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Abstract

The weighted graph coloring problem (WGCP) is an impor-
tant extension of the graph coloring problem (GCP) with wide
applications. Compared to GCP, where numerous methods
have been developed and even massive graphs with millions
of vertices can be solved well, fewer works have been done
for WGCP, and no solution is available for solving WGCP for
massive graphs. This paper explores techniques for solving
WGCP, including a lower bound and a reduction rule based
on clique sampling, and a local search algorithm based on two
selection rules and a new variant of configuration checking.
This results in our algorithm RedLS (Reduction plus Local
Search). Experiments are conducted to compare RedLS with
the state-of-the-art algorithms on massive graphs as well as
conventional benchmarks studied in previous works. RedLS
exhibits very good performance and robustness. It signifi-
cantly outperforms previous algorithms on all benchmarks.

Introduction
Graph coloring problem (GCP) is a well-known combinato-
rial optimization problem. In classical GCP, a basic assump-
tion is that vertices in the graph are equally important, how-
ever, it is hard to hold in many real world scenarios where
each vertex is associated with various types of weights. The
paradigm of dealing with such vertex weighted graph refers
to the weighted graph coloring problem (WGCP) as a form
of vertex colouring, which is also known as the weighted
vertex coloring problem or max-coloring problem. Formally,
WGCP aims to partition all the vertices into several disjoint
subsets such that the sum of those subset costs is minimized,
where the cost of each subset is given by the maximum
weight of a vertex within the current subset. WGCP has been
widely used in many fields (Ribeiro, Minoux, and Penna
1989; Hochbaum and Landy 1997; Gavranovic and Finke
2000; Pemmaraju, Raman, and Varadarajan 2004). Also,
WGCP can be directly encoded as the maximum weight
stable set problem (MWSS) (Cornaz, Furini, and Malaguti
2017).

WGCP is an NP-hard problem (Garey and Johnson 1979).
Assuming that NP �=ZPP, the best approximation ratio of
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WGCP is n1−ε for all ε > 0 (Zuckerman 2006), result-
ing in intractable computations. Although GCP is exten-
sively studied and numerous methods (Verma, Buchanan,
and Butenko 2015; Peng et al. 2016; Lin et al. 2017;
Zhou, Duval, and Hao 2018; Hébrard and Katsirelos 2018;
2019) have been developed to solve GCP on graphs with
various types and sizes, the GCP methods cannot be directly
applicable for WGCP due to its additional features and hard-
ness. Naturally, WGCP nowadays is still a challenging prob-
lem.

During the past decades, many efforts have been made
for handling WGCP. Several exact algorithms have been de-
signed to solve WGCP. For example, Ribeiro et al. (1989)
combined branch and bound as well as column genera-
tion techniques in a very efficient manner to solve WGCP.
The branch and price based WGCP algorithm (Furini and
Malaguti 2012) followed a classical rule from traditional
GCP to deeply exploit the problem structure. Besides, a re-
cent work (Hsu and Chang 2016) provided the upper bound
on the smallest number of colors needed in an optimal
WGCP solution in terms of the ratio of the maximum vertex
weight and the minimum vertex weight. Those exact WGCP
algorithms can prove the optimality of the obtained solu-
tions, but they may fail to solve the problem within reason-
able time, especially for massive graphs.

To address this, some approximate but fast heuristic
WGCP algorithms have been developed. A greedy ran-
domized adaptive search procedure GRASP was designed
for finding approximate solutions to WGCP, which used
constructive and destructive moves and a filtering tech-
nique (Prais and Ribeiro 2000). A two-phase algorithm
(Malaguti, Monaci, and Toth 2009), called 2Phase, gener-
ated a large number of feasible solutions by fast greedy
heuristics in the first phase and computed the solutions using
a Lagrangian-based heuristic method in the second phase.
According to the literature, the current best heuristic al-
gorithm for WGCP, namely AFISA (Sun et al. 2018), re-
lied on a mixed search strategy exploring both feasible and
infeasible solutions. Although the AFISA has empirically
achieved competitive performance on conventional graphs,
it involves high-complexity heuristics, making it less effi-
cient for massive graphs such as social networks (Rossi and
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Ahmed 2015).
Motivated to contribute to solving WGCP problems with

massive graphs, in this paper we propose a novel efficient
WGCP algorithm, namely RedLS (Reduction plus Local
Search). RedLS consists of two stages as below. In the first
stage, we propose a lower bound and a novel reduction rule,
which are based on clique sampling that will be introduced
later. The iterated application of the reduction rule results
in a reduction procedure, which is empirically shown to
be able to significantly reduce the size of the graphs. In
the second stage, we design a novel local search algorithm.
There are two main ideas in our local search algorithm.
Firstly, we define some candidate operation sets and pro-
pose two selection rules to decide which operation should
be selected effectively. Secondly, we introduce a new variant
of configuration checking (CC) (Cai, Su, and Sattar 2011;
Wang, Cai, and Yin 2016; Wang et al. 2018) to deal with
the serious cycling problem of local search. During the local
search procedure, this strategy forbids the algorithm moving
some candidate vertices.

We conduct a number of experiments to evaluate RedLS
on conventional benchmarks used in previous studies as well
as a benchmark of massive graphs. Experimental results in-
dicate that RedLS almost always finds better solutions than
other previous state-of-the-art WGCP algorithms.

In the next section, we introduce some necessary back-
ground knowledge. Then, we introduce a lower bound and
a novel reduction rule in Section 3. Section 4 describes the
local search algorithm and relevant proposed ideas. Exper-
imental evaluations of the RedLS algorithm are shown in
Section 5. Finally, we give some concluding remarks.

Preliminaries

Definitions and notations

Let G = (V,E) be an undirected graph where V ={v1, v2,
. . . , vn} is the set of vertices and E = {e1, e2, . . . , em} is
the set of edges. Each edge is a 2-element subset of V . For
an edge e = (v, u), we say vertices v and u are the end-
points of edge e. A vertex weighted graph G = (V,E,w) is
an undirected graph where each vertex v ∈ V is associated
with a positive weight w(v). The neighborhood of vertex v
is N(v) = {u ∈ V |(v, u) ∈ E}, and the degree of vertex v
is defined as d(v) = |N(v)|.

A feasible coloring S is a partition of the vertex set
V into independent sets S = {V1, V2, . . . , Vk} such that
no two adjacent vertices are in the same Vi (i.e., 1 ≤
i ≤ k). Thus, |S| is the number of colors. The weighted
graph coloring problem (WGCP) is to find a feasible col-
oring S = {V1, V2, . . . , Vk} which minimizes cost(S) =∑k

i=1 maxv∈Vi
w(v). Notice that the number of colors is un-

known before the optimal solution is found.
During the local search algorithm, we maintain a par-

tition of the vertex set V . Generally, any partition S =
{V1, V2, . . . , Vk} of the vertex set V is a candidate solution
of WGCP. For any candidate solution S, an edge is a conflict
edge if its two endpoints appear in the same Vj (1 ≤ j ≤ k),
and CE(S) = {e′1, . . . , e′t} is the set of conflict edges under
S. A candidate solution S is feasible iff CE(S) = ∅.

For a vertex weighted graph G, a weighted clique C of G
is a subset of V where each pair of vertices in C is adjacent,
and a weighted clique is maximal if it is not included in a
clique with a bigger weight.

Conflict Value and Scoring Function

For a candidate solution S, we define its conflict value as the
number of conflict edges. When the algorithm is equipped
with an edge weighting mechanism, this concept is gener-
alized to take into account the edge weights. Edge weight-
ing belongs to constraint weighting techniques, which are
usually used to diversify search. Our algorithm also uses an
edge weighting mechanism, which associates an additional
property (i.e., edge weight) we(ei) to each edge ei. The edge
weights are all initialized as 1 and updated during the search.
Considering edge weights, the conflict value of a candidate
solution S is defined as

g(S) =
∑

e′i∈CE(S)

we(e
′
i).

Obviously, S is a feasible coloring iff g(S) = 0. Suppose
S is a candidate solution, operation 〈v, Vi, Vj〉 is defined as
moving vertex v from its color class Vi to a different color
class Vj , which leads to a neighboring candidate solution
of S. We use score(v, Vi, Vj) to denote the change on the
conflict value of g(S) for operation 〈v, Vi, Vj〉. Formally,

score(v, Vi, Vj) = g(S)− g(S′),

where S′ = S ⊕ 〈v, Vi, Vj〉 is obtained from S by moving
vertex v from color class Vi to color class Vj . Therefore, if
the algorithm performs an operation with a positive score,
the conflict value would be decreased.

Lower Bound and Reduction Rule

In this section, we introduce a lower bound method and a
novel reduction rule for WGCP. Both the methods rely on a
technique of sampling maximal weighted cliques.

Clique Sampling and Formal Notions

Both the lower bound and the reduction rule are based on
clique sampling. We first introduce the algorithm used for
sampling maximal weighted cliques, and the key concepts
that will be used in the lower bound and reduction rule.

We apply a simplified version of FastWClq (Algorithm
1) (Cai and Lin 2016) to get some maximal weighted
cliques. The simplified FastWClq samples some random
vertices from V (line 1). In our work, |StartSet| =
|V |/100. During each iteration (lines 2-8), FastWClq ob-
tains a maximal weighted clique C and puts it into CliSet
(line 8). In a weighted clique construction procedure, the al-
gorithm first picks a random vertex from StartSet as the
starting vertex from which a weighted clique is extended
(lines 5-7). At last, the algorithm returns all found maxi-
mal weighted cliques CliSet = {C1, C2, . . . , Ct} where
t = |StartSet|. 1

1We allow two cliques in CliSet share the same vertices and
even some cliques in CliSet are the same maximal clique.
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Algorithm 1: a simplified version of FastWClq (G)
Input: a weighted graph G = (V,E,w)
Output: maximal weighted cliques CliSet

1 CliSet := ∅, StartSet := some random vertices from
V ;

2 while StartSet �= ∅ do
3 pick a random vertex v from StartSet;
4 StartSet := StartSet \ {v}, C := {v},

CandSet := N(v);
5 while Candset �= ∅ do
6 select u with the biggest∑

u′∈(N(u)∩CandSet) w(u
′) value and

C := C ∪ {u};
7 CandSet := (CandSet \ {u}) ∩N(u);
8 CliSet := CliSet ∪ C;
9 return CliSet;

In the following, we propose an operation ⊗ on weighted
cliques, which is important to the lower bound and reduc-
tion rule. To give the definition, it is necessary to first ar-
range the cliques in a proper way. Let l denote the maximum
clique size (number of vertices) in CliSet. For any clique in
CliSet with size smaller than l, we put virtual vertices with
weight 0 into the clique to make its size become l. Also, the
positions of vertices in a clique are arranged in a descend-
ing order of the weight values. Formally, the operation ⊗ is
defined as follows:

Definition 1 For some weighted cliques C1, C2, . . . , Ct,
SM = C1 ⊗ C2 ⊗ . . . ⊗ Ct = {V1, V2, . . . , Vl} =
{{v11 , v21 , . . . , vt1}, . . . , {v1l , v2l , . . . , vtl}}, s.t.

(i) V ′ = C1 ∪ C2 . . . ∪ Ct;
(ii) l = max1≤i≤t{|Ci|};

(iii) Ci = {vi1, vi2, . . . , vi|Ci|};

(iv) ∀i ∈ [1, t], w(vi1) ≥ w(vi2) ≥ . . . ≥ w(vi|Ci|), and
w(vi|Ci|+1)=w(v

i
|Ci|+2)=. . .=w(v

i
l)=0 if |Ci| < l.

Note that we allow that vertex v ∈ V ′ can appear in
different subsets Vi, Vj ∈ SM , for 1 ≤ i, j ≤ l. Thus,
SM = {V1, V2, . . . , Vl} is called a “relaxed” partition set
of V ′ and cost(SM ) =

∑l
i=1 maxv∈Vi

w(v).

Lower Bound

This subsection introduces a lower bound for WGCP.

Proposition 1 Given a vertex weighted graph G=(V,E,
w), maximal weighted cliques CliSet={C1, C2, . . . , Ct} in
it, and SM = C1 ⊗ C2 . . . ⊗ Ct, then cost(SM ) is a lower
bound of WGCP on G (i.e., the cost of optimal solution is at
least cost(SM )).

Proof: Suppose that there exists a better solution S′ with
cost(S′) < cost(SM ). The first difference between S′
and SM is the hth vertex in Cr (h ≥ 1, r ≥ 1).
Thus, we denote S′ = {V ′

1 , V
′
2 , . . . , V

′
z} = {.., {v1h,

. . . , vr−1
h , vrb , ..}, . . . , {v1x, . . . , vr−1

x , vrh, ..}, . . .}. Then, we

define S′′ = {V ′′
1 , V ′′

2 , . . . , V ′′
z }, which is almost the same

as S′, with the following two exceptions: V ′′
h = V ′

h \ {vrb}∪{vrh} and V ′′
x = V ′

x \ {vrh}∪ {vrb}, i.e., modifying (only) the
first difference between S′ and SM to be the same as SM .
The key idea is to modify S′ step by step until S′ becomes
SM , and in this procedure the cost is never increased.

Now, we will prove that cost(S′′) ≤ cost(S′). We use
w1 and w2 to denote the biggest weight value in V ′

h \ {vrb}
and V ′

x \ {vrh}, respectively. w1 ≥ w2 and w(vrh) ≥ w(vrb )
since we descend the position of vertices in each clique ac-
cording to the weight value. Thus, cost(S′) − cost(S′′) =
max{w1, w(v

r
b )}+max{w2, w(v

r
h)}−max{w1, w(v

r
h)}−

max{w2, w(v
r
b )}. There are 6 possibilities, which are di-

vided into two cases as follows:
(1) The case w1 ≥ w2 ≥ w(vrh) ≥ w(vrb ) and w(vrh) ≥

w(vrb ) ≥ w1 ≥ w2. Thus, cost(S′)− cost(S′′) = 0;
(2) The case w1 ≥ w(vrh) ≥ w2 ≥ w(vrb ), w(v

r
h) ≥ w1 ≥

w2 ≥ w(vrb ), w1 ≥ w(vrh) ≥ w(vrb ) ≥ w2 and w(vrh) ≥
w1 ≥ w(vrb ) ≥ w2. Thus, cost(S′)− cost(S′′) ≥ 0.

According to (1) and (2), we find that cost(S′′) ≤
cost(S′). We repeat the above process (i.e., modifying the
first difference between S′′ and SM ) to improve the S′′,
and conclude that S′′ will become the same as SM . At
last, cost(SM ) = cost(S′′) ≤ cost(S′). The hypothesis of
cost(S′) < cost(SM ) is not valid.

Note that cost(SM ) is the lower bound of G′ = (V ′, E′)
where V ′ = C1 ∪ C2 . . . ∪ Ct. Thus, the WGCP’s solution
value of G must be at least cost(SM ). �

The lower bound helps to prove the optimality for some
instances. If the algorithm finds a solution whose cost meets
the lower bound, then it is proved to be optimal.

Reduction Rule

In this subsection, we propose our reduction rule exploiting
clique sampling, which is used to reduce the size of the orig-
inal graph.

Reduction Rule: Given a vertex weighted graph G =
(V,E,w), maximal weighted cliques CliSet = {C1, C2,
. . . , Ct} in it and SM = C1 ⊗ C2 ⊗ . . . ⊗ Ct = {V1, V2,
. . . , Vl}. For ∀u ∈ V , let k(u) = d(u) + 1, if k(u) ≤ l
and w(u) < maxvj∈Vk(u)

w(vj), the optimal cost of G is
unchanged after removing vertex u from G.
Proof of the soundness of the rule: Let us consider a ver-
tex u with k(u) ≤ l. In the following, u is explicit from
the context, and thus we simply use k to denote k(u). We
will prove that if w(u) < maxvj∈Vk

w(vj), then removing u
from G does not have impact on the optimal cost of WGCP
on G.

For convenience, we use vmax
j to denote the vertex with

the biggest weight in Vj (1 ≤ j ≤ l), and if some vertices
in Vj have the same biggest weight, then among them we
randomly pick a vertex as vmax

j .
Since k ≤ l, according to the definition of operation ⊗,

there exists a weighted clique C in CliSet such that |C| ≥ k
and vmax

k is the kth vertex in C. Also, the definition of op-
eration ⊗ allows us to have the weights of the first k vertices
in C not smaller than w(vmax

k ). Here, we will prove that
u /∈ C. We have two cases. 1) |C| > k. Since C is a clique
containing at least k + 1 vertices, the degree of each vertex
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in it is at least k. But d(u) = k − 1, so u /∈ C; 2) |C| = k.
Because the weight value of any vertex in C is not smaller
than w(vmax

k ) and w(u) < w(vmax
k ), u /∈ C. Together, we

know u /∈ C. Thus, C ⊆ V \ {u}.
Suppose S′ is an optimal WGCP coloring of the subgraph

induced by V \ {u}. In the following, we will prove the op-
timal WGCP coloring of V is cost(S′). As this induced sub-
graph contains the clique C, the first k vertices in C are col-
ored using k colors, and let us denote this color set as K. On
the other hand, N(u) is colored using at most d(u) = k − 1
colors. Therefore, S′ is extended to an optimal WGCP color-
ing S∗ of the original graph in this way: assign u with a color
in K that is not assigned to any vertex of N(u). Recall that
the weights of the first k vertices in C are not smaller than
w(vmax

k ), which is larger than w(u). Thus, for all colors in
K, there is always at least one vertex whose weight is larger
than w(u), so the coloring of u does not increase the optimal
cost, i.e., cost(S′) = cost(S∗). �

The proposed reduction rule is inspired by the reduction
rule for the GCP problem (Lin et al. 2017), but has an es-
sential difference. Our rule is based on sampling maximal
weighted cliques, while the previous rule for GCP depends
on only one maximal clique. Sophisticated techniques are
required to re-arrange the sampled cliques in order to get the
lower bound for WGCP.

Based on the proposed reduction rule, we introduce a re-
duction procedure called ReductionWGCP (Algorithm 2).
We maintain two sets RemoveSet and OperateV , which
will be used in the local search algorithm.

• RemoveSet stores the vertices removed by the reduction
rule;

• OperateV denotes the set of vertices for which the color
assignment can be modified during the local search, as we
can fix the color for a clique according to the symmetry of
colorings. Specifically, OperateV equals the vertex set V
minus both RemoveSet and maximum weighted clique
C∗ that is obtained in the clique sampling. The vertex to
be operated is always selected from OperateV .

Algorithm 2: ReductionWGCP(G)
Input: a weighted graph G = (V,E,w)
Output: RemoveSet, OperateV and a weighted

clique C∗
1 CliSet := FastWClq(G);
2 find a maximum weighted clique C∗ from CliSet;
3 SM := C1 ⊗ C2 ⊗ . . .⊗ Ct, where

CliSet = {C1, . . . , Ct};
4 LB := cost(SM ), RemoveSet := ∅;
5 foreach vertex vi in V \ C∗ do
6 if vi can be removed by Reduction Rule then
7 RemoveSet := RemoveSet ∪ {vi};

8 OperateV := V \ (C∗ ∪RemoveSet);
9 return (LB, RemoveSet, OperateV , C∗);

Initially, the algorithm computes some maximal weighted
cliques CliSet (line 1), and the maximum weighted clique

C∗ is obtained among the cliques (line 2). The algorithm ini-
tializes the lower bound LB and removed set RemoveSet
(lines 3-4). In lines 5-7, according to reduction rule, the al-
gorithm adds some removed vertices into RemoveSet. Sub-
sequently, the algorithm initializes OperateV . Finally, LB,
RemoveSet, OperateV and C∗ are returned (line 9).

Local Search Algorithm

This section presents the local search algorithm in our
RedLS method. We first introduce the two main ideas in the
algorithm and then describe the local search algorithm in de-
tail.

Selection rules and candidate sets

When we find a better feasible coloring S = {V1, . . . , Vz},
we try to select Vi ∈ S and move all vertices in Maxv(Vi)
= {vj |w(vj) ≥ w(vt), vj ∈ Vi, ∀vt ∈ Vi} to another color
class Vj , and thus obtain a new infeasible coloring S′. In
the above process, Maxv(Vi) is denoted as some vertices in
Vi with the biggest weight. The selected vertices follow the
rules detailed below.

Selection Rule 1: select some vertices with the biggest
(cost(S) − cost(S′)/(

∑
v∈Maxv(Vi)

|score(v, Vi, Vj)|)
value, where 1 ≤ i, j ≤ l and i �= j.

Based on the above rule, we intend to construct a new S′
with the smallest total weight of conflict edges and minimum
weight of S′. When S is an infeasible coloring, we main-
tain three candidate operation sets CanSet1, CanSet2 and
CanSet3. During the local search process, we mainly use
the above candidate sets and configuration checking which
will be mentioned in the next subsection to modify the can-
didate solution. We assume that S′′ = S⊕〈v, Vi, Vj〉 and S∗
denotes the best found solution. The three sets are defined as
follows.
CanSet1 = {〈v, Vi, Vj〉|score(v, Vi, Vj) > 0, cost(S′′)

< max{cost(S), cost(S∗)}};
CanSet2 = {〈v, Vi, Vj〉|score(v, Vi, Vj) = 0, cost(S′′)

< cost(S)};
CanSet3 = {〈v, Vi, Vz〉|score(v, Vi, Vz) > 0, cost(S′′)

< cost(S∗), z > |S∗|}.
It should be noted that Vj in CanSet1 and CanSet2 is a

color class in S. During the local search, if the three above
sets are empty sets, then we apply selection rule 2 to decide
which operation should be selected.

Selection Rule 2: pick a random conflict edge ei ∈
CE(S). (1) We select 〈v, Vi, Vj〉 with the biggest score
value with cost(S′′) < cost(S∗), where v ∈ ei and Vj ∈
S. (2) If the operation does not exist, we randomly select
〈v, Vi, Vj〉 where v ∈ ei, Vj ∈ S and i �= j.

CC for WGCP

We propose a variant of the configuration checking strat-
egy (Cai, Su, and Sattar 2011) to deal with the cycling prob-
lem and denote this CC variant for WGCP as CC-WGCP.

We implement CC-WGCP with a Boolean array named
conf for vertices where conf [v] = 1 means v is allowed
to move to a different color class, otherwise conf [v] = 0.
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All conf values are initialized as 1. With the conf array, the
CC-WGCP strategy is well described by the following rule:

CC-WGCP Rule After performing 〈v, Vi, Vj〉, (1) conf
[v] is set to 0, and (2), if v ∈ CanSet1, then for ∀u ∈ N(v),
conf [u] is set to 1;

Intuitions underlying the CC-WGCP rule are given below.
Each local search step performs an operation 〈v, Vi, Vj〉,
which moves vertex v from color class Vi to class Vj . After
the operation, we set conf [v] = 0, which prevents v from
changing its color again until conf [v] is set to 1. Therefore,
a key point is the condition to set conf value to 1.

If the performed operation 〈v, Vi, Vj〉 ∈ CanSet1, then
the execution of 〈v, Vi, Vj〉 reduces both g(S) and cost(S),
which means that vertex v has been likely moved to a class
that is more suitable for it. Considering the color assignment
of a vertex has a direct impact on the permissible colors of its
neighbors, once v is moved to the “right” set, it is reasonable
to adjust the colors of its neighbors in the following steps.
Thus, we encourage vertices in N(v) to be moved by setting
their conf values to 1.

For operations in other candidate operation sets, we do
not modify conf values, as those operations can hardly im-
prove the solution. It should not be encouraged to follow the
consequences of such operations.

Description of RedLS algorithm

The main body of RedLS (Algorithm 3) is a local search
algorithm (lines 2-24), and we present it in this section.

The algorithm first constructs an initial candidate so-
lution (by the ConstructWGCP function) in line 2. Con-
structWGCP builds an initial candidate solution S by first
establishing a color class for each vertex of C∗ (as C∗ is a
clique) and then iteratively putting each vertex in OperateV
into a proper color class without causing any conflict. If
a vertex cannot be put into any existing color class with-
out causing a conflict, then a new color class is established,
and the vertex is put into it. In each iteration, a vertex in
OperateV is chosen to put into a color class using the BMS
heuristic (Cai 2015). Specifically, the algorithm randomly
selects t vertices and among them picks the vertex v with
the biggest degree (in our work, t is set to 100). The algo-
rithm randomly picks a color class Vi ∈ S which does not
contain any vertex adjacent to v. If no such color class ex-
its, a new color class V|S|+1 is created, and vertex v is then
put into the new class. The complexity of the construction
procedure ConstructWGCP is O(|E|).

During the local search procedure (lines 3-24), when a
better feasible coloring S is obtained, the algorithm itera-
tively picks a random 〈v, Vi, Vj〉 from CanSet2 to modify
S until CanSet2 is empty (lines 5-6), which can further re-
duce the cost. S∗ is updated by S (line 7). If the cost of S∗
is equal to the lower bound LB, then the optimal solution is
found and is returned (lines 8-9). All the conf values should
be reset to 1 (line 10). Based on selection rule 1, the algo-
rithm updates S by moving some vertices (line 11).

Each iteration of the local search is described as fol-
lows. First, if CanSet1 is not empty, then the algorithm
selects 〈v, Vi, Vj〉 with conf [v] = 1 via the BMS heuris-
tic (line 13). Subsequently, S is updated accordingly (line

Algorithm 3: RedLS(G,cutoff)
Input: a weighted graph G = (V,E,w), the cutoff time
Output: a feasible coloring S∗ = {V ∗

1 , V
∗
2 , . . . , V

∗
z }of

G
1 initialize LB, RemoveSet, OperateV and C∗ by

ReductionWGCP(G);
2 S∗ := S :=ConstructWGCP(OperateV ,C∗);
3 while elapsed time < cutoff do
4 if g(S) = 0&&cost(S) < cost(S∗) then
5 while CanSet2 �= ∅ do
6 select a random operation 〈v, Vi, Vj〉 from

CanSet2, S := S ⊕ 〈v, Vi, Vj〉;
7 S∗ = S;
8 if cost(S∗) = LB then
9 break;

10 reset conf [v] to 1 for ∀v ∈ V ;
11 select some operations based on Selection Rule

1 and update S by performing the above
operations;

12 if CanSet1 �= ∅ then
13 select 〈v, Vi, Vj〉 with the biggest score value

and conf [v] = 1 among t samples from
CanSet1;

14 S := S ⊕ 〈v, Vi, Vj〉 and update the
corresponding conf according to CC-WGCP
Rule;

15 else
16 while CanSet2 �= ∅ do
17 select 〈v, Vi, Vj〉 from CanSet2 randomly;
18 S := S ⊕ 〈v, Vi, Vj〉 and update conf

according to CC-WGCP Rule;
19 if CanSet3 �= ∅ then
20 select 〈v, Vi, Vj〉 from CanSet3 randomly;
21 else
22 we(ei) := we(ei) + 1, for ∀ei ∈ CE(S);
23 select 〈v, Vi, Vj〉 based on Selection Rule 2;
24 S := S ⊕ 〈v, Vi, Vj〉 and update the

corresponding conf according to CC-WGCP
Rule;

25 put each vertex in RemoveSet into a proper color class
in S∗;

26 return S∗;

14). conf(v) is set to 0 and the algorithm sets conf(u) to
1 for each u ∈ N(v), which means that vertices in N(v)
can be moved in the following steps. Otherwise, the algo-
rithm attempts to update S by performing any operation in
CanSet2 (lines 16-18). The algorithm selects a random op-
eration in CanSet3 as the next operation (lines 19-20). If
CanSet3 is empty, we(ei) is increased by one for each con-
flict edge ei ∈ CE(S) (line 22). The algorithm uses selec-
tion rule 2 to pick the next operation (line 23). Finally, S and
the corresponding conf are updated (line 24).
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Table 1: Results of RedLS, AFISA, MWSS and 2Phase on conventional benchmarks.

Instance RedLS AFISA MWSS 2Phase Instance RedLS AFISA MWSS 2Phase
MIN(AVG) MIN(AVG) MIN MIN(AVG) MIN(AVG) MIN(AVG) MIN MIN(AVG)

COLOR benchamrk COLOR benchamrk
C2000.5 2138(2184.8) 2400(2425.1) N/A 2983(3019.9) le450 25b 307(310.1) 318(325.8) 489 346(364.75)
C2000.9 5507(5553.9) 6228(6284) N/A 5799(5832.05) le450 25c 347(357.1) 378(387.9) 606 464(476.1)
DSJC1000.1 304(306.8) 354(358.9) N/A 374(564.5) le450 25d 335(343.7) 375(385.3) 587 461(470.9)
DSJC1000.5 1197(1220.9) 1354(1371.3) N/A 1525(1543.45) miles1000 430(432.8) 432(444.7) 577 453(457)
DSJC1000.9 2856(2887.1) 3166(3231) 3759 2977(3007.25) miles1500 797(797) 587(644.3) 868 800(802)
DSJC125.1g 23(23.6) 23(24) 25 24(24.8) miles250 102(102.4) 102(102.7) 169 103(105.65)
DSJC125.1gb 90(92.2) 90(92.5) 95 95(97.35) miles500 260(260.9) 260(261.3) 396 268(272.05)
DSJC125.5g 71(72.2) 71(72.3) 78 76(78.2) mulsol.i.5 367(367) 367(367) 436 368(369.05)
DSJC125 5gb 243(244.2) 243(250.2) 263 251(255.9) queen10 10 162(165.2) 166(169.2) 233 170(172.6)
DSJC250.1 127(131.6) 140(141.9) 227 174(181.65) queen11 11 174(178) 178(182.3) 282 183(188.15)
DSJC250.5 398(403.5) 415(428.1) 575 427(435.75) queen12 12 187(190.8) 194(198.6) 282 205(211.7)
DSJC250.9 936(939.5) 925(942.7) 1153 990(990.9) queen13 13 195(201.3) 204(207.5) 299 218(225.4)
DSJC500.1 187(191.7) 210(215.6) 342 234(289.75) queen14 14 217(223.6) 224(227.4) 351 238(249.3)
DSJC500.5 707(716.2) 778(845.1) 1086 808(834) queen15 15 225(233.4) 237(241.2) 364 268(278)
DSJC500.9 1670(1683) 1790(1854.5) 2103 1744(1750.5) queen16 16 237(243.5) 250(254.8) 380 291(305.4)
DSJR500.1 169(174.6) 169(175.4) 266 178(193.8) R100 5gb 220(222.4) 221(224.1) 225 234(235.15)
flat1000 50 0 1155(1180.1) 1289(1315.7) N/A 1481(1502.85) wap01a 545(594.1) 638(653.1) N/A 645(647.7)
flat1000 60 0 1192(1219.6) 1338(1354) N/A 1525(1546.15) wap02a 538(571.1) 637(638.1) N/A 663(674.05)
flat1000 76 0 1170(1197.7) 1314(1337.6) N/A 1504(1519.1) wap03a 563(581.4) 687(707.5) N/A 709(713.5)
inithx.i.1 569(571.5) 587(587.9) N/A 623(637.05) wap04a 561(574.3) 698(709) N/A 718(724.4)
inithx.i.2 329(337.9) 341(341.6) N/A 353(368.6) wap05a 542(545) 598(610.9) N/A 792(809.15)
inithx.i.3 337(343.9) 352(355.6) N/A 347(370.15) wap06a 517(530.4) 599(607.6) N/A 631(661)
latin square 10 1532(1563.9) 1690(1900) 2458 1610(1617.3) wap07a 555(564.4) 680(692.5) N/A 731(1106.4)
le450 15a 212(218.8) 241(247.1) 394 245(322.25) wap08a 534(542.7) 663(673.4) N/A 668(668.15)
le450 15b 217(222) 239(245.1) 380 321(333.1) zeroin.i.1 511(511.1) 518(518) 786 519(519)
le450 15c 284(290.4) 313(320.8) 512 396(406.05) zeroin.i.2 336(336.1) 336(337.6) 464 343(348.6)
le450 15d 279(287.1) 306(314.1) 518 381(400.9) zeroin.i.3 298(299.5) 299(301.7) 483 313(321)
le450 25a 306(307.5) 317(329.9) 496 371(397.9)
Matrix decomposition benchmarks Matrix decomposition benchmarks
r12 7690(7706.7) 7691(7710.4) 7690* 8401(9031.35) r19 6826(6863.6) 6840(6868.1) 6826* 7778(8371.05)
r13 7500(7525.3) 7521(7558.3) 7500* 8113(9132.45) r25 8426(8507.1) 8468(8560.8) 8426* 8928(10209.95)

After the time limit is reached, RedLS assigns each ver-
tex in RemoveSet into a proper color class in S∗, and this
is performed very quickly according to the proof of the re-
duction rule (line 25). Finally, the algorithm returns S∗.

Experimental Evaluation

We evaluate RedLS on a broad range of massive graphs and
conventional benchmarks, compared with three state-of-the-
art algorithms, including an exact algorithm MWSS (Cor-
naz, Furini, and Malaguti 2017) as well as two heuristic al-
gorithms, i.e., 2Phase (Malaguti, Monaci, and Toth 2009)
and AFISA (Sun et al. 2018).

We considered 161 conventional benchmarks in (Sun et
al. 2018), which are mainly divided into two parts: (1)
COLOR benchmark 2; (2) two matrix decomposition bench-
marks (named rxx and pxx) (Prais and Ribeiro 2000). These
WGCP benchmarks are originally weighted graphs.

As for large instances, we select 187 massive graphs from
the Network Data Repository (Rossi and Ahmed 2015). For
the sake of space, we do not report the results on graphs
with fewer than 100,000 vertices or fewer than 1,000,000
edges. Hence, we select a total of 65 massive graphs. These
graphs are originally unweighted, and we use two weighting
functions. (1) We employ the same method as in (Cai and
Lin 2016; Wang, Cai, and Yin 2017), i.e., for the ith vertex
vi, the weighting function w1(vi)=(i mod 200)+1; (2) Ob-

2https://mat.gsia.cmu.edu/COLOR02/

served from the real weighting functions of error-correcting
codes and winner determination problem (McCreesh et al.
2017), vertices with low degree have high weight values,
while vertices with high degree have light weights. Accord-
ing to our experiments, the following weighting function
can well simulate the weight distributions from those real
world instances, and thus is adopted to generate weights.
(a) if d(v) ∈ [0, 0.35 × dmax], then w2(v)=8; (b) if
d(v) ∈ (0.35 × dmax, 0.6 × dmax], then w2(v)=4; (c) if
d(v) ∈ (0.6 × dmax, 0.85 × dmax], then w2(v)=2; (d) if
d(v) ∈ (0.85× dmax, dmax], then w2(v)=1 , where dmax =
max{|N(v)|}, for ∀v ∈ V .

RedLS and all competitors are implemented in C++ and
compiled by g++ with ‘-O3’ option. All experiments are run
on Intel Xeon E5-2640 v4 @ 2.40GHz CPU with 128GB
RAM under CentOS 7.5. All algorithms are executed 20
times on each instance independently with a cutoff time of
3600 s. The running time of RedLS includes two parts (i.e.,
reduction procedure and local search algorithm). For each
instance, MIN denotes the weight of best solution found, and
AVG denotes the average weight of the solution obtained in
20 runs. If an algorithm fails to provide a solution within the
given time limit, then the corresponding column is marked
as “N/A”. If an algorithm proves the optimal solution, then
the corresponding column is marked with a “∗”.
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Table 2: Results of RedLS and AFISA on massive graphs with w1.

Instance RedLS AFISA Instance RedLS AFISA
MIN(AVG) MIN(AVG) MIN(AVG) MIN(AVG)

bn-human-BNU 1 0 31034 40486 soc-delicious 2248(3006.5) 3260(3422.2)
025865 session 1-bg (31630) (41151) soc-digg 7218(9598.5) 10899(11223.8)
bn-human-BNU 1 0 21230 27205 soc-dogster 7728(8278.8) 10856(11077.3)
025865 session 2-bg (21538.3) (27539.6) soc-flickr 12971(13266.9) 16597(16872.9)
ca-coauthors-dblp 37905* 37905(37905) soc-flickr-und 19525(20204.1) 25345(25586.2)
ca-dblp-2012 14115* 14115(14115) soc-flixster 4783(5473.4) N/A
ca-hollywood-2009 222720* N/A soc-FourSquare 3731(4073.6) 4922(4999.9)
channel-500x100x 1387(1542.2) N/A soc-lastfm 2893(3472.9) 4972(5186.9)
100-b050 soc-livejournal 23102(23324.2) N/A
dbpedia-link 7351(8755.5) N/A soc-livejournal- 6092(6256.8) N/A
delaunay n22 1201(1264.6) N/A user-groups
delaunay n23 1274(1320.2) N/A soc-LiveMocha 3930(4014.6) 6256(6353.7)
delaunay n24 941(1109.5) N/A soc-ljournal-2008 40559(40561.6) N/A
friendster 5850(5989.5) N/A soc-orkut 11873(13225.2) N/A
hugebubbles-00020 700(713.5) N/A soc-orkut-dir 12697(14326.5) N/A
hugetrace-00010 674(694.4) N/A soc-pokec 3871(5174.4) 5226(5298.3)
hugetrace-00020 691(700.8) N/A soc-sinaweibo 10165(11040.9) N/A
inf-europe osm 759(759) N/A soc-twitter-higgs 8822(9683.5) 9533(9702.5)
inf-germany osm 634(634.4) N/A soc-youtube 3547(3873.4) 5113(5237.6)
inf-roadNet-CA 781(786.2) 967(971.5) soc-youtube-snap 3519(3981.4) 5052(5129.8)
inf-roadNet-PA 767(855.2) 955(955.5) socfb-A-anon 3709(4773.2) N/A
inf-road-usa 788(788.2) N/A socfb-B-anon 3269(4880.8) N/A
rec-dating 5137(5235.9) 9880(9491.1) socfb-uci-uni 1090(1265.2) N/A
rec-epinions 2532(2900.8) 4977(5097.1) tech-as-skitter 7249(7734.6) 8863(9013.6)
rec-libimseti-dir 4538(4908.2) 8554(8291.7) tech-ip 833(940.4) N/A
rgg n 2 23 s0 2838(2916.3) N/A twitter mpi 20933(22374.8) N/A
rgg n 2 24 s0 2965(3082.7) N/A web-arabic-2005 12258(12258) 12258(12258)
rt-retweet-crawl 1702(2105.5) 2489(2615.1) web-baidu-baike 4703(5989.9) N/A
sc-ldoor 5660(7035.3) 7605(7645.5) web-it-2004 46330(46330) 46330(46330)
sc-msdoor 5691(6864.9) 7458(7501.8) web-uk-2005 54850* 54850(54850)
sc-pwtk 5651(6781.7) 7120(7124.8) web-wikipedia link 90278(90427) N/A
sc-rel9 1010(1091.7) N/A web-wikipedia2009 4377(4387.2) 4384(4387.4)
sc-shipsec1 4177(4728.5) 4990(5021.7) web-wikipedia 6296(9268.9) N/A
sc-shipsec5 4770(5331.9) 5916(5917.3) -growth
soc-buzznet 7031(7674.2) 9994(10095.4) wikipedia link en 5336(5433.1) N/A

Results on conventional benchmarks

For all conventional benchmarks, RedLS finds better val-
ues than 2Phase for 96 instances. Thus, we mainly compare
RedLS with MWSS and AFISA. Most instances are so easy
that RedLS, MWSS and AFISA find the same quality val-
ues. We do not report the detailed results of such instances
in Table 1, but we summarize the run time comparisons in
Figure 1. Specifically, Figure 1 shows the average running
time of RedLS and the corresponding competitor when both
algorithms find the same minimum solution values, clearly
showing the superiority of RedLS, with a few exceptions.

For the remaining 59 instances, which are more difficult,
the results are reported in Table 1. For all 59 instances,
RedLS performs better than 2Phase. Moreover, among the
59 instances, RedLS outperforms AFISA and MWSS on 48
and 55 of them, respectively. Compared to AFISA, RedLS
is worse in only 2 instances. Additionally, RedLS proves
the optimal solution for 4 instances from the conventional

benchmarks, and the number of reduced vertices is on aver-
age 12.45, indicating that the reduction rule is not effective
for conventional benchmarks. The good results of RedLS on
conventional benchmarks mainly come from the power of
the underlying local search algorithm.

Results on massive graphs with w1 function

Note that MWSS fails to find a solution for many of the
conventional graphs and all of the massive graphs, mainly
due to its memory-expensive data structure (i.e., MWSS
stores a auxiliary graph whose size is larger than the size
of complementary graph), while 2Phase fails to obtain a so-
lution for all of the massive graphs, mainly due to high-
complexity heuristics (i.e., the first phase of 2Phase pro-
duces a very large number of independent sets, which wastes
lots of time). Thus, we mainly report the results of RedLS
and AFISA on Table 2. For all the 65 massive instances,
RedLS finds better or same-quality solutions than AFISA.
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Figure 1: Average running time of RedLS and competitors.

Specifically, RedLS obtains better solutions on 60 instances.
For the remaining 5 instances, RedLS and AFISA both find
the same solutions. Furthermore, RedLS proves the optimal
solution for 4 instances. Figure 2 shows the percentage of
reduced vertices after applying the reduction rule. The re-
duction rule removes on average 60.59% vertices of all mas-
sive instances. For 42 massive instances, the percentage of
reduced vertices exceeds 50% and this significantly demon-
strates the effectiveness of the reduction rule.
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Figure 2: The percentage of the reduced vertices.

Results on massive graphs with w2 function

Table 3 shows a summary on the comparisons between
RedLS and three competitors (i.e., AFISA, MWSS and
2Phase). Once again, RedLS outperforms three competitors
on all massive graphs with w2. This indicates that RedLS
can greatly improve the solution quality in massive graphs.
Surprisingly, RedLS proves the optimal solution for 19 in-
stances.

Table 3: Summary of comparison between RedLS, AFISA,
MWSS and 2Phase on massive graph with w2. #Better in-
dicates the number of instances where an algorithm finds
better minimal (average) solutions. #N/A denotes the num-
ber of instances where an algorithm fails to find a solution
under the given time limit.

Benchmark RedLS AFISA MWSS 2Phase
massive graph #Better 60(60) 0(0) 0(0) 0(0)
with w2 #N/A 0 32 65 65

The Effectiveness of the CC-WGCP Strategy

To verify the effectiveness of the CC-WGCP strategy, we
use tabu mechanism (Glover 1989; Sun et al. 2018) instead
of the CC-WGCP strategy and design three alternative al-
gorithms: RedLS+T5, RedLS+T20, and RedLS+T80 where
the tabu tenure tt is set to 5, 20, and 80, respectively. During
the local search procedure, the tabu mechanism will prevent
the search from revisiting the selected vertex for the next tt
iterations. Figure 3 shows that RedLS reaches better solution
values than three competitors within the same time limit on
two selected instances. This indicates that the CC-WGCP
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Figure 3: Evolution of objective values with the run rime of
RedLS and competitors on two selected instances.

2440



plays a key role in the RedLS algorithm.

Conclusion

This paper introduced a lower bound, a reduction rule, and
a local search algorithm for WGCP. We proposed the reduc-
tion rule based on clique sampling to remove some unneces-
sary vertices. In the local search algorithm, we designed the
selection rules and the new variant of configuration checking
to determine which operation is the candidate selected oper-
ation in the local search procedure. Experiments on conven-
tional benchmarks and massive graphs indicate that RedLS
significantly outperforms the state-of-the-art algorithms. As
for future work, we will attempt to further improve RedLS
via a few novel reduction rules.
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