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Abstract

Among many solutions for extracting useful answers from
incomplete data, ontology-mediated queries (OMQs) use do-
main knowledge to infer missing facts. We propose an exten-
sion of OMQs that allows us to make certain assumptions—
for example, about parts of the data that may be unavailable
at query time, or costly to query—and retrieve conditional
answers, that is, tuples that become certain query answers
when the assumptions hold. We show that querying in this
powerful formalism often has no higher worst-case complex-
ity than in plain OMQs, and that these queries are first-order
rewritable for DL-Liter . Rewritability is preserved even if we
allow some use of closed predicates to combine the (partial)
closed- and open-world assumptions. This is remarkable, as
closed predicates are a very useful extension of OMQs, but
they usually make query answering intractable in data com-
plexity, even in very restricted settings.

Introduction

Querying incomplete data and extracting useful answers
from it is a long-standing challenge, and many approaches
have been proposed over the years. Ontology-mediated
queries (OMQs) are a promising way to exploit domain
knowledge for this purpose (Xiao et al. 2018; Bienvenu and
Ortiz 2015). In an OMQ a regular database query is paired
with ontological knowledge expressed as a theory in a suit-
able logical formalism; frequently, Description Logics (DLs)
are used to write ontologies (Baader et al. 2003). When the
OMQ is evaluated over an input dataset, it can access not
only the explicit facts, but also implicit facts that can be
inferred from the data and the ontology. OMQs are use-
ful, but in many scenarios they are insufficient. In particular,
they provide limited means to return relaxed query answers,
i.e.answers that are not certain (in terms of logical entail-
ment), but that are still related to the initial query.

To obtain more and better answers from incomplete data,
we extend OMQs in a novel way, building on a classic idea:
rather than obtaining only certain answers, we retrieve con-
ditional answers which, in a nutshell, pair tuples (which
need not be certain answers) with sets of facts that would
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make them true certain answers. Traditional certain answers
are just assumptive answers where the assumption compo-
nent is empty. Conditional answers are a well known tool for
acccessing data that need not be current and complete (De-
molombe 1992; 1998; Christiansen and Andreasen 1998),
and have been explored in databases for several purposes,
including temporal data (Arenas and Bertossi 2002), data
streams (Cruz-Filipe, Gaspar, and Nunes 2019), and other
forms of incomplete data (Zhang et al. 2007). In the setting
of OMQs, they are very natural. For example, when query-
ing diverse data sources—a key application of OMQs—
parts of the data may be missing completely or be very
costly to obtain.With the above in mind, we enrich OMQs
with assumption patterns, which define the form of com-
plex assertions that may become true about some individu-
als. This leads to a powerful formalism, but does not impact
significantly the worst-case complexity compared to plain
OMQs. Importantly, our OMQs with assumptions are first-
order (FO) rewritable for DL-Liter; (Artale et al. 2009).
An OMQ is said to be FO-rewritable if it can be con-
verted into FO queries that return all the answers to the
OMQ when evaluated over the data alone (with no ontol-
ogy). FO-rewritability is highly desired: it implies very low
data complexity, and that OMQ answering can be realized
using existing database technologies (Bienvenu et al. 2018;
Gottlob et al. 2014).

Our extension of OMQs turns out to be particularly pow-
erful when complete and incomplete information coexist.
Based on classical logic, standard OMQs make the open-
world assumption (OWA), where a fact that cannot be in-
ferred may be either true or false. Traditional databases, in
contrast, make the closed-world assumption (CWA): facts
that cannot be inferred are assumed false. The OWA makes
OMQs useful for incomplete data, but at the same time, too
weak to yield useful answers when the data is known to be
partially complete. For example, consider an OMQ where a
query asking for stations accessible from airport Heathrow:
q(x) conn(Heathrow, z) A Station(x) is paired with
a TBox stating that each airport is connected to some sta-
tion: (Airport = dconn.Station in DL notation). Under the
classical semantics, this OMQ does not have answers over
the dataset { Airport(Heathrow), Station(HydePark)}: we



know that Heathrow is connected to station but we cannot
be certain that it is HydePark (could be another station).
However, if we know that the list of stations is complete in
the data, and thus that s is the only station, then we expect
Heathrow to be an answer. A simple yet powerful way to
achieve this is to explicitly declare the predicates that should
be assumed complete, e.g., marking Station as closed. Un-
fortunately, doing so is costly: even for the most restricted
OMQs languages, like CQs paired with DL-Lite ontolo-
gies, closed predicates make OMQ answering intractable in
data complexity, and destroy FO-rewritability (Lutz, Seylan,
and Wolter 2013). Remarkably, in our OMQs, we can use
closed predicates in our assumptions, for instance assum-
ing that Jconn.Station(Heathrow), will allow us, to ob-
tain HydePark as part of the answer, while preserving FO-
rewritability.

Proofs that are ommitted due to space restrictions can be
found in the extended version.

Preliminaries

Let N¢, Ngr, Nj, and Ny be countably infinite, disjoint
sets of concept names, role names, individuals, and vari-
ables, respectively. Elements of N := Ng U {r~ | € Ng}
are called roles, and r~ is the inverse of r. (ELT) concepts
are defined inductively: (a) T and each A € Nc are con-
cepts, and (b) if C', D are concepts and r is a role, then CT1D
and Jr.C' are concepts. A basic concept is any A € N¢, or
a concept dr. T (written also 3r). A (DL-Liter) concept in-
clusion has the form B; T Bs, a role inclusion the form
r1 C ro, and a disjoinmess assertion the form disj(B1, Bs)
or disj(ry,r2), where By, By are basic concepts and 71, ro
are roles. A (DL-Liter) TBox T 1is a finite set of concept
inclusions, role inclusions, and disjointness assertions.

Elements of N; U Ny are terms. Atoms are of the form
r(t,t') and C(t), where t,t' are terms, r € Nﬁ, and C is
a concept. Atoms without variables are called ground atoms
or assertions. An ABox A is a finite set of assertions. We
use the term database, and the symbol D, for ABoxes with
assertions only of the form A(t) or r(¢,t"), where A € N¢
and r € NR.!

We employ the standard notation for interpretations. They
have the form Z = (AZ,-T), where A is the domain and -*
is the interpretation function. We make the standard name
assumption (SNA), since some of our results consider closed
predicates.” In particular, we assume that Ny € A% and ¢ =
c for all ¢ € N,. The notions of modelhood, consistency and
entailment are standard. Note that each database D can be
seen as an interpretation Zp with domain N; and with AZ
{c| A(c) € D} forall A € Nc and 75 = {(c,c) |r(c,c) €
D} for all » € Ng.

A first-order (FO) query ¢ is any formula of function-free
FO logic, built using atoms over concept and role names
only, as well as equality atoms %1 to for terms tq,to.
We use rerms(p), vars(p) and free(y) to denote the terms,

'This use of databases is not related to the open- or closed-
world assumption, and is not to be confused with DBoxes (Fran-
coni, Ibafiez-Garcia, and Seylan 2011).

With no closed predicates, the SNA doesn’t impact our results.
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the variables, and the free (or answer) variables of ¢, re-
spectively. The arity of ¢ is |free(p)|. We may write ¢(Z)
to indicate that free(p) = & (here we assume an arbi-
trary but fixed ordering of free(p)). If ¢(Z) has the form
. (61 N\ - -ALy), where £y, . .., £} are atoms, then it is a con-
Junctive query (CQ). We may sometimes treat such a (&) as
the set {1, ..., ¢ }. If (&) has the form ¢; (Z)V - - - Vg (Z),
where each ¢;(%) is a CQ, we call it a union of conjunc-
tive queries (UCQ). An answer to an FO query ¢ of arity k
over an interpretation Z is a k-tuple ¢ of individuals such that
T E ¢(&). We say that a 0-ary (aka Boolean) query evaluates
to true in Z if Z = ¢ (i.e., the empty tuple is an answer),
and to false otherwise.

A (k-ary) ontology-mediated query (OMQ) is a pair
(¢(Z), T) where ¢(Z) is a k-ary CQ and T is a TBox.
Its (certain) answers over a database D are defined as
ans(Q,D) = {¢ € (N)¥|T = q(©) forall Z = (T,D)}.
The query answering problem is to decide, given an OMQ
Q, a tuple @ and a database D, whether @ € ans(Q, D).

We use standard notations for substitutions, which map
terms to terms, and call a substitution grounding if all terms
are mapped to individuals. A substitution 0 unifies two sets
of atoms I'y and I'5 if I'160 = I'56.

Assumptive Ontology-mediated Queries

We extend standard OMQs with assumption patterns, which
prescribe the shapes of additional assertions that we may
want to assume true for query answering. In this paper, we
choose to define them as £L£Z concepts and roles: this ap-
pears to be a relatively simple language for the assumption
patters, and it naturally captures interesting examples.

Definition 1. An assumptive ontology-mediated query is a
triple @ = (¢(Z), T, H), where (¢(Z),T) is an OMQ, and
H is a set of atoms called assumption patterns.

Intuitively, Q gives us conditional answers over D: pairs
(¢,€) where ¢'is an answer to (¢(Z), 7) over DU E.

Definition 2. A pair (d,E) of a tuple of constants d and an
ABox & is a conditional answer to Q = (¢(Z), T, H) overa
database D if

1. D UE is consistent with T, and

2. there is substitution w such that: (a) 7(Z%)
(b) € CHm,and (c) T,DUE F qm.

We denote by cans(Q, D) the set of conditional answers to
Q over D. The conditional answering problem is defined as
Jollows: Given database D, AOMQ Q and a pair (d, E), test
if (@, &) is a conditional answer of Q w.r.t. D.

We call (d,€) € cans(Q, D) a minimal conditional an-
swer if there is no &' C & such that (a,E’) € cans(Q, D),
and denote the set thereof by cans pn (Q, D).

—

a,

The set of (minimal) conditional answers can be in gen-
eral infinite, e.g., if @ = (A(z),0,{A(x)}) and D
(0 then cansmin(Q,D) = {(c, A(c))|c € Ni}. We of-
ten consider the conditional answers where 7 ranges over
the active domain of D, adom(D) = {a|A(a) € D} U
{a,b|r(a,b) € D}. We denote this subset of conditional
answers by cansiom(Q, D



Note that H and ¢ may share variables, and this restricts the
query positions for which some assumption patterns may be
applicable (as the same substitution 7 is applied to both).

Example 1. Ann wants to find vegan restaurants in a central
district that are easily accessible by bus. She can use a query

q(x) = Jyz VeganRest(x) A locNext(x,y) A BusStop(y)
A partOf (y, z) A CntDst(z).

But she knows that, in the database, some spatial relations
like locNext are incomplete, and to get their complete ex-
tensions queries are sent to a remote and sometimes slow
geospatial database. Therefore, she chooses to enable as-
sumptions H = {locNext(x,y), BusStop(y)} to postpone
verifying whether points are next to a bus stop.

The query has no certain answers over the database
A = {VeganRest(r1), BusStop(s1), BusStop(sz)

partOf (s1,a), CntDst(a)},

but the AOMQ (q(x), 0, H) produces (r1,{locNext(r1,51)})
as (minimal) conditional answer, and she can later verify
whether the candidate ry indeed has the bus stop s nearby.
More complex assumptions like

H' = {locNext(x,y), BusStop M partOf .CntDst(y)} give
(r1, {locNext(r1, s2), BusStop M IpartOf .CntDst (s2)})
as a conditional answer; indicating that that ry is also an
answer to q(x) if it is known to be located next to so and
additionally s is situated in a central district.

The example illustrates that conditional answers for
AOMQs can retrieve additional information that we would
not obtain with standard OMQs. Indeed, AOMQs are a gen-
eralization of standard OMQs: all certain answers are condi-
tional answers, provided that the database is consistent.

Proposition 1. Let Q = (¢(%),T) be an OMQ. Then, for
every database D consistent with T we have

ae ans(Q,D) iff (a,0) € cans((¢(Z),T,0),D)

For OMQ languages where we can rely on exisiting al-
gorithms for entailment of regular OMQs and consistency
testing, it is not hard to obtain an algorithm for answer-
ing AOMQs. Given a candidate conditional answer (d, &),
a database D, and an AOMQ Q = (q(Z),T,H), we can
decide whether (@, £) € cans(Q, D)

in three steps:

1. Guess H' C H and a substitution 7 from vars(H') U
free(q) to individuals in &.
2. Checkif H'm = &, if n(Z) = A, and if DUE is consistent

with 7.

3. Test whether 7, D U & F qr.

For typical OMQ languages that combine well known
DLs with CQs, the combined complexity of OMQ answer-
ing falls into the classes NP, EXPTIME, or 2-EXPTIME.
In such cases, this simple algorithm yields tight complex-
ity bounds, as the cost of the additional steps is subsumed
by the cost of answering OMQs.

Theorem 1. Given (d,€&), a database D, and an AOMQ
Q = (¢(@), T, H), the following results hold for the com-
bined complexity of deciding (@, E) € cans(Q,D):
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e [t is NP-complete for DL-Lite ., DL-Literz and &£ Lt

e It is EXPTIME-complete for ELL, Horn-SHIQ and
Horn-SHOZO.

e [t is EXPTIME-complete for SHZQ, SHOQ and SHOL.

Rewriting DL-Liter; AOMQs
In this section we provide a rewriting algorithm for AOMQs
Q = (q(¥), T, H) where T is a DL-Liteg TBox. The algo-
rithm takes such a Q as input, and it outputs a set of FO-
queries Rew(Q), whose answers over any database D are in
one-to-one correspondence with the conditional answers of
Q over D.

Given a TBox T, we denote by neg(T) the set of all dis-
jointness axioms in 7, and by pos(T) the set T \ neg(T).
Our procedure to obtain the full FO-rewriting for AOMQs
has three steps:

(1) We rewrite Q w.r.t. pos(T ) using the standard DL-Liter,
rewriting rules.

(2) Each resulting query is rewritten w.r.t. H.

(3) Finally, we take into account neg (7).

Rewriting w.r.t. Positive TBox It is a well-known result
due to (Calvanese et al. 2007) that an OMQ with a DL-Liter
TBox can be reformulated as a UCQ that can simply be eval-
uated over an input dataset (without taking the input TBox
into account).

Proposition 2 ((Calvanese et al. 2007)). For an OMQ Q =
(¢(Z),T), where T is a DL-Liteg TBox, one can compute
a UCQ q7 (&) such that ans(Q, D) = {¢|Zp E q1(¢)} for
every database D consistent with T .

The above rewriting from an ontology-mediated CQ into
a plain UCQ preserves conditional answers.

Lemma 1. Ler (¢(%),T) be an OMQ where T is a
DL-Liter TBox. Then, for every database D consistent with
T and every set of assumption patterns H,

CanS((Q(f)a T, H)v D) = CanS((QT(f)a 0, H)? D)

Rewriting w.r.t. Assumption Patterns In the next step,
we rewrite the query with respect to the assumption patterns.
The core idea is to identify subqueries which are made true
by the assumptions, and drop them. Since H can contain
complex atoms, it is convenient to expand it as follows.

Definition 3. An expansion of a set H of assumption pat-
terns is obtained by adding atoms using the following rules:
o If(C1MCy)(t) € H, add Cy(t) and Cy(t) to H.

e If (Ip.C)(t) € H and there are no {p(t,y),C(y)} C H,
add p(t,y) and C(y) to H for some fresh variable y.

o Ifr—(t,t') € H, then add r(t',t) to H.
o Ifr(t,t") € H, then add r—(t',t) to H.

We use exp(H) to denote a fixed arbitrary expansion of H.

In AOMQs, we can assume any grounding of the atoms
in the hypothesis H, and this may make some atoms of the
query true. We reflect this in the rewriting by simply drop-
ping such atoms. In general, we may drop atoms that contain



answer variables, or that share variables with other atoms
that are not removed. These variables need some care: we
must keep track of the terms in H that will give us their
query match in the conditional answers.

Definition 4 (Rewriting w.r.t. H). Let ¢(t) be a CQ and T’
a subset of atoms in q. We denote by keep(q,T) the set of
variables in vars(I') that are in free(q) U vars(q \ T).

Let H be a set of assumption patterns and q(f) a CQ. We

write q(&) ~> ¢'(2') and call ¢’ a rewriting of ¢ w.r.t. H if
it is obtained by choosing
(i) a subset I of the atoms of q and a subset H' of H,
(ii) a substitution h that unifies I and exp(H'), and which
has h(z) € terms(H') for each x € keep(q,T'),
and then doing the following:
1. Replace by T every atom in L.
2. Add N{z = h(z) |z € keep(q,T') Uvars(H')}.
3. Drop existential quantification for each x € vars(H').
The set hrew(q, H) contains all ¢’ such that g ~ ¢'.

Please note that the rewritten queries may have more free

variables than the original g. After each rule application the
resulting ¢’ has vars(H’) as free variables, additionally to
the original free(q). These additional free variables and the
added equality atoms will allow us to read from each (ordi-
nary) answer to some rewritten OMQ, the assignment for H
that gives the corresponding conditional answer.
Example 2. Recall q(x) from Example 1, and con-
sider H = {locNext(z',y"), BusStop(y')}. Take T
{locNext(x,y), BusStop(y)} and H' = H. For h = {x
'y — y'}, since keep(q,T) = {x,y} and h(x),h(y) €
vars(H), we obtain the following query ¢'(x,2',y') as a
rewriting of g w.r.t. H.:

Jyz VeganRest(x) A partOf (y, z) A CntDst(z)A
r=a ANy=1vy.

We obtain ans(q'(z,2',y"),D) = {(r1,r1,51)} over our
example database D, and the substitution T {z —
ri, @’ — r,y — s1} yields the conditional answer
(r1, {locNext(ry,s1), BusStop(s1)}).

Note that if H = {3locNext.BusStop(z)} the rewriting
is not applicable to q(x), since there is no unifier h such that
h(y) = x, fory € keep(q,T). Intuitively, this is because H
just ensures that some point is next to a bus stop, but one
cannot ensure that the bus stop is in a central district. In con-
trast, H' = {JlocNext.(BusStop M partO f.CntDst)(x)}
yields ¢'(x) = VeganRest(x) Az = x.

The key to the correctness is that the unifier / for I and H’
exists iff the atoms of I" are made true in a grounding of #,
so each rewriting step drops precisely atoms that would be
made true by assuming some grounding of the hypothesis.
We show that the rewriting is complete.

Lemma 2. Let Q = (¢(%),0,H) be an AOMQ where q(%)
is a CQ. For every substitution m, every database D, and
H C H, if (m(Z),H'T) € cansagom(Q, D), then there is

some q ~; ¢’ such that w(Z,Y) € ans(¢' (Z,7), D).

Proof(Sketch). Take D, H' C H' and (n(f),H'm) €
canSagom(Q, D). By definition, D U H'm E gw. Consider
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maximal subquery ¢” such that D E ¢’ and choose T' the
remainder subquery. Making some case distinctions accord-
ing to the size and shape of ¢”, the rewriting is shown to be
applicable to T, thus obtaining ¢’ which consists of ¢” plus
some term equalities, which is matched by 7 into D. O

The following lemma shows that it is also sound.

Lemma 3. Let Q = (q(%), 0, H) be an AOMQ and where q
is a CQ, and let D be a database. If ¢(Z) ~3 ¢’ (ZUY) and
7 is a substitution with w(Z, ) € ans(¢', D), then there is
some H' C H such that (m(Z), H'm) € cansagom(Q, D).

Proof(Sketch). Arbitrarily fix D, let ¢/(Z U ¢) be a rewrit-
ing of ¢ w.r.t. H and 7 an arbitrary substitution such that
m(Z,y) € ans(¢'(Z U ¥), D). By definition, for some I" C ¢
and 1’ C H such that ¥ = vars(H') there is a unifier h such
that h(z) € ¢, for each x € keep(q,T'). Since 'h = I'"h and
x = h(z) € ¢, for each x € keep(q,T") U ¢/, and since
7 C free(q"), we obtain that I'm E (' A {z = h(z) |z €
keep(q,T') U y})m. It follows that, D U H'm E ¢m hence
(m(Z), H'm) € cansagom(Q, D). O

To rewrite an AOMQ, we apply first the standard OMQ
rewriting and then use the assumption patterns. It is then
convenient to identify UCQ ¢7(Z) as the set of its CQs, de-
noted by trew(q(Z), T).

Definition 5 (Perfect Rewriting of AOMQ over pos(T)).
Let Q = (q(Z),pos(T),H) be an AOMQ where T is a
DL-Liter TBox. Then its perfect rewriting is the following
set of CQs Rew(Q)

1" (@) 14" () € hrew(q', H) and ¢’ (Z) € trew(q(Z),T)}.

Note that the queries in Rew(()) may not all share the
same answer variables, hence we write it as a set of CQs
rather than a UCQ.

By Lemmas 1, 2, and 3, Rew((Q) is sound and complete
for AOMQs over TBoxes with no disjointness assertions.
The proof can be found in the online version, and it is a
special case of Theorem 2 below.

Incorporating the Disjointness Assertions Now we con-
sider disjointness assertions. In standard OMQs, to evalu-
ate an OMQ (¢, T') one can usually check first if the given
database D is consistent with 7, and then answer ¢ as-
suming consistency of (7, D). Unfortunately, this approach
is not sufficient for AOMQs, since we also need to verify
whether a candidate £ causes the inconsistency of an other-
wise consistent (7, D). For that reason, we incorporate the
inconsistency check as part of the rewritten query.

Definition 6 (Inconsistency CQs). For any given DL-Liter
TBox T, let o« € neg(T ). We define the (Boolean) CQ q,()
as follows:

o ifa = disj(A,A"), then q, is 3z A(x) N A'(x),

o if o = disj(A,Ir), then q, is Jxy A(z) Ar(z,y),

o ifav = disj(ry,m2), then qo is Jxy 1 (x,y) A ra(z,y).
For a given set of assumption patterns H, the set of incon-
sistent CQs for (7, H), denoted by Rew | (H,T) is

U {d"q" € hrew(q',H), and ¢’ € trew(qa,T)}.
acneg(T)



Note that, again, we obtain a set of queries with possibly
different subsets of vars(H) as free variables. We show the
following using Lemmas 2 and 3.

Lemma 4. Let T be a DL-Liter TBox and H a set of as-
sumption patterns. For any database D consistent with T,
and T a substitution that ranges over adom(D), we have that
7(y) € ans(qL, D) for some q,. € Rew, (H,T) iff there is
some H' C H such that DU w(H') is inconsistent with T .
To prevent inconsistency we can negate Rew | (H,T) and
add it to the previous rewriting. The only minor issue to
take care of is that the queries have different free variables.
For a tuple i from vars(H), we denote by Rew(ngs) the
UCQ whose disjuncts are the queries ¢ € Rew(Q,0s) With
free(q) = ¥, and similarly, Rew ; 7(#,T) is a UCQ with
all queries ¢ € Rew, Y(H,T) with free(q) = . Then the
rewriting w.r.t. a general TBox is obtained as follows.
Definition 7 (Perfect Rewriting of general AOMQs). Let
Q = (q(Z),T,H) be an AOMQ such that T is a DL-Liter
TBox, Then the perfect rewriting of Q, Rew(Q) is defined

as U

GFCvars(H)

{Rew(Qg’Sg)) A=Rew  Y(H,T)}.

The following theorem is proved using Lemma 4 and the
fact that perfect rewriting for Q. is correct.

Theorem 2. Let Q = (¢(Z),T,H) be a DL-Liter AOMQ.

For every database D, the following are equivalent:

o (@,&) € cansagom(Q, D).

o There exists H' C H, o(¥,y) € Rew(Q), a substitution
7 such that m(Z¥) = @, H'm = £ and 7(Z, §) is an answer
to the FO query ¢ over Lp.

AOMQs with Closed Predicates

It has been argued often in the literature that strengthening
the usual certain answer semantics of OMQs, where all mod-
els under the usual open-world semantics of ontologies are
taken into account, is highly desirable. This can be done by
declaring some predicates as closed.

Definition 8. Ler > C NcUNR be a set of closed predicates.
An interpretation T is a ¥-model of (T, D), written T =5
(T,D), if T = (T,D) and additionally @ € p* implies
p(@) € Dforallp € 3.

An OMQ with closed predicates (OMQC) is a tuple Q =
(¢(Z), T,X) where (q,T) is an OMQ.

The notion of certain answers for OMQCs is lifted in the
usual way from OMQs. Unfortunately, checking if a given
tuple is an answer over its > models is intractable even if T
is in the most basic DLs. For DL-Lite ..., for instance, it is
CONP-hard, and thus not FO-rewritable (Lutz, Seylan, and
Wolter 2013).

In this section, we show that AOMQs allow us to add
closed predicates in a restricted, yet non-trivial way, while
preserving FO-rewritability.

Definition 9 (AOMQ with closed predicates (AOMQCQC)).
An AOMQ with closed predicates (AOMQC) is a tuple
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Q = (¢,H,T,%), where (q,H,T) is an AOMQ and ¥ is
a set of concept and role names that do not occur in T .

We generalize the definition of conditional answers to
AOMOQCs. Note the first condition: now we cannot take ar-
bitrary groundings £ of H in conditional answers, but only
groundings that respect the extensions of X in the input D.

Definition 10. A pair (@, E) of a tuple of constants @ and an
ABox &, is called a conditional answer to Q over D if

1. there is a ¥-model of T, D UE,
2. p(t) € & implies p(t) € D forallp € ¥,

3. there is substitution 7 such that: (a) w(free(p))
(b) E C Hm,and (¢) T,DUE Ex, qm.

Conditional answers of AOMQCs capture typical scenar-
ios where closed predicates are desirable for OMQs.

Example 3. Let Q = (¢(x), T, H,X) be an AOMQC with
q(x) = Fy.(SkodaModel(x) N hasEngine(x,y) A ICEng(y)),
assumption patterns H = {3hasEngine.SkodaEng(x)},
closed predicates X {SkodaModel, SkodaFEng}, and
TBox T = {DieselEng C ICEng, PetrolEng C ICEng}.
Consider also a database:

D = {SkodaModel(sm17), SkodaEng(sel), SkodaEng
(se2), D = { DieselEng(sel), PetrolEng(se2)}.

Evaluating Q over D produces as conditional answer
(sm17, {3hasEngine.SkodaEng(sm17)}). Intuitively, if we
know that the only two Skoda engines are sel and se2, and
both are internal combustion (IC) engines, then it suffices to
assume that a Skoda model x = sm17 has a Skoda engine
to infer that it has a IC engine.

This example is a a minor adaptation of Example 1 in
(Lutz, Seylan, and Wolter 2015). They consider a plain
OMQ, and T contains also the axiom SkodaModel C
JhasEngine.SkodaEng. They argue that sml7 is an in-
tended answer, but their OMQ falls in a fragment that is not
FO-rewritable, unlike the FO-rewritable AOMQC above.

The remarkable feature of this use of closed predicates
is that it does not cause the usual complexity increase: any
AOMQC is FO-rewritable when the TBox is in DL-Liter,.

—

= aQ,

Rewriting with Closed Predicates

We present now an FO-rewriting for AOMQCs Q
(¢(%),T,H,%) with T a DL-Liteg TBox in normal form.
Similarly as for AOMQs, we first apply the TBox rewriting
in Proposition 2, and then rewrite w.r.t. assumption patterns.
This step, however, is different if 7 has closed predicates.

Intuitively, now we cannot assume an arbitrary grounding
of H, but only groundings that respect the extensions of X
in the input database. There is no canonical way to ground
‘H, and instead we need to iterate over all groundings and
exclude those that are not valid w.r.t. > and the input data.
However, they are determined by the finite number of pos-
sible groundings of the closed predicates, so we use an FO-
query with universal quantification to iterate over them.

We denote by termss (q) all terms ¢ € terms(q) such that
p(t) € gand p € X.

Definition 11 (Rewriting w.r.t. (H,X)). Let H be a set of
assumption patterns, ¥ a set of closed predicates and q a



CQ. A rewriting of g w.r.t. (H,X), written q¢ ~>y 5 @, has
the following form:

Y1, k- (01 (G3) A Ak (k) — q)

where k > 0, y; are fresh variables, and each p;(y;) is such
that p; € X. Such a rewriting is obtained by choosing:
(i) a subset T of the atoms of q, and a subset H' of H
(ii) a substitution h that unifies T and exp(H'), and which
has h(z) € terms(H') U termss(H'), for each x €
keep(q, '),
and then doing the following. First, we add an atom p;(y;)
for each p; € X such that p;(h(Z)) € H' for some Z €
vars(T"), and then to obtain ', we proceed as follows:

1. Replace by T every atom in T

2. Add N{Z = y; | Z € vars(I), pi(h(2)) € exp(H')}.

3. Add N{z = h(z)|x € keep(q,T) Uvars(H')}.

4. Drop from the existential quantification all x € vars(H').
The set of ¢ such that ¢ ~y 5, @ is denoted hrew(q, H, %).

The rewriting generalizes Definition 4, but the main dif-
ference is that we add to the universally quantified precon-
dition each closed p(x) in exp(#) that participates in the
assumptions that make I true.

Example 4. Let 3 = {BusStop} be the set of closed pred-

icates, and let @ = (q(x), 0, {3locNext. BusStop(z)}, %),

with q(x) as in Example 1. In this case, since we can test

for all bus stops if they are part of a central district, H is

applicable. Our rewriting captures this as follows:

e choose ' = {locNext(x,y), BusStop(y)}, let exp(H) =
{locNext(x,y"), BusStop(y')} and

o leth={x—z,y—y}

h satisfies condition (ii), hence we obtain p:

Vy'.(BusStop(y') — Jyz. VeganRest(z) A partOf (y, z) A
CntDst(z) Ny =1v).

We show next that the rewriting w.r.t. (#, ¥) is correct, anal-
ogously to the previous case.

Lemma 5. Ler Q (¢(%),0,H,X) be a DL-Liter
AOMQC. For any database D, any H' C H and any sub-
stitution w, if (7(Z), H'T) € canseaom(Q, D), then there
is some @ such that ¢(¥) ~yx ©(%,Y) and 7n(Z,y) €
ans((,0,%), D).

Proof{Sketch). For an arbitrary D and H' C H, take any 7
such that (7(Z), H'm) € cansagom(Q, D). By definition we
have that D UH'7 Fy; gr. Intuitively, we can rely on a set of
representative ground expansions of exp(H'm) w.r.t. (X, D)
to homomorphically map ¢ into each X-model of D U H'7.
Such representatives disagree only on wvarsy (exp(H'n)).
Then, the part of ¢ that is mapped by 7 over D, is the same
over all X-models. Therefore we obtain that there exist I,
‘H’ and h as in Definition 11. Let ¢’ be obtained following
steps 1-4 and let ¢ be of the form Vz1,. .., Z,.(p1(Z1) A

-~ Api(zr) = ¢'), where 0 < k < n and p; € 3 such that
pi(h(2)) € exp(H’) for Z € wars(T"). It follows then that
D Ex, w(p), hence w(Z, §) € ans((p,0,X), D). O

We show next that the rewriting w.r.t (%, ) is sound.
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Lemma 6. Let Q = (¢(Z),0,H,X) be a DL-Liteg AOMQC
and o(Z,Y) a rewriting w.r.t. (H,X). Let D be a database
consistent with T If there is a substitution = with w(Z,y) €
ans((¢,0,%), D), then for some H' C H (n(Z),H'n) €
Cansadom(Qa D

Proof (Sketch). Fix D, arewriting (&, §) w.r.t. (H,X), and
substitution 7 such that 7(Z, %) € ans((y,0,%),D). By
definition there is some H' C H and I' C ¢ that unify.
Let exp, (H'7) be the result of applying a grounding o to
exp(H'm), so that p(d) € D, for each p(a) € exp, (H'n)
with p € Y. Similarly to previous case, since the subsets
of atoms chosen in step (i) are unifiable and due to equality
atoms, we obtain that D U exp,, (H'7) Ex ¢, for each such
o. Lastly, for each X-model Z of D U H'r there is some o
such that D U exp, (H'm) is homomorphically mapped into
Z. Hence, (7(Z), H'm) € cansegom(Q, D).

The perfect rewriting is similar to the previous case, but
using the rewriting w.r.t. (H,>) instead of w.r.t. H alone.

Definition 12 (Perfect Rewriting of AOMQC over pos(T)).
Let Q = (q(Z),pos(T), %, H) be a DL-Liteg AOMQ with
closed predicates. The perfect rewriting of Q, Rew(Q) is

{¢'(@) | ¢/ (a") € hrew(q', 1, %) A ¢ (&) € trew(q, T)}.
Example 5. For Q of Example 3, trew(Q) equivalent to
Fy.(SkodaModel(x) A hasEngine(xz,y) A (ICEngine(y))

V PetrolEngine(y)) V DieselEngine(y)).
Then, Rew(Q) is equivalent to:
SkodaModel(x) AVy'.(SkodaEngine(y') — Jy.y = y'A
(ICEngine(y) V PetrolEngine(y) V DieselEngine(y))).
Evaluating such query over the data, will allow us to easily
construct the expected conditional answer.

Soundness of this rewriting follows from Lemmas 1, 5 and 6.

Disjointness assertions As we did above, we embed the
consistency check into the perfect rewriting of an AOMQC.
Definition 13 (Perfect rewriting for general AOMQCs). Let
T be a DL-Liter TBox. For a given set of assumption pat-

terns H and a set of closed predicates ¥, the set of inconsis-
tent queries for (M, 7, %), denoted by Rew ) (H,T, %) is

U {¢" ¢ € hrew(q', H,Y), and q' € trew(q,,T)}.
acneg(T)

Let Q = (q,T,H,%) be a DL-Liter AOMQC and let
OQpos = (¢, pos(T), T, H,X). The perfect rewriting of Q,
Rew(Q) is as follows:

U

FgCwars(H)

{~Rew  T(H, T, %) A (Rew(QSeP) v Rew  ¥(H, T, %)}

The perfect rewriting is similar to Definition 7, except that
in this case the first conjunct checks if there are any ground-
ings of H' C H that are consistent w.r.t. 7 and 3, and then

the second one checks if Rew(Qpﬁsmm(Hl))) holds for each
such grounding. Analogously as before, we have the follow-
ing lemma.



Q[#H] FHtrew(Q) HRew(Q) Hcansmin(Q) Time (sec)
ans(Rew(Q))  cansmin(Q) Test gr(H) FedSPARQL
q113] 12 54 14415 0,6 1,1 40,4 42,7
q2[4] 44 47 1603 0,1 0,2 4,8 6,6
qs[4] 65 69 980 0,3 0,5 3,5 5.4
q4[3] 14 64 60501 2,1 4,6 145,6 163,9
qs[1] 3 6 8742 0,08 0,2 22 32,2

Table 1: Evaluation results for AOMQs over MyITS dataset.

Lemma 7. Take a DL-Liteg TBox T, a set of assumption
patterns H, and a set 3. of predicates. For any database
D consistent with T and any substitution 7 ranging over
adom (D), we have w(y) € ans(qr,D) for some q, €
Rew | (H,T,X) iff there is some H' C H such that D U
w(H') is X-inconsistent with T.

We can now prove the correctness of our rewriting.

Theorem 3. Let Q = (q(%),T,H,X) be a DL-Liter
AOMQC. For every database D, the following are equiva-
lent:

e (a,€) € cansugom(Q, D).

o There exists H' C H, ¢(Z,7) € Rew(Q), and a substi-
tution 7 such that ©(¥) = d, H'n = &€ and 7(Z,y) is an
answer to the FO query o over Ip.

Empirical Evaluation

To demonstrate the potential usefulness of our approach, we
developed a prototype implementation of the AOMQ rewrit-
ing. It was done in Java using Apache Jena 2.11 and Jena
ARQ as SPARQL query engine, and tested on a MacBook
Pro 15 2.7, Sierra OS.

We used the ontology, data, and a data generation tool
from the MyITS project (Eiter, Krennwallner, and Schneider
2013; Eiter et al. 2015). The tool creates ABoxes with asser-
tions for spatial relations like loc Nezt out of OpenStreetMap
data, using parameters such as distance to create large sets
of facts, in addition to other ‘local’ data (e.g., crowd-sourced
restaurant data). Then one can pose queries that need both
parts of data, as well as ontological reasoning, to get answers
(e.g., hotels in residential areas close to a subway station).

Given the geospatial querying example in the introduc-
tion, MyITS is an relevant test case. Indeed, instead of creat-
ing large ABoxes, we may want to keep the access to spatial
data remote. To simulate this scenario, we extracted some
spatial relations and out-sourced their access via a SPARQL
endpoint (using Jena Fuseki). This resulted in two sources:
the local datasets with 227634 RDF triples, and a remote
one with more than 2 million triples. We created 5 AOMQs
based on test queries of Eiter et al. (2015), and treated spatial
atoms as assumption patterns. In this way, we can query the
local datasets and verify in the remote access point whether
the spatial relations hold, only for the relevant candidates.

Table 1 shows for these queries the sizes of rewritings
w.r.t. T, and (7, H), and the size of cans,;,, which gives a
bound on the number of remote tests. We evaluated the time
needed to answer the full rewriting over the local dataset,
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the time to construct the set cans,,;,, and the time to test
remotely the spatial atoms (using SPARQL ‘ask’ queries).
The results show that evaluating Rew(Q) and constructing
cansmin (Q) is very efficient, while testing the assumptions
remotely was more expensive, as expected. In practice, this
delay may be amortized in many cases, e.g., if many queries
share remote tests. As a sanity check, we compared the total
time needed by our approach to posing a federated SPARQL
query (W3C 2013) using both data sources. The latter ap-
proach was slower, even despite the fact that we disregarded
ontological reasoning; naively posing the result of TBox
rewriting as a federated query seems infeasible.

Related Work

Conditional answers were studied since the early nineties,
e.g., to cope with incompleteness in disjunctive deductive
databases (Demolombe 1992). They are related to the prob-
lem of evaluating queries in hypothetically updated states of
databases (Gabbay et al. 1995; Christiansen and Andreasen
1998). Griffin and Hull (1997) rewrite hypothetical queries
into equivalent usual queries which are evaluated using stan-
dard techniques. Recently, ten Cate et al. (2015) define so-
called why-not queries, where an ontology is leveraged to
obtain explanations of why tuples are not an answer, and
study the complexity of obtaining most general explana-
tions. We consider the shape of the explanations to be part
of the input, while focusing on preserving worst-case (data)
complexity. This work is most in line with the work of Cal-
vanese et al. (2013), where negative answers are employed
for describing a tuple of individuals and an associated expla-
nation to why it is not an answer to the given query. Explana-
tions there are ABoxes with assertions over concept and role
names, while here this is generalized to sets of ££7 atoms.
Additionally, we allow for closed predicates.

Closed predicates are very useful to cope with partial in-
completeness, but they can increase dramatically the com-
plexity of reasoning. So far most results were negative, even
for lightweight DLs (Lutz, Seylan, and Wolter 2013; 2015;
Ngo, Ortiz, and Simkus 2016).

Conclusions

We have introduced AOMQs, which are extensions of
OMQs with assumption patterns, designed for leveraging in-
formation when querying incomplete databases. Answering
AOMQs consists of computing conditional answers, which
generally extend the answers of OMQs with tuples that are
made true by the assumptions. In the case of DL-Liter



AOMQs, they remain FO-rewritable even in the presence
of closed predicates. A simple prototype for constructing
and testing minimal conditional answers shows promising
results, and suggests that this approach may be useful in sce-
narios when answering OMQs over all relevant data at once
is costly or infeasible. For future work, it would be interest-
ing to consider different shapes of assumption patterns, and
to extend the evaluation with closed predicates.
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