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Abstract

We propose incorporating human labelers in a model fine-
tuning system that provides immediate user feedback. In our
framework, human labelers can interactively query model
predictions on unlabeled data, choose which data to label,
and see the resulting effect on the model’s predictions. This
bi-directional feedback loop allows humans to learn how
the model responds to new data. We implement this frame-
work for fine-tuning high-resolution land cover segmenta-
tion models and compare human-selected points to points se-
lected using standard active learning methods. Specifically,
we fine-tune a deep neural network – trained to segment high-
resolution aerial imagery into different land cover classes in
Maryland, USA – to a new spatial area in New York, USA
using both our human-in-the-loop method and traditional ac-
tive learning methods. The tight loop in our proposed system
turns the algorithm and the human operator into a hybrid sys-
tem that can produce land cover maps of large areas more effi-
ciently than the traditional workflows. Our framework has ap-
plications in machine learning settings where there is a practi-
cally limitless supply of unlabeled data, of which only a small
fraction can feasibly be labeled through human efforts, such
as geospatial and medical image-based applications.

1 Introduction

Machine learning models are usually imagined as artifi-
cially “intelligent” agents that mimic human autonomy and
generalization abilities: having explored their training envi-
ronment, machine learning models are supposed to choose
their actions independently and reliably in similar situations.
While this notion of intelligence guides the design and test-
ing of new algorithmic ideas, in practice, the resulting algo-
rithms are rarely capable of either autonomy or generaliza-
tion. Instead, human decision-making is present throughout
a AI model’s development and lifetime: researchers and en-
gineers acquire data with a specific goal in mind, then work
on finding and tuning the methods that handle the pecu-
liarities of the data well. When the algorithm is eventually
deployed, it often suffers from domain shift, where slight
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changes in the statistics of real-world input compared to the
training input can degrade performance considerably. Thus,
the algorithm is constantly reevaluated through human mon-
itoring, which may trigger a process requiring repeated data
acquisition and retraining (Sculley et al. 2015). Hence, most
practical deployments are better thought of as examples of
hybrid – rather than purely artificial – intelligence. Active
learning loops can be seen as an approximate model of such
hybrid human-machine intelligence, as long as humans are
allowed deeper involvement than just as labeling oracles.
More specifically, the hypothesis is that if humans are al-
lowed to choose which samples to label, and subsequently
fine-tune a deployed model with, then they will be able to
correct model errors, such as those from input domain shift.

Image segmentation is an ideal task to test hybrid human-
machine intelligence, as segmentation is a natural ability of
humans (Griffiths, Abbott, and Hsu 2016) and one where
humans can exploit the spatial structure of input to identify
errors. Recent work has probed the complementary abilities
of humans and machines on image labeling tasks (Cai et
al. 2019; Nushi, Kamar, and Horvitz 2018). We investigate
whether it is possible to maximize performance on one such
application, land cover mapping from high-resolution satel-
lite imagery, by directly integrating humans into the train-
ing loop instead of isolating the artificially intelligent com-
ponent. Our methods can be applied in settings where the
human-in-the-loop can quickly search and evaluate the de-
ployed model over unlabeled examples. This is the case in
geospatial image labeling tasks and medical image segmen-
tation tasks (e.g., segmenting tumor-infiltrated lymphocytes
in pathology imagery), where unlabeled points have a strong
spatial structure (i.e., points can be thought of as part of a
large continuous image).

We summarize our main contributions as follows:

• We design an interactive web tool that enables users to
test a high-resolution land cover model on any patch of
land on a satellite map, then – in the same interface – re-
label pixels of their choosing and retrain (“fine-tune”) the
model in real time (see Fig. 2).

• We study the effectiveness of the combination of different
active learning query methods with different model fine-
tuning methods in an offline study and find that query-
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Figure 1: National Agriculture Imagery Program (NAIP) aerial imagery (top row) with modeled land cover estimates (bottom
row). Existing supervised learning models, trained for generating land cover labels from aerial imagery, do not generalize well
due to the large spatial and temporal variances in aerial imagery. Creating accurate land cover maps at a massive scale therefore
requires additional human interventions. We propose an interactive model fine-tuning system, coupling human labelers and
machine learning models, for facilitating these interventions.

ing for labels at randomly selected points outperforms or
nearly matches standard active learning query methods
(see Fig. 3).

• In an online user study, we examine how well human la-
belers function as sample query methods compared to
automatic selection methods. We find that humans per-
form significantly better, even compared to learning sys-
tems in which the model is told on which points it is mak-
ing labeling errors (see Fig. 4).

• Furthermore, we show that the value of human-provided
labels increases with the time humans spend using the
tool.

2 Background

Active learning

A traditional active learning setup consists of a parameter-
ized model, an unlabeled ‘pool’ of data, a data query method
(also known as the data selection method), and a labeling
oracle. One iteration of fine-tuning the model consists of 1.)
utilizing the query method to choose data points for labeling,
2.) querying a labeling oracle for the labels, and 3.) fine-
tuning the model parameters to these additional data sam-
ples (Settles 2012).

The purpose of the query method is to pick unlabeled data
that, when labeled, will provide the largest benefit to the
model. In active learning, the learner is allowed to ask for
help by querying the label oracle, but it must know which
samples to request labels for. Conventional approaches ask
the oracle to label instances with low prediction confi-
dence (Zhang 2017; Settles 2012), or consider the similarity
between an unlabeled sample and existing labeled samples
as a selection criterion (Zhang et al. 2018). Another recent
approach models uncertainty in labeling oracles to improve
the efficiency of active learning (Huang et al. 2016). Meta-
learning (or “learning to learn”) active learning query meth-
ods rely on existing labeled datasets drawn from the same

distribution as the unlabeled data pool (Hsu and Lin 2015;
Bachman, Sordoni, and Trischler 2017), and as such will not
be effective when the model must be adapted to work in a
shifted distribution. Finally, query method algorithms suf-
fer from “unknown unknowns”: a model’s self-inspection
does not reliably reveal what it does not model well. This
is the case in most ML algorithms, including deep neural
networks (Nalisnick et al. 2019).

On the other hand, by observing the effects of their deci-
sions on a model being retrained on-the-fly, human labelers
can adapt their own data selection process to reflect not only
their understanding of the data, but also their developing in-
tuition regarding the inner workings of the model and its
adaptation algorithms.

Land cover mapping

Land cover mapping – the segmentation of aerial or satellite
imagery into land cover classes such as “water”, “forest”,
“field/low vegetation”, or “impervious surface” (Fig. 1) –
has attracted reinvigorated interest in machine learning re-
search (Robinson et al. 2019; Demir et al. 2018; Rakhlin et
al. 2018; Tian, Li, and Shi 2018; Kuo et al. 2018). High-
resolution land cover maps are an essential component in
environmental science, agriculture, forestry (Hansen et al.
2013), urban development (Zhang et al. 2013), the insurance
and banking industries, and for demography in developing
countries (Facebook 2019). Satellite imagery is being pro-
duced on an increasingly frequent basis. However, despite
their importance, high-resolution land cover maps are not
yet widely available as neither ML algorithms nor human
labor scale appropriately (Robinson et al. 2019).

To a machine learning or computer vision researcher,
land cover mapping is a semantic segmentation problem.
Machine learning models are not yet able to generate high-
resolution (1m / pixel) land cover labels with performance
that matches human labeling. A major obstacle is that high-
resolution land cover labels for training such models only
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exist in small, specialized locations (Demir et al. 2018;
Rakhlin et al. 2018; Yang and Newsam 2010; Castelluccio et
al. 2015). In (Robinson et al. 2019), it is shown that a state-
of-the-art deep neural network trained on 1m-resolution
images and labels from a much larger (160,000 km2)
dataset (Chesapeake Conservancy 2017) in the Chesapeake
Bay watershed (north-eastern US) still does not perform
well in the mid-western US. Other recent work also utilizes
additional, more broadly available input data (Kampffmeyer,
Salberg, and Jenssen 2018; Malkin et al. 2019; Schmitt et al.
2019); however, all existing land cover models are biased by
the geographic locations on which they were trained. Large
systematic errors in predictions limit their applicability and
are challenging to detect at scale.1 Finally, the classification
tasks are constantly shifting. While one dataset may segment
vegetation simply into “low vegetation” and “tree canopy”,
other applications may require delineating coffee farms from
orchards.

To a Geographic Information Systems (GIS) pro-
fessional, however, land cover mapping is an inherently
human-driven process augmented by technology. Accurate
and useful labels themselves, not a training dataset for ML
algorithms, are the immediate goal. The process typically
starts with color-based segmentation algorithms that cre-
ate initial maps, followed by experts who provide labels
in different areas, creating rules on the fly, and then man-
ually correcting the remaining errors. The labor efficiency
of the process may increase as the humans learn how to use
these tools better, but is not boosted by quick adaptation of
the classification algorithms themselves.2 This makes land
cover mapping at the resolution and scale needed today cost-
prohibitive for most agencies.

A hybrid system for accurate and efficient land cover
labeling would more tightly integrate the human and ma-
chine efforts. Here we investigate a land cover mapping
workflow where users’ work immediately affects the perfor-
mance of prediction algorithms.

Our design, which incorporates human feedback inte-
grated in real time as training points for our model, can be
seen as an instance of machine teaching (Simard et al. 2017;
Zhu 2015), as humans deploy their own intelligence to iden-
tify and correct mislabeled points in an effort to improve the
model. However, our system does not attempt to create an
autonomous entity, capable of generalizing, as the final re-
sult: the ability to efficiently label large areas is the goal, and
the final trained algorithm is but one aspect of the overall
workflow. To a human, the ML model is simply a powerful
macro that they (re)define on the fly in order to amplify their
work. To the ML model, the human is the source of data to
learn from. Together, this hybrid system holds the potential
to outperform existing GIS workflows as well as pure ML
approaches in cost and accuracy.

1For example, imagery of the contiguous US at 1m resolution
covers 8 trillion pixels.

2Typically, separately tuned random forests are used, although
neural networks are rapidly gaining traction.

3 Land cover study design
We focus on the following task: given a pretrained segmen-
tation model, which was trained on 1m-resolution imagery
and a four-class land cover map of Maryland (Chesapeake
Conservancy 2017), we would like to quickly (within at
most 15 minutes) produce accurate maps for regions of 1m-
resolution imagery in New York State. This change in the
geographic region where the model is to be applied repre-
sents a domain shift. We aim to create the map of each region
by slightly changing the parameters of the Maryland model
to fit a limited number of guidance points in the new areas.

We vary two parameters in our study: the fine-tuning
method and query method.

The fine-tuning method is the algorithm for retraining
the model to fit new guidance points. Such a method needs
to be fast and sample-efficient. As we have ground truth data
in the entire Chesapeake watershed, including Maryland and
N.Y., various choices for fine-tuning can be evaluated of-
fline.

The query method is the method for selecting guidance
points on which to fine-tune the model on a new region. The
main object of our study is to compare automatic methods,
such as random selection or active learning approaches, to
hybrid (human-guided) methods, where users iteratively
view the current model’s predictions, correct the labels at
points of their choice, and trigger model retraining. The tra-
ditional active learning approaches to automatic selection of
points to query can also be studied offline on a fully labeled
dataset (Sec. 4).

We implement the hybrid (human-guided) method by
developing a web tool that allows users to iterate between
labeling and testing the model (Fig. 2). The tool exploits
the spatial nature of the data in the task, allowing the user
to zoom and pan in the high-resolution imagery of an area
to find areas where they want to test the current algorithm.
Upon a click on the map, the prediction of the current model
on a surrounding 500m×500m patch of land is overlaid on
the map. The user can then label pixels of their choice, either
where they see errors or for some other reason they think that
the label will be useful. They can induce near-instant retrain-
ing of the model at any time with the click of a button. After
that, they can check how well the retrained model works by
clicking on the imagery again.

Base segmentation model

Our base segmentation model takes input patches of high-
resolution (1m) four-band aerial imagery from the USDA
National Agriculture Imagery Program (NAIP) and outputs
a segmentation of the image (per-pixel classification) over
four land cover classes (water, forest, field, impervious sur-
faces). The default training label datasets are from (Chesa-
peake Conservancy 2017).

The model is a modified U-Net model (Ronneberger, Fis-
cher, and Brox 2015; Rakhlin et al. 2018) (a type of convolu-
tional neural network) that contains four down-sampling and
four up-sampling layers and skip connections between them.
For down-sampling, we use a simple 2×2 max-pooling.
For up-sampling, we use deconvolution (transposed convo-
lution). Before each down-sampling and up-sampling layer,
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Figure 2: User interface of our land cover labeling tool. (A) Land cover prediction results are overlaid on top of the map. (B)
The user can easily identify misclassified pixels and (C) submit corrections by clicking on the map. (D) Pressing “Retrain”
updates the model and displays new land cover predictions in the interface. In this example, the user provided a handful of point
corrections in the impervious surface initially misclassified as water.

we insert two convolutional layers. The first two convolu-
tional layers have 32 3× 3 filters. Group normalization (Wu
and He 2018) is applied after the second convolution in ev-
ery layer followed by ReLU. Valid padding is used in all
layers making the predicted output smaller than the input.
The number of filters is doubled after each pooling layer, the
representational bottleneck layers use 512 3 × 3 filters. We
trained the network for 100 epochs on ∼ 90000 randomly
selected image patches of size 240 x 240 sampled from the
state of Maryland. We used the Adam optimizer (Kingma
and Ba 2014) with cross-entropy as segmentation loss and
an initial learning rate of 0.001 decaying to 0.0001 after 60
epochs.

Formally, given parameters θ and an image X =
{xijk} ∈ R

w×h×c (where c = 4 is the channel depth and
w× h are the image dimensions), the model outputs a prob-
ability distribution over the target classes at each pixel, i.e.,
f(θ,X) ∈ D(n)

w×h, where D(n) is the probability simplex
on the n = 4 output classes. This yields distributions over
labels Pθ(ŷij |X) for each coordinate (i, j).

4 Offline active learning experiments

As discussed in Sec. 3, we investigate different methods for
fine-tuning a pre-trained model and querying for new label

data in a different domain. In these experiments, and in the
online experiments described in Section 5, the new domain
is imagery from four 84km2 areas in New York. Our offline
experiments are meant to identify the optimal fine-tuning
and query methods, which are then used in online user stud-
ies. In our offline experiments, the base segmentation model
is adapted to a small number – 10 to 2000 – of automati-
cally chosen labeled pixels (less than 0.01% of each target
area). Then the performance is evaluated on the entirety of
the target areas.

Fine-tuning methods

The following fine-tuning methods were tested:
LAST k LAYERS Following (Yosinski et al. 2014), the fi-

nal k convolutional layers in the U-net architecture have
their weights exposed as trainable via gradient descent
(initialized from the weights of the base model), while
all other parameters in the network are held fixed. Here,
k ∈ {1, 2, 3}.

GROUP NORMALIZATION PARAMETERS Inspired by the
success of feature-wise transformations (Dumoulin et al.
2018) in neural style transfer (Dumoulin, Shlens, and
Kudlur 2016) and visual question answering (Perez et al.
2018), we extended it for model fine-tuning. Our U-net
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Last 1 Layer Last 2 Layers Last 3 Layers Group Params Dropout
Query method Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

Baseline 0.725 0.510 0.725 0.510 0.725 0.510 0.725 0.510 0.725 0.510
Random 0.806 0.608 0.825 0.677 0.824 0.658 0.791 0.562 0.787 0.597
Entropy 0.736 0.501 0.731 0.587 0.765 0.572 0.760 0.520 0.741 0.550
Min-Margin 0.811 0.608 0.834 0.701 0.832 0.685 0.793 0.580 0.785 0.601
Mistakes 0.729 0.551 0.781 0.631 0.756 0.621 0.787 0.575 0.762 0.609

Table 1: Results of fine-tuning on 400 points selected by different query methods, averaged over four target areas and five
random seeds.

architecture uses group normalization (Wu and He 2018)
in the final convolutional layers. The group normaliza-
tion parameters affect large groups of filters in each layer
via a single affine transformation, with the assumption
that filters within a group are correlated. Thus, training
these parameters to fit new training points causes corre-
lated changes in the layers’ outputs, providing a regular-
ized mechanism to affect the entire network, in contrast
with full backpropagation, which affects all weights in the
chosen layers.

DROPOUT We effect dropout, i.e., set the outputs of a fixed
subset of the neurons to 0, in the final k convolutional
layers. Searching for the binary mask that minimizes a
loss is a discrete optimization problem, which we solve
using a simple genetic algorithm. Here we use k = 5 and
a mean dropout rate of 0.2, but we conducted only limited
experiments due to the high cost of this method, which
requires evaluation of the model at all sample points at
each of 64 mutation iterations.

In our experiments the Last k Layers and Group Params
methods are implemented using the Adam optimizer for 10
epochs, ε = 10−5. Learning rates were set as follows: 0.01
for last 1 layer, 0.005 for last 2 layers, 0.001 for last 3 layers,
and 0.0025 for group parameters.

Query Methods

Motivated by (Zhang 2017; Settles 2012), we also investi-
gated three query methods for selecting the additional 10
to 2000 labeled pixels used by the fine-tuning methods:

RANDOM Sample points (i∗, j∗) uniformly randomly from
the training area.

ENTROPY Select points which maximize the Shannon en-
tropy of output distributions over classes:

(i∗, j∗) =

argmax(i,j)

(
−
∑
�

Pθ(ŷij = �|X) logPθ(ŷij = �|X)

)
.

MIN-MARGIN Select points which minimize the differ-
ence between probabilities assigned to the most-likely and
second-most-likely classes:

(i∗, j∗) =

argmin(i,j)
(
Pθ(ŷij = �1ij |X)− Pθ(ŷij = �2ij |X)

)
,

where �1ij and �2ij are the two most likely classes under
Pθ(ŷij |X).

We also include the following method, the purpose of
which is to make a comparison with humans selecting mis-
take points in our online study. It is not an automatic query
strategy, as it assumes the model has access to an all-
knowing labeling oracle before it chooses where to query
the oracle for labels. It simply imitates a teacher that feeds
randomly chosen mistake points to the model.

MISTAKES Uniformly sample points (i∗, j∗) where the
model’s prediction disagrees with the ground truth.

Results

Because it is prohibitively costly to select points using the
ENTROPY, MIN-MARGIN, and MISTAKES methods at ev-
ery training iteration, we approximate this procedure by
batching: periodically evaluating the model on the training
area and selecting the optimal points among a large set of
10000 uniformly sampled locations. Namely, we evaluate
the model and select a new batch of points after 10, 40, 100,
200, 400, 1000, and 2000 points have been chosen.

The experiments are repeated five times with differ-
ent random seeds for each combination of the adaptation
method, point selection strategy, and target area. The av-
erage adaptation performance when methods use only 400
labeled pixels – close to the number labeled by users in our
online studies – is shown in Table 1, while the variation in
accuracy across the whole range of additional training points
is shown in Figure 3. (See also the supplemental materials -
https://aka.ms/human-machine-2020-si - for the full set of
curves.)

For all fine-tuning methods, we observed a similar rank-
ing of the performance of active learning query methods,
with MIN-MARGIN performing best, but only slightly bet-
ter than RANDOM, and ENTROPY performing worst. Most
interestingly, the MISTAKES method performs significantly
worse than RANDOM: even giving the model access to
ground truth knowledge does not improve performance. On
the other hand, in online experiments (Sec. 5), we show that
replacing this mock “uniform teacher” with a human teacher
does improve performance.

5 Online study of the hybrid labeling system

As can be seen from the indicated confidence intervals in
Fig. 3, it is not clear that we can expect any of the active
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Figure 3: Performance of different fine-tuning methods
(top) and query methods (bottom), mean and standard devi-
ation over 5 runs and 4 target areas. At several stages – after
10, 40, 100, 200, 400, 1000, and 2000 points have been seen
– the system selects a further set of training points using the
given query method and retrains the model using the fine-
tuning method. The performance of the model evaluated on
the entire target region tends to improve as more points are
seen.

learning methods to outperform random selection of data
points to label, as was previously often observed in active
learning literature (Settles 2011). Thus, we test our hybrid
labeling system – the HUMAN query method – against the
RANDOM point query method. As the LAST 1 LAYER and
LAST 2 LAYERS fine-tuning methods tend to perform best
in the offline experiments, we also choose them for use in
online experiments. 3

Setup

We recruited 50 users4 through Amazon Mechanical Turk
to implement the HUMAN method using the web interface
and interactions described in Sec. 3. Users use the web tool
in a series of 15-minute tasks. A task is performed in one

3Precisely, LAST 1 LAYER was full adaptation of the 64 × 4
parameters in the last (softmax) layer (gradient descent to conver-
gence on all user-supplied points), while LAST 2 LAYERS was a
fixed number of iterations of gradient descent on the parameters of
the last two layers.

4See the supplemental materials - https://aka.ms/human-
machine-2020-si - for more details on the study setup.

of four distinct 84km2 areas in New York and using one of
two fine-tuning methods chosen above. Before each task, the
model is reset to the baseline, pretrained only on data from
Maryland. Each user performs four tasks (one for each area,
in a random order): in the first three tasks, the user uses one
type of fine-tuning method, while in the fourth task the other
fine-tuning method is used. Such an assignment allows us to
separate the first task – during which the user is getting used
to the tool – from tasks 2 and 3, where the user is assumed to
be doing their best work, and from task 4, where the learn-
ing system changes its behavior (i.e. where the fine-tuning
method changes). This allows us not only to measure the
variation in performance across users, fine-tuning method,
and areas, but also to see if the users are building an under-
standing of how the model and its adaptation work. Users
are able to query the model, submit labels, and retrain the
model at will during each task (see Sec. 3).

We use a standard crowdsourcing setup in the Amazon
Mechanical Turk system to acquire unbiased ground truth
labels on the same four areas in New York – we refer to
these labels as the “crowdsourced ground truth labels”5. We
collected a total of 6009 labels on randomly selected points,
from 54 unique labelers, resulting in a dataset of 3441 unam-
biguous labeled points. These labels agree with the Chesa-
peake ground truth data 91.1% of the time, which is in line
with that data product’s published quality estimates (Chesa-
peake Conservancy 2016).

Now, during each task, every time the user induces re-
training of the model, we calculate that model’s performance
on the set of crowdsourced ground truth labels from the area
in which they are working. We compare this method with
the RANDOM query method using the crowdsourced ground
truth dataset. In the crowdsourced labeling task, users take
∼ 3 seconds to label each pixel they are shown. Thus, in
a 15-minute window, they could provide labels on ∼ 300
randomly sampled points. A central question is that of label
efficiency: is human time and money best spent by labeling
the central pixels of random patches of aerial imagery (hu-
man as label oracle) or by using our interactive tool (human
as query method and label oracle)?

Results

The subplots in Figure 4 show accuracy and mean
intersection-over-union (IoU) of intermediate models
achieved at different times in the 15 minute fine-tuning
sessions, averaged across users. In the case of the RANDOM
method, we assume that 300 points are added at uniform
time intervals and the model is retrained every 45 seconds.
As the model for a specific user will fluctuate in perfor-
mance over the duration of a single session – users pick up
on different deficiencies in the base model at different points
during a session – we summarize the HUMAN method as a
whole by averaging performance metrics over sets of users.
Models fine-tuned using the HUMAN query method consis-
tently outperform models that are fine-tuned with RANDOM
queried points, within 3 minutes of labeling (∼ 60 samples).

5See the supplemental material for further details about the
“crowdsourced ground truth labels.
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Figure 4: Performance of HUMAN and RANDOM query methods for model fine-tuning in a 15-minute time window, measured
in pixel accuracy (Left) and mean IoU (Right). Mean user performance is calculated over the top 50% of users and considers
sessions using the LAST 2 LAYER fine-tuning method. Random performance is averaged over 10 seeds, with points assumed to
be added every 3 seconds. Both methods are averaged over the same four target areas.

Figure 5: Distribution of HUMAN points versus RANDOM
points in terms of the base segmentation model’s class en-
tropy at each point (Top) and the distance to nearest (Canny)
edge at each point (Bottom).

The top curve in Fig. 4 shows the best model over all users
at each point in time, showing that some expert users are in
fact able to dramatically outperform RANDOM.

Further analyzing our user results across the four consec-
utive tasks, we find that users’ area-adjusted performance
in task 2 is highly predictive of their performance in task 3
(p < 0.01, rank-correlation ρ = 0.4): of the top 25 (half)
of users ranked by (IoU) performance in task 2, 17 are also
among the top 25 in task 3. Thus, the better-performing
labelers are detectable in a statistically significant manner.

This indicates that the users are developing different lev-
els of intuition about the inner workings of the network and
the fine-tuning method. In addition, the performance of the
users in tasks 2 and 3 is far less predictive (ρ = 0.1) of
their performance in task 4, where the fine-tuning method is
switched.

An analysis of points submitted by all users in an area
show that the users are not choosing points to label at
random. Different users are drawn to similar parts of the
study areas, while other parts remain unlabeled by most
users. Figure 5 shows the distribution of points added by
users compared to those sampled randomly in terms of their
distance to the nearest canny edge in the underlying im-
agery, and the class entropy predicted by the base segmen-
tation model at the points. We observe that these distribu-
tions are distinctively different; users select points that are
closer to edges and are more likely to select points from
the mid-entropy ranges. We visualize the distribution of user
points in the supplemental material - https://aka.ms/human-
machine-2020-si.

Our offline experiments with the MISTAKE method in-
dicate that the model simply knowing where its errors are
cannot automatically beat the RANDOM selection of points
for labeling. This indicates that human guidance goes be-
yond simply quickly spotting errors, especially for best
performers, reminiscent of the super-teacher idea (Ma et al.
2018). Text feedback from users (see supplemental material)
provides further interesting insights that should be useful in
the design of hybrid systems of this kind.

6 Discussion

We have conducted a study of hybrid human-AI intelli-
gence on the task of high-resolution land cover mapping. We
demonstrate that giving control of the data selection process
to the human yields significant improvements in model ac-
curacy - compared to strictly algorithmic methods - in the
land cover mapping task.

Our results show that, by injecting the human into the
learning loop, gains from both the human and the AI labor
are amplified, not replaced. For the machine, sparse but well-
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chosen human feedback reduces the cost of computational
resources needed to adapt models. For the human, increased
sample efficiency of the ML systems acts like an ever-more
useful wand with which they can paint land cover. Together,
this collaboration achieves critical cost reduction in practi-
cal problems. The Chesapeake Bay dataset was created in
10 months at a cost of $1.3 million, though it covers just
2% of the US (Chesapeake Conservancy 2017) with an esti-
mated accuracy of 90%-95%. The best user from our study,
averaged over the four target areas, achieved an accuracy
of 89.1% in just one hour of labeling work.6 If such users
were to label the entire Chesapeake Bay watershed using
our method, this would take 925 hours of work at a labor
cost of $18.5k. Of course, other tradeoffs between accuracy
and cost are possible by allowing users to work longer on
each area or even to work collaboratively.

We hypothesize that the performance improvements we
observe in the HUMAN method are due to users develop-
ing a theory of mind for the ML system - learning to un-
derstand the workings of a particular AI algorithm (in the
context of a given task) and therefore learning which la-
bels it would benefit from observing. Our online experiment
tests for this property in a single dimension - we measure
user performance across 4 tasks, however in the 4th task we
switch the fine-tuning method without informing the users.
We do observe a decrease in performance in the 4th task,
however cannot conclude that this drop in performance is
because users have formed a theory of mind for the first
fine-tuning method, that is subsequently broken by switch-
ing the task. Follow up studies should test whether this prop-
erty holds when controlling for more variables in the same
setting (e.g. time taken for fine-tuning or different measures
of task engagement), and whether it holds in other settings
(e.g. in tasks of different complexities and running times).
Crowdsourced workers have been shown to be effective even
in complicated tasks and have been utilized in combination
with ML models to achieve large-scale labeling goals (Ka-
mar, Hacker, and Horvitz 2012). Understanding how humans
interact with, and indeed, can collaborate with ML models
is thus an important component of tackling other large scale
problems.

Complementary to the why questions surrounding human-
machine collaboration are practical questions of what works
best in different settings. Our proposed framework requires
both a fine-tuning method and query method and future
work should explore the interaction between choices made
to implement these parts. Our offline experiments aimed to
test a diverse set of fine-tuning methods: LAST k LAYERS
expose a relatively large set of parameters to be fit with SGD
based methods, GROUP NORMALIZATION PARAMETERS, in
contrast, exposes an (engineered) set of few parameters that
are also fit with SGD based methods, while DROPOUT uses
a local-search algorithm over discrete choices (dropout pat-
terns) to fit newly labeled data. Other choices that can be

6This number is in line with the recent state-of-the-art algo-
rithm (Malkin et al. 2019) which uses 30m low-resolution labels
as additional data. Our approach does not rely on the existence of
such low-resolution labels.

tested in diverse application settings include: fitting smaller
non-linear models (e.g. random forests) using the base seg-
mentation model as a feature extractor, or deciding on sets
of parameters (throughout the entire model) to fit in an of-
fline study. Design decisions for the interface that human
labelers use should also be considered thoroughly. For ex-
ample, our interface requires the human labelers to manu-
ally trigger a model retraining, however this could be per-
formed automatically with some set frequency. Increasing
this frequency tightens the feedback loop that users will ex-
perience between submitting labels and observing the effects
on model performance.

In all cases, in problems of massive scale where unlabeled
data is practically limitless, such as land cover labeling, it is
not likely that a few months of labeling through our tool
would create enough training data that the need for human
labor would disappear. Instead, applications that are now in-
feasible, such as quick generalization to new areas or addi-
tion of new target classes (shown in supplemental materials),
would become feasible, making both the ML algorithms and
human labor more valuable than before.

Supplemental Materials

The supplemental material for this paper can be found at
https://aka.ms/human-machine-2020-si.
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