of real-world diagnosis
problems consisting of eight synchronous circuits (see Ta-
ble 1). These models are translated from ISCAS-89 netlists
(Brglez, Bryan, and Kozminski 1989). ISCAS-89 is a bench-
mark of sequential digitial circuits for testing Automated
Test Pattern Generation (ATPG) algorithms. ATPG is related
to MBD and many algorithms bear resemblance.

Table 1: ISCAS-89 sequential circuits

Name Description |OBS| FFs |COMPS|
s208 digital fractional multiplier 11 8 112
s298 traffic light controller 9 14 133
s349 4-bit multiplier 20 15 176
s400 traffic light controller 9 21 185
s420 digital fractional multiplier 19 16 234
s444 traffic light controller 9 21 202
s526 traffic light controller 9 21 214
s838 digital fractional multiplier 35 32 478

The circuits in Table 1 come from real-world applications.
They have variable number of observable variables (|OBS|),
flip-flops (FFs) and gates (|COMPS|). With the help of a
simulator, we have reverse engineered their function and
have manually created input signals. Several of the circuits,
for example, have to be reset at start-up.

The main goal of this section is to characterize the CPU
performance of Algorithm 2. To do this we measure two
main metrics: (i) the time for unrolling and converting the
model M to CNF (TCNF) and (ii) the time for computing the
first 10 diagnoses in order of cardinality (TSAT) To character-
ize the space complexity we count the number of variables
and the number of clauses in the CNF.

Figure 5 shows TSAT as a function of the n-counter size
n and the time-horizon T . We have experimented with 1 ≤
n ≤ 16 and 1 ≤ T ≤ 16. For each combination of n and
T we have generated a number of diagnostic scenarios by
random fault injection for a total of 31 909 scenarios.

Fig. 5 shows good scaling of TSAT for the two independent
variables n and T . The absolute timing is also good: the SAT
solver needs only 0.22 s for computing the first minimal-car-
dinality diagnosis for n = 16 and T = 16. Each subsequent
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diagnosis of the same scenario takes longer with the tenth
taking 14 s. This is due to the blocking literals.

We have compared the performance of Algorithm 2 to
the fastest MBD algorithm today (Metodi et al. 2014). The
main difference between our implementation and the one of
Metodi et al. is in the implementation of the cardinality con-
straints. We use Multi-Output Adder (MOA) while Metodi et
al. use Sorting Networks (SNs). The difference comes from
using an unary (MOA) or binary (SN) representation for the
cardinality constraints. The results are shown in Table 2.

Table 2: SAT-based performance for ISCAS-89

TCNF [s] TSAT [s] Variables
Name MOA SN MOA SN MOA SN

s208 4.3 26.4 1.1 0.3 5736 18 434
s298 5.4 37.4 2.0 0.4 6975 22 730
s349 6.2 60.7 3.2 0.7 9606 31 054
s400 6.4 69.4 3.1 0.8 10 185 33 196
s420 8.3 110.1 4.1 1.1 13 461 43 720
s444 7.0 83.3 3.5 0.9 11 304 36 895
s526 7.9 95.8 4.1 1.1 12 096 39 937
s838 20.9 463.9 24.8 4.5 30 434 99 622

Each sequential circuit in Table 2 was run with multiple
random-fault scenarios with increasing number of injected
faults and for T = 3. For each scenario we have computed
up to the first 10 diagnoses in order of cardinality for a total
number of 2036 scenarios and 28 205 diagnoses. The TCNF
and TSAT columns of Table 2 show average times.

The binary constraints lead to a significantly smaller num-
ber of variables and clauses: from 19.7 to 67.6 times less
variables and from 18.4 to 62 times less clauses. The result-
ing speed-up in converting the ISCAS-89 problems to CNF
is a factor from 6.2 to 22.2. Surprisingly the SNs lead to bet-
ter SAT-solver performance. The SN speed-up varies from
3.4 to 5.5. The choice of the cardinality constraints should
be according to the relative RAM vs CPU cost and the num-
ber of diagnoses required in the specific use-case.

Related Work

A motivating example for our research was NASA’s Liv-
ingstone system which has been used for MBD of the

Earth Observing One satellite (Hayden, Sweet, and Christa
2004). While the Livingstone framework uses automata and
conflict-directed search (Williams and Nayak 1996), we pro-
vide logic characterization and a SAT-based algorithm. This
results in a better understanding of the models and enables
faster reasoning methods supporting larger systems.

MBD techniques similar to ours are applied to Ver-
ilog(Peischl, Riaz, and Wotawa 2012) and VHDL (Peischl
and Wotawa 2006) designs and provides ISCAS-89 evalu-
ation on single and double-faults. While, the first paper fo-
cuses on modeling, model analysis, and fault classification
we provide analysis and tools for faults with higher car-
dinality. In the second paper, the focus is on source-level
localization of VHDL faults and algorithm optimality and
completeness are secondary. Another paper about applying
MBD to VHDL (Friedrich, Stumptner, and Wotawa 1999)
also provides some state-space reduction techniques that are
othogonal to the choice of reasoning algorithms and can be
applied to the algorithms presented in this paper as well.

Chen et al. used partial MaxSAT (Chen et al. 2009) for the
debugging of Very-Large-Scale Integration (VLSI) designs.
Our paper extends their work by experimenting with faults
of multiple-cardinality as opposed to single errors. Another
improvement is our introduction of the MOA encoding that
considerably speeds-up the reasoning process.

Testing and formal methods are closely related to MBD.
The work of (Pill and Wotawa 2018) links verification to
Software-Fault Localization (SFL) (Abreu, Zoeteweij, and
van Gemund 2006) by automatically creating a test ora-
cle from requirements expressed in (F)LTL and translat-
ing (F)LTL to SAT for checking system properties. Our ap-
proach fills another gap between MBD, verification, and
SFL by experimenting with circuits and offering explana-
tions rather than checking the satisfaction of properties.
Compared to diagnosing LTL specifications (Pill and Quar-
itsch 2013), we consider finite traces and a simpler logic
aimed at representing system implementations like syn-
chronous sequential circuits as opposed to logics used to
describe the degrees of freedom in a specification. From a
technical point of view, we furthermore do not restrict our-
selves to persistent faults in a monolithic specification, but
focus on all persistent and dynamic faults (including inter-
mittent ones) as present in real systems.
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Figure 5: Average SAT time per diagnosis of the n-counter

There is a lot of literature on how to implement cardinality
constraints (Nica et al. 2013). An alternative to sorting net-
works are cardinality networks. While they are more com-
pact, they require putting an upper-bound on the cardinality.
This will work out for systems where we limit the search to
low cardinalities, but there are cases, especially in design (de
Kleer, Feldman, and Matei 2018), where the fault cardinality
could be equal to the number of components.

The paper of Grastien and Anbulagan is an important
related-work that bridges diagnostics of Discrete Event Sys-
tems and satisfiability. Its emphasis is on the language of di-
agnostic queries and semantics. Our work extends this paper
by analyzing and comparing encoding techniques. An inter-

esting continuation of the two works would be to extend the
benchmark proposed in this paper for the type of diagnostic
questions asked in (Grastien and Anbulagan 2013).

Conclusions

Temporal logics like LTL or PSL are more expressive than
propositional logic. For modeling digital ICs, for example,
we only need the X operator though, since we are describing
deterministic behavior or non-deterministic behavior where
we can also explicitely count the options. We do not want
full non-determinism for such systems. This restriction is the
reason why we focused on a simpler variant, namely FTNL,
which can be interpreted as FLTL without the until. Consid-
ering finite traces, it is possible to extend the construction to
full FLTL, borrowing and adopting clauses from the FLTL
test oracle construction proposed in (Pill and Wotawa 2018)

In order to be able to deal with models of real-world sys-
tems, we proposed a novel SAT-based diagnosis algorithm.
Existing state-of-the-art SAT-based MBD algorithms gener-
ate many more variables and clauses. As shown for ISCAS-
89 circuits, our method reduces the number of variables and
clauses significantly, allowing the application of logic-based
MBD to real-world-sized systems.
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