
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Algorithms for Manipulating Sequential Allocation

Mingyu Xiao, Jiaxing Ling
School of Computer Science and Engineering

University of Electronic Science and Technology of China
myxiao@gmail.com, lingjiaxing@std.uestc.edu.cn

Abstract

Sequential allocation is a simple and widely studied mecha-
nism to allocate indivisible items in turns to agents according
to a pre-specified picking sequence of agents. At each turn,
the current agent in the picking sequence picks its most pre-
ferred item among all items having not been allocated yet.
This problem is well-known to be not strategyproof, i.e., an
agent may get more utility by reporting an untruthful prefer-
ence ranking of items. It arises the problem: how to find the
best response of an agent? It is known that this problem is
polynomially solvable for only two agents and NP-complete
for an arbitrary number of agents. The computational com-
plexity of this problem with three agents was left as an open
problem. In this paper, we give a novel algorithm that solves
the problem in polynomial time for each fixed number of
agents. We also show that an agent can always get at least
half of its optimal utility by simply using its truthful prefer-
ence as the response.

Introduction

Sequential allocation is a simple and widely studied mech-
anism to allocate indivisible items to agents (Bouveret and
Lang 2011; 2014; Aziz et al. 2017). In a sequential allo-
cation mechanism, there are several indivisible items to be
allocated to some agents, each agent has a strict preference
ranking over all the items, and there is a sequence of the
agents, called the policy, to specify the turns of the agents to
get the items. The items are allocated to the agents accord-
ing to the policy: at each turn, the current agent on the policy
picks the most preferred item in its preference ranking that
has not yet been allocated. We give an example.

Example 1. There are five items {a, b, c, d, e}, three agents
{1, 2, 3} with preference rankings

Agent 1 : a � b � c � d � e

Agent 2 : c � b � e � d � a

Agent 3 : e � b � d � c � a

and a policy
π : 13221.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this example, Agent 1 will take a at the first turn,
Agent 3 will take e at the second turn, Agent 2 will take
two items c and b at the third and fourth turns, and Agent 1
will take d at the last turn.

In sequential allocation, given a fixed policy, the out-
come will only depend on the ordinal preference rankings of
agents over items. It is folklore that sequential allocation is
not strategyproof, which means that an agent may get more
utility by reporting an untruthful preference ranking. For ex-
ample, in the above instance, if Agent 1 misreports its pref-
erence ranking as b � a � c � d � e, then it will get items
{b, a}, while originally it will get items {a, d}. Agent 1 may
get more utility by taking {b, a} since b � d. This motivates
many aspects of the study on this mechanism.

There are several models based on the sequential alloca-
tion mechanism. We have different objectives to maximize
the overall social welfare (Bouveret and Lang 2011) or the
utility of a certain agent (Bouveret and Lang 2014), and dif-
ferent requirements on the pattern of the picking sequences
and the number of agents. One of the earliest models stud-
ied in (Kohler and Chandrasekaran 1971) has two agents and
the policy is strictly alternating (e.g., 121212 . . .). A bal-
anced alternation pattern of the policy (e.g., 12212112 . . .)
was studied in (Brams and Taylor 2000). One interesting ap-
plication of sequential allocation was found in course al-
location to students and several axiomatic properties and
manipulability on this application have been revealed. Bud-
ish and Cantillion (2012) investigated a randomized version
of the sequential allocation mechanism to allocate courses
to students, and Pareto optimal solutions for a model of
course allocation were studied in (Cechlárová, Klaus, and
Manlove 2018). The Boston mechanism is another sequen-
tial allocation mechanism with applications in school choice
for students (Abdulkadiroglu et al. 2006; Kojima and Ünver
2014). A general and systematic study of the sequential al-
location was done by Bouveret and Lang (2011) and by
Kalinowski et al. (2013) from a game-theoretic view. Since
the work of Kohler and Chandrasekaran (1971), a series
of followup works on strategic aspects of sequential allo-
cation have been made (Aziz, Goldberg, and Walsh 2017;
Aziz, Walsh, and Xia 2015; Levine and Stange 2012; Tomi-
naga, Todo, and Yokoo 2016; Aziz et al. 2015).

2302

In this paper, we consider manipulations in sequential
allocation. In this model, the policy is given, and among
all agents, one is the manipulator and all others are non-
manipulators. The manipulator needs to report a list of items
as its preference ranking to achieve a certain objective. There
are two commonly used assumptions. Firstly, the manipu-
lator has complete information about the reported prefer-
ences of non-manipulators. This is a worst-case assumption
often made in computer science and economics. Secondly,
the manipulator has additive cardinal utilities for the items,
although agents report strict and ordinal preferences. This
assumption is standard in this research area.

We can define several problems with different objectives
of the problem. The BEST RESPONSE problem is to find
the best response of the manipulator (i.e., a preference rank-
ing which allows it to obtain the maximum utility). BETTER
THAN TRUTH RESPONSE is to ask whether the manipulator
can get more utility than the allocation under its truthful re-
port. ALLOCATION RESPONSE is to ask whether the manip-
ulator can get a specified bundle of items. Among all these
problems, BEST RESPONSE seems to be the hardest one and
a solution to it can imply solutions to other problems, since
other problems can be easily reduced to BEST RESPONSE.
See (Aziz, Bouveret, and Lang 2017) for a recent survey on
the results of these problems.

For BEST RESPONSE, Bouveret and Lang (2011) first
showed that the problem with only two agents (one manipu-
lator and one non-manipulator) can be solved in polynomial
time. Then Aziz et al. (2017) proved that it is NP-hard to
compute the best response of the manipulator if the number
of agents is part of the input by correcting a wrong claim
in a previous paper. It becomes an open problem whether
BEST RESPONSE is polynomially solvable for three or an-
other constant number of agents (Aziz et al. 2017). This
open problem is interesting because it is already known that
the problem is polynomially solvable with the utility func-
tions of the manipulator being some specified functions,
such as lexi-cographic utilities and binary utilities (Bouveret
and Lang 2011; Aziz et al. 2017). In this paper, we fully
answer this question by giving a dynamic programming al-
gorithm for BEST RESPONSE that runs in polynomial time
for any fixed number of agents and any additive utility func-
tions. Besides, we show that the manipulator can always get
at least half of the optimal utility if it simply uses the truthful
preference ranking, where the approximation ratio is tight as
far as using the truthful preference ranking.

Preliminaries
In the sequential allocation problem, m items are going to
be allocated to n agents according to a policy π, which is
a sequence of agents specifying the turns of the agents to
get items. The length |π| of the policy is m since there are
m items to be allocated. The set of items is denoted by
O = {g1, g2, . . . , gm} and the set of agents is denoted by
N = {1, 2, . . . , n}, where Agent 1 is the manipulator and
all other agents are non-manipulators. Each agent i ∈ N has
a complete preference ranking �i: gi1 , gi2 , . . . , gim over all
items in O. We will write gp �i gq to denote that item gp
is ranked ahead of gq in Agent i’s preference ranking. The

manipulator (Agent 1) has an additive utility function on the
items u : O → �+. For two items gx, gy ∈ O, it holds
u(gx) > u(gy) if and only if gx �1 gy . We use ki (i ∈ N)
to denote the frequency of Agent i appearing in the policy
π, and use m′ to denote the frequency of non-manipulators
appearing in π. Then it holds that

m =

n∑

i=1

ki, and m′ = m− k1.

For BEST RESPONSE, the manipulator wants to find a
picking strategy to achieve its maximum utility, i.e., a per-
mutation of all the items, according to which to pick up
items the manipulator can get the maximum utility. When
we say an optimal solution to BEST RESPONSE, it is re-
garded as the optimal picking strategy or the bundle of items
for the manipulator determined by the optimal picking strat-
egy. We use I = (O,N, π, {�i}ni=1) to denote our input
instance, where we omit the utility function of the manipu-
lator to simplify the description since for most cases we only
use the preference ranking �1.

Once a picking strategy is given, we will get a fixed se-
quence of allocations of all items to agents, called allocation
sequence. We will say the above picking strategy and allo-
cation sequence are associated with each other. If there is
no picking strategy associated with an allocation sequence,
then the allocation sequence is called infeasible; otherwise,
it is called feasible. For a feasible allocation sequence, it is
easy to construct one picking strategy associated with it.

A partial allocation sequence is a subsequence of an allo-
cation sequence beginning from the first allocation. We will
use ξ to denote an allocation sequence and use ξ(i) to de-
note the partial allocation sequence of the first i allocations
of ξ. For each feasible partial allocation sequence of length
l, there is a partial policy of length l and a partial picking
strategy associated with it. After executing a partial alloca-
tion sequence according to a partial policy, we will get a
remaining problem which is to allocate the remaining items
to the agents according to the remaining policy.

Given a (partial) allocation sequence, we say an item g
has been considered by Agent i before the xth position of
the (partial) policy if during the first x allocations in the se-
quence the last item allocated to Agent i is ranked lower
than item g in Agent i’s preference ranking. Note that an
item may not be allocated to an agent even if the item has
been considered by the agent.

A segment in a policy is a maximal continuous subse-
quence containing at most one position of a non-manipulator
and only the last position of the subsequence can be the
non-manipulator. A policy having m′ positions of non-
manipulators can be partitioned into m′+1 segments by cut-
ting after each non-manipulator position, where the last seg-
ment is called a trivial segment. A trivial segment only con-
tains copies of the manipulator and it may be empty (when
the last position of the policy is a non-manipulator). A non-
trivial segment may contain only one non-manipulator. We
will use πs(x) to denote the partial policy of the first x seg-
ments of π. The core of a (partial) policy is the sequence of
agents obtained by deleting all occurrences of the manipula-

2303

tor from the (partial) policy. See Figure 1 for an illustration
of the segments and cores.

Figure 1: The segments and core

The position vector of the manipulator in a (partial)
policy π is a sequence of increasing positive integers,
(z1, z2, . . . , zk1

) to denote the positions of the manipula-
tor in the policy π, i.e., the manipulator appears on the
z1th, z2th, . . . , and zk1

th positions in the (partial) policy
π. A policy π dominates another policy π′ if they have the
same length and the same core and it holds that zi ≤ z′i,
i ∈ {1, 2, . . . , k1}, for manipulator position vectors in π and
π′ being (z1, z2, . . . , zk1) and (z′1, z

′
2, . . . , z

′
k1
), respectively.

This is to say that π′ can be obtained from π by iteratively
moving a manipulator in it to the next position. For two in-
stances I = (O,N, π, {�i}ni=1) and I ′ = (O,N, π′, {�i

}ni=1) with only different policies, if π dominates π′, then
we say instance I dominates instance I ′.

Our algorithm for BEST RESPONSE uses two major ideas.
The first idea is to reduce instances to constrained instances,
called “crucial instances”. Crucial instances can be solved
quickly directly. However, it is not easy to find the corre-
sponding crucial instances and we still need to search among
a large number of candidates. So we also use the second
idea, which is a divide-and-conquer technique, to reduce the
number of candidates. The divide-and-conquer method will
split the allocation problem into two subproblems: the first
one is to allocate a fixed set of items and the second one is to
allocate the remaining set of items. To guarantee that we can
combine optimal solutions to the two parts to construct an
optimal solution for the whole problem, we need some “in-
variance properties”. Based on “invariance properties”, we
can design a dynamic programming algorithm to save run-
ning time. We first introduce the two ideas in the following
two sections.

Crucial Instances

In BEST RESPONSE, we may have the same optimal picking
strategy for two instances with only different policies. These
instances have some common properties. We will classify
some instances (and their policies) that have the same opti-
mal picking strategy and solution into a class. In each class,
there is a special instance, called “crucial instance”, which
can be solved directly. So we will try to solve an instance by
solving the corresponding crucial instance in the same class.
This is the rough idea of our algorithm.

We give an example to illustrate that two instances with
only different policies have the same optimal solution. In
Example 1, the manipulator gets the best bundle {a, b} by
using picking strategy bacde. We use I ′ to denote the in-
stance after replacing the policy π : 13221 with policy
π′ : 32121. In I ′, the manipulator can get the same best

bundle {a, b} by using the same picking strategy. Compared
with π, the manipulator has a lower priority to pick items
in π′. However, the manipulator still can get the optimal so-
lution. Note that, at the first position of the policy π, the
manipulator picks an item that will not be considered by any
non-manipulator before the 3rd allocation. So we can delay
the allocation of b to Agent 1 from position 1 to position 3
without changing the optimality. Given an instance, we want
to know how much we can delay the positions of the manip-
ulator without losing the optimality and the “worst” policy
will be “crucial”.

Definition 1 (Crucial Instance). For an instance I =
(O,N, π, {�i}ni=1), if for any policy π′ �= π dominated
by π, the optimal solution to the dominated instance I ′ =
(O,N, π′, {�i}ni=1) is worse than that to I , then we say I is
a crucial instance. Let I ′ = (O,N, π′, {�i}ni=1) be a crucial
instance, for any instance I = (O,N, π, {�i}ni=1) dominat-
ing I ′, we say I ′ is a corresponding crucial instance to I .

A corresponding crucial instance of an instance may be
itself when it is already a crucial instance. We show some
properties of crucial instances.

Lemma 1. Given two instances I = (O,N, π, {�i}ni=1)
and I ′ = (O,N, π′, {�i}ni=1), where I dominates I ′. By
using the same picking strategy, the manipulator in instance
I will get a bundle with total utility not less than that in I ′.
Furthermore, for any picking strategy S′, there is a picking
strategy S such that by using S in I the manipulator can get
the same bundle as that by using S′ in I ′.

Proof. The first claim is easy to observe. We focus on the
second claim.

We define the picking strategy S to I as follows: order
the items according to the ordering of allocations to the ma-
nipulator in I ′ by using S′, i.e., an item is ranked on the ith
position in S if it is the ith item allocated to the manipulator
in I ′, and all other items not allocated to the manipulator in
I ′ are listed behind with any order. Let (z1, z2, . . . , zk1) and
(z′1, z

′
2, . . . , z

′
k1
) be the position vectors of the manipulator

of π and π′. Since π dominates π′, we know that zi ≤ z′i
for any i ∈ {1, 2, . . . , k1}. If an item can be allocated to
the manipulator at position z′i in π′, then it can also be allo-
cated to the manipulator at position zi ≤ z′i in π, since only
a subset of items have been allocated before position zi in
π (compared to the situation at position z′i in π′). So at each
position, the manipulator can always get the current item on
its picking strategy S. By using S, the manipulator in I gets
the same bundle as that by using S′ in I ′.

Corollary 1. Let I = (O,N, π, {�i}ni=1) be an instance
and I ′ = (O,N, π′, {�i}ni=1) be a corresponding crucial
instance. The optimal solutions to I and I ′ have the same
total utility. Furthermore, given an optimal picking strategy
for I ′, an optimal picking strategy for I can be constructed
in polynomial time.

Proof. By Lemma 1, we know that the optimal solution to I
is not worse than that to I ′. On the other hand, by the defini-
tion of crucial instances, we know that the optimal solution
to I ′ is not worse than that to I . So I and I ′ will have the

2304

same total utility of the optimal solutions. In the proof of
Lemma 1, a method to construct the optimal picking strat-
egy for I is already given.

Our idea is that to solve an instance, we turn to solve a
corresponding crucial instance. Next, we first introduce our
algorithm for crucial instances. The algorithm is a greedy
algorithm, called GreedyAlg.

Algorithm GreedyAlg The algorithm GreedyAlg takes
a (sub) instance of BEST RESPONSE as the input, and out-
puts an allocation sequence with the corresponding picking
strategy for the manipulator. However, the output allocation
sequence may not be optimal for non-crucial instances.

The main idea of the algorithm is as follows. We allocate
items to agents according to the policy. Assume that we have
allocated the first i− 1 items to agents in the input instance
I = (O,N, π, {�i}ni=1). If the ith position in the policy
π is a non-manipulator, we let the non-manipulator pick its
most preferred item that has not yet been allocated. Next,
we consider the situation that the ith position in the policy
π is the manipulator. The algorithm decides the item that
should be assigned to the manipulator at the ith turn by the
following method.

We let I ′ = (O′, N, π′, {�′
i}ni=1) be the remaining in-

stance after allocating the first i−1 items in I . Then the first
position in π′ is the manipulator. Let π−1 be the core of π′.
If π−1 is empty, we assign the best remaining item o in the
truthful preference ranking of the manipulator to the manip-
ulator at the ith position of π and let o be the ith object in the
picking strategy of the manipulator. If π−1 is not empty, we
let of be the first item allocated to an agent when simulating
π−1 on (O′, N \ {1}, π−1, {�′

i}ni=1), i.e., the favourite item
in O′ of the first agent in π−1. GreedyAlg will assign item
of to the manipulator at the ith position of π and let of be
the ith object in the picking strategy of the manipulator.

According to the above method, the algorithm decides the
items to be assigned to the manipulator from the first occur-
rence of 1 to the last occurrence of 1 in π and then we can
get a full allocation sequence and a picking strategy for the
manipulator. This is the algorithm GreedyAlg.

Lemma 2. The greedy algorithm GreedyAlg can find opti-
mal solutions to crucial instances.

Proof. Assume to the contrary that a solution found by
GreedyAlg is not optimal for a crucial instance. Then at least
on one position, say the ith position of π, the manipulator
does not pick item of defined above (the next item will be
taken by a non-manipulator in (O′, N \ {1}, π−1, {�′

i}ni=1)
with π−1). we can move the ith position of 1 to the behind
of the first non-manipulator in π to get a dominated instance
I ′, where I ′ has the same optimal solution as I , which con-
tradicts the fact that I is a crucial instance.

By using the priority queue, GreedyAlg can be imple-
mented in linear time. We can also see that the picking strat-
egy returned by GreedyAlg for each instance is unique. The
allocation sequence returned by GreedyAlg on a (sub) in-
stance is called greedy. Given an allocation sequence, we
can easily check whether it is greedy or not. The concept

of greedy allocation sequences is also important and will be
used later.

Although crucial instances can be solved quickly, it is still
hard to find a corresponding crucial instance for an arbitrary
instance. We need to reveal more properties for dominated
instances.

Lemma 1 implies that the optimal solution to an instance
is not worse than the optimal solution to any dominated in-
stance. Clearly, the opposite direction of Lemma 1 may not
hold. We prove the following lemma.

Lemma 3. Let I be an instance and P be the set of instances
dominated by I . For each I ′ ∈ P, we use G(I ′) to denote
the greedy allocation sequence of I ′. Assume that the greedy
allocation sequence G(I0) (I0 ∈ P) gets the best solution
among all G(I ′) with I ′ ∈ P. Then I0 is a crucial instance
corresponding to I .

The correctness of this lemma follows from Lemma 1,
Corollary 1 and Lemma 2. Lemma 1 says any dominated in-
stance I ′ will not have a better solution than I . Corollary 1
says that there is at least one dominated instance, the cor-
responding crucial instance will achieve the same optimal
solution to I . The greedy allocation sequence may not be op-
timal for any instance. But it is optimal for a crucial instance
by Lemma 2. Therefore, among all the greedy solutions, the
best one is for a corresponding crucial instance.

Lemma 3 implies that we can solve BEST RESPONSE by
taking each dominated instance as a candidate for a cor-
responding crucial instance and use GreedyAlg to solve
it. We analyze the running time of this algorithm. Let
(z1, z2, . . . , zk1

) and (z′1, z
′
2, . . . , z

′
k1
) be the position vec-

tors of the manipulator of two policies π and π′. We know
that π dominates π′ if and only if zi ≤ z′i holds for any
i ∈ {1, 2, . . . , k1}. The length of these policies is m. So
for i ∈ {1, 2, . . . , k1}, the value of z′i can be any integer
between max{zi, z′i−1 + 1} and m. Combinatorial analyses
with some relaxations can easily establish an upper bound
of O(mk1) for the number of dominated policies. The algo-
rithm to consider all dominated instances is not polynomial
when the frequency k1 of the manipulator in the policy is not
a constant.

We will use a dynamic programming technique to reduce
the number of dominated instances to a polynomial without
losing an optimal solution. To do so, we need the following
properties.

Invariance Properties

Our idea is a divide-and-conquer method. We will partition
the problem into two subproblems, the first part is to allocate
the first i items and the second part is to allocate the remain-
ing items. We need to find the properties in the first part that
keep the invariance of the second part. Once we find these
properties, we may only need to find the optimal allocation
sequence of the first part for the manipulator satisfying these
properties (for each fixed allocation sequence for the second
part). In this way, we may be able to use dynamic program-
ming to reduce redundant cases without losing an optimal
solution.

2305

It is easy to verify that the remaining problems are the
same after executing two partial allocation sequences satis-
fying the following two conditions:
1. The number of items allocated to each agent (including

the manipulator) is the same;
2. The set of items allocated to all the agents is the same.

However, it is still hard to find all partial allocation se-
quences satisfying the above two conditions. In order to get
a polynomial-time algorithm, we add the third condition be-
low
3. The last item allocated to each non-manipulator is the

same.
Definition 2 (Invariance Relation). Two (partial) alloca-
tion sequences are in the invariance relation if they satisfy
the above three conditions.
Recall that for an allocation sequence ξ, we use ξ(i) to de-
note the partial allocation sequence of the first i allocations.
Lemma 4. Let ξ be a feasible allocation sequence and ξ(i)
(1 ≤ i ≤ m) be a partial allocation sequence. Let ξ′(i) be
another partial allocation sequence that is in the invariance
relation with ξ(i). The allocation sequence ξ′ obtained by
replacing ξ(i) with ξ′(i) in ξ is still a feasible allocation
sequence.

Proof. According to the definition of the invariance relation,
we know that in ξ(i) and ξ′(i) the same set of items are
allocated, and the remaining problems after executing them
are the same. Therefore we can exchange ξ(i) and ξ′(i) in
larger allocation sequences.

The divide-and-conquer idea based on Lemma 4 will be
embedded in our dynamic programming algorithm. We will
see that the algorithm will only split the problem between
segments.

The Dynamic Programming Algorithm

Equipped with the above properties, we are ready to describe
the dynamic programming algorithm. The main idea of the
algorithm is still based on Lemma 3. However, we will use
Lemma 4 to reduce the number of subproblems.

Recall that m′ is the number of non-manipulator positions
in the policy π. For any integer 1 ≤ x ≤ m′, let k(x) de-
note the times of the manipulator appearing during the first
x segments of the policy π, i.e., the period from the begin-
ning of π to the xth position of a non-manipulator. For any
dominated instance I ′, the occurrences of the manipulator in
the first x segments of the policy in I ′ is at most k(x). Recall
that πs(x) is the partial policy of the first x segments of π.

Note that any (partial) allocation sequence determines a
(partial) policy, which is a sequence of the agents according
to the sequence of allocations. We say the (partial) policy is
associated with the (partial) allocation sequence.

We use pro(x, y, i2, . . . , in) to denote the set of all feasi-
ble partial allocation sequences satisfying the following con-
ditions:
1. The core of the partial policy associated with the partial

allocation sequence is the same as the core of πs(x);

2. The last allocation in the partial allocation sequence is to
allocate an item to a non-manipulator;

3. Exactly x items are allocated to non-manipulators and ex-
actly y items are allocated to the manipulator;

4. For each j ∈ {2, 3, . . . , n}, the last item allocated to
Agent j is the ij th item in its preference ranking, where
ij can be 0 which means no item is allocated to Agent j;

5. For each r ∈ {1, 2, . . . , x}, during the first r segments of
the associated partial policy at most k(r) items are allo-
cated to the manipulator;

6. The partial allocation sequence is a greedy one.
The domains of the parameters in pro(x, y, i2, . . . , in)

are as follows: x ∈ {0, 1, . . . ,m′}, y ∈ {0, 1, . . . , k1} and
i2, i3, . . . , in ∈ {0, 1, . . . ,m}. We may not describe the do-
mains of the parameters when they are clear from the con-
text.

Note that even all of x, y and ij are fixed, the set
pro(x, y, i2, . . . , in) may contain several different allocation
sequences, because the definition does not fix the positions
of the y manipulators in the corresponding (partial) policy.
We have the following property.
Lemma 5. Any two partial allocation sequences in
pro(x, y, i2, . . . , in) are in the invariance relation.

Lemma 5 can be proved by checking each of the three
conditions of the invariance relation one by one, which is
not hard and omitted here due to the limited space.

We use opt(x, y, i2, . . . , in) to denote a partial alloca-
tion sequence in pro(x, y, i2, . . . , in) where the manipula-
tor gets the optimal solution. Note that pro(x, y, i2, . . . , in)
is possible to be empty and for this case we let
opt(x, y, i2, . . . , in) =⊥.

The allocation sequence opt(x, y, i2, . . . , in) even for
x = m′ may not be a complete allocation sequence of
length m, since y may be smaller than k1 and some allo-
cations to the manipulator are still left. In fact, opt(x =
m′, y, i2, . . . , in) is a partial allocation sequence only miss-
ing the last part of the allocations corresponding to the trivial
segment of the policy. We use opt∗(x = m′, y, i2, . . . , in)
to denote the complete allocation sequence obtained from
opt(x = m′, y, i2, . . . , in) plus the k1 − y allocations of the
k1 − y best remaining items to the manipulator.

The following two lemmas will say that the best allocation
sequence among all opt∗(x, y, i2, . . . , in) with x = m′ will
lead to the optimal solution to the original instance.
Lemma 6. For any y ∈ {0, 1, . . . , k1} and i2, i3, . . . , in ∈
{0, 1, . . . ,m}, if opt(x = m′, y, i2, . . . , in) �=⊥, then
opt∗(x = m′, y, i2, . . . , in) is a greedy allocation sequence
for an instance dominated by the original instance.

Proof. By the definition, we know that opt(x =
m′, y, i2, . . . , in) is a greedy partial allocation sequence.
Since opt∗(x = m′, y, i2, . . . , in) is obtained from opt(x =
m′, y, i2, . . . , in) by adding behind k1−y best allocations to
the manipulator, we know that opt∗(x = m′, y, i2, . . . , in) is
also greedy. We consider the policy π∗ corresponding to the
greedy allocation sequence opt∗(x = m′, k1−z, i2, . . . , in).
By the 5th item in the definition of pro(x, y, i2, . . . , in), we

2306

know that for each r ∈ {1, 2, . . . , x}, during the first r seg-
ments at most k(r) items are allocated to the manipulator.
This means π∗ is dominated by the original policy π.

Lemma 7. Let Ic be a crucial instance corresponding to
I , where the trivial segment in Ic consists of z occurrences
of the manipulator (0 ≤ z ≤ k1). Assume that in the opti-
mal solution to Ic, for each j ∈ {2, 3, . . . , n}, the last item
allocated to Agent j is the aj th item in its preference rank-
ing. Then opt∗(m′, k1 − z, a2, . . . , an) leads to the optimal
solution to the original instance I .

Proof. The greedy allocation sequence S to Ic, also lead-
ing to an optimal solution to the original instance I , is a
candidate for opt∗(m′, y, a2, . . . , an). On the other hand, by
Lemmas 6 and 1, we know that opt∗(m′, k1−z, a2, . . . , an)
is not better than S. Since opt∗(m′, k1 − z, a2, . . . , an)
is chosen as the best one, we know that opt∗(m′, k1 −
z, a2, . . . , an) is as good as S.

We can not directly compute an optimal solution to the
original instance I according to Lemma 7, since we do not
know the values of aj in Lemma 7. However, by Lemma 3,
Lemma 6 and Lemma 7, we know that the best one among
all opt∗(x, y, i2, . . . , in) with x = m′ will get an optimal
solution to the original instance I . So our algorithm contains
the following three main steps.
1 Compute all opt(x, y, i2, . . . , in) by calling the subalgo-

rithm OPT;
2 Compute all opt∗(x, y, i2, . . . , in) with x = m′ from
opt(m′, y, i2, . . . , in);

3 Find the best one among all opt∗(x, y, i2, . . . , in) with
x = m′.
The sub algorithm OPT in Step 1 is a dynamic program-

ming algorithm that compute all opt(x, y, i2, . . . , in) in an
order with a nonincreasing value of x. Before presenting the
whole procedure of OPT, we introduce the idea in the algo-
rithm.

Assume that all opt(x′, y, i2, . . . , in) for x′ < x have
been computed. We use the following idea to compute
opt(x, y, i2, . . . , in).

We use r to denote the non-manipulator on xth posi-
tion of the core of π, i.e., the xth non-manipulator in π is
Agent r. Assume that opt(x, y, i2, . . . , in) �=⊥. Let πx be
the policy corresponding to opt(x, y, i2, . . . , in). We further
assume that the last segment of πx consists of q occurrences
of the manipulator and one occurrence of Agent r. Then
opt(x, y, i2, . . . , in) is given by the allocations L1 of items
to the first x − 1 segments of πx plus the allocations L2 of
items to the last segment of πx.

Since we require that the allocation sequence in
opt(x, y, i2, . . . , in) is greedy, we know that L2 is given by
q allocations of the first q remaining items on Agent r’s pref-
erence ranking to the manipulator plus one allocation of the
(q + 1)th remaining item to Agent r. Furthermore, the last
item allocated to Agent r must be the irth item in Agent r’s
preference ranking. By Lemma 4, Lemma 5 and the fact that
the utility function is additive, we know that L1 is given by
opt(x−1, y−q, i2, . . . , i∗r , . . . , in) for some i′r ≤ ir−(q+1).

However, we do not know the value of q and i∗r . In the
algorithm, we try all possible values for q and i∗r . Lemma 3
can guarantee that the best one among them is the correct
allocation sequence we are seeking for. The whole procedure
of OPT is presented in Algorithm 1.

Algorithm 1: Subalgorithm OPT
Input: An instance I = (O,N, π, {�i}ni=1) of BEST

RESPONSE.
Output: To compute opt(x, y, i2, . . . , in) for all

x ∈ {0, 1, . . . ,m′}, y ∈ {0, 1, . . . , k1} and
i2, i3, . . . , in ∈ {0, 1, . . . ,m}.

1 for all values of x, y, i2, . . . , in, do
2 opt(x, y, i2, . . . , in)←⊥;
3 opt(0, 0, 0, . . . , 0)← ∅, which is empty but feasible;
4 for x = 1 to m′ do
5 Let Agent r be the non-manipulator on the xth

position of the core of π;
6 for all i2, i3, . . . , in ∈ {0, 1, . . . ,m} and

0 ≤ y ≤ k(x), do
7 for q ∈ {0, 1, . . . , k(x)} do
8 if There is a value i∗r ≤ ir − (q + 1) such

that
opt(x− 1, y − q, i2, . . . , i

∗
r , . . . , in) �=⊥,

and after executing
opt(x− 1, y − q, i2, . . . , i

∗
r , . . . , in), the

(q + 1)th remaining item on Agent r’s
preference ranking is exactly the irth item
on the whole preference ranking of
Agent r, then

9 Let opt′ be
opt(x− 1, y − q, i2, . . . , i

∗
r , . . . , in)

plus q allocations of the first q
remaining items on Agent r’s
preference ranking to the manipulator
and one allocation of the (q + 1)th
remaining item to Agent r;

10 Let opt(x, y, i2, . . . , in) be the best of
opt′ and current opt(x, y, i2, . . . , in);

Next, we analyze the running time of the whole algorithm.
The algorithm contains three steps.

The first step is to compute opt(x, y, i2, . . . , in) for
i2, i3, . . . , in ∈ {0, 1, . . . ,m}, x ∈ {0, 1, . . . ,m′ = m−k1}
and y ∈ {0, 1, . . . , k1}. In total, there are (1 +m)n−1(m−
k1 + 1)(k1 + 1) < (1 + m)n+1 subproblems need to
be solved. For each subproblem opt(x, y, i2, . . . , in) with
x > 0, we compute them from Steps 3 to 9 in OPT. In Step
6, we have k(x)+1 loops. For each loop, we may use at most
O(itm) time. So for each subproblem opt(x, y, i2, . . . , in),
our algorithm uses at most O(m3) time. OPT runs in O((1+
m)n+4) time.

Step 2 takes at most O((1 + m)n+2) time to extend all
opt(x = m′, y, i2, . . . , in) to opt∗(x = m′, y, i2, . . . , in).

Step 3 is to find the best one among all opt∗(x =
m′, y, i2, . . . , in), which can be done in O((1 + m)n+1)

2307

time.
Theorem 1. BEST RESPONSE can be solved in O((1 +
m)n+4) time.

For each constant number n of agents, BEST RESPONSE
is polynomially solvable.

A 0.5-Approximation Algorithm

Although for each fixed number of agents, the manipulating
sequential allocation problem can be solved in polynomial
time, the running time is exponential in the number n of
agents. When n is large, the algorithm will still be slow. So
we also consider approximation algorithms for the problem.
We prove that
Theorem 2. For an instance of BEST RESPONSE with ad-
ditive utility functions, if the manipulator takes the truthful
preference ranking as its picking strategy, it can get a bundle
with the total utility being at least half of that of the optimal
solution.

Proof. Let I ′ be the corresponding crucial instance of the
input instance I . By Corollary 1, we know that an optimal
solution to I ′ is an optimal solution to I . By Lemma 1, we
also know that a solution to I is at least as good as that to I ′
under the same picking strategy. So we only need to prove
the theorem holds for crucial instance I ′ and next we assume
that the input instance is crucial.

We use ξA and ξB to denote the allocations by tak-
ing the optimal picking strategy and by taking the truthful
preference as the picking strategy, respectively. Let A =
{a1, a2, . . . , ak1} be the bundle obtained by ξA and B =
{b1, b2, . . . , bk1} be the bundle obtained by ξB , where we
assume that the items in the above two sets are listed ac-
cording to the picking order.

We first prove that for any index 1 ≤ i ≤ k1 such that
ai �1 bi, the item ai is also in B. Assume to the con-
trary that ai �∈ B, which means that item ai is not taken
into the solution in ξB . The allocation of item ai in ξA and
the allocation of item bi in ξB happen as the same position
of the policy, say the xth position. In ξB , an item bi with
u(bi) < u(ai) is allocated at the xth position, which means
that ai has already been allocated to some agent before the
xth position in ξB as the picking strategy in ξB is the truth-
ful preference. However, the instance is a crucial instance
and the optimal allocation sequence in ξA is greedy. Item ai
is impossible to be allocated to a non-manipulator before the
xth position in ξB . Then ai can only be allocated to the ma-
nipulator in ξB , which is a contradiction to the assumption
that ai �∈ B. So the above claim holds.

Let L = {i1, i2, . . . , il} be the set of indices ij such that
aij �1 bij . Let L = {1, 2, . . . , k1} \ L. Note that L is not
empty and index 1 is always in L. By the above claim, we
have that ∑

i∈L

u(ai) <
∑

b∈B

u(b).

By the definitions of L and L, we have that
∑

i∈L

u(ai) ≤
∑

i∈L

u(bi) ≤
∑

b∈B

u(b).

By summing up the above two inequalities, we get that
∑

a∈A

u(a) < 2
∑

b∈B

u(b).

We also give a simple example, where the approxima-
tion ratio cannot be 0.5 + ε′ for any constant ε′ > 0.
This will show the approximation ratio of 0.5 is tight for
the mechanism of using the truthful preference. There are
three items O = {g1, g2, g3} to be allocated to two agents
N = {1, 2}. The preference rankings are �1: g1, g2, g3
and �2: g2, g3, g1. The policy is π : 121. The utility func-
tion of the manipulator is that u(g1) = 1, u(g2) = 1 − ε
and u(g3) = ε. If the manipulator use the picking strategy
g2g1g3, it can get items g2 and g1 with the utility 2 − ε. If
the manipulator use the truthful preference ranking g1g2g3
as the picking strategy, it can only get items g1 and g3 with
the utility 1+ε. The approximation ratio is 1+ε

2−ε = 0.5+ 1.5ε
2−ε ,

where 1.5ε
2−ε can be arbitrarily small.

Conclusion

BEST RESPONSE can be regarded as one of the hardest nat-
ural problems in manipulating sequential allocation prob-
lems, since most other problems can be reduced to it. It
has been known for years that BEST RESPONSE with only
two agents can be solved in polynomial time. However, it
took more effort to establish the NP-hardness of BEST RE-
SPONSE with an unbounded number of agents. In this pa-
per, we complete the “gap” by showing that BEST RE-
SPONSE is polynomially solvable for any constant number
of agents. Furthermore, we show that we can always get
a 0.5-approximation solution if taking the truthful prefer-
ence ranking of the manipulator as its picking strategy. Fur-
thermore, the ratio 0.5 is tight as far as using the truthful
preference ranking. It may be interesting to consider the ap-
proximation ratio for using the truthful response on more
no-strategyproof problems.

Acknowledgments

The work is supported by the National Natural Science
Foundation of China, under grants 61972070 and 61802049.

References

Abdulkadiroglu, A.; Pathak, P.; Roth, A. E.; and Sonmez,
T. 2006. Changing the boston school choice mechanism.
Technical report, National Bureau of Economic Research.
Aziz, H.; Gaspers, S.; Mackenzie, S.; Mattei, N.; Narodyt-
ska, N.; and Walsh, T. 2015. Manipulating the probabilistic
serial rule. In Proceedings of the 2015 International Con-
ference on Autonomous Agents and Multiagent Systems, AA-
MAS 2015, Istanbul, Turkey, May 4-8, 2015, 1451–1459.
Aziz, H.; Bouveret, S.; Lang, J.; and Mackenzie, S. 2017.
Complexity of manipulating sequential allocation. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California,
USA., 328–334.

2308

Aziz, H.; Bouveret, S.; and Lang, J. 2017. Manipulating
sequential allocation: an overview. Online manuscript.
Aziz, H.; Goldberg, P.; and Walsh, T. 2017. Equilibria in
sequential allocation. In Algorithmic Decision Theory - 5th
International Conference, ADT 2017, Luxembourg, Luxem-
bourg, October 25-27, 2017, Proceedings, 270–283.
Aziz, H.; Walsh, T.; and Xia, L. 2015. Possible and neces-
sary allocations via sequential mechanisms. In Proceedings
of the Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, 468–474.
Bouveret, S., and Lang, J. 2011. A general elicitation-free
protocol for allocating indivisible goods. In IJCAI 2011,
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-
22, 2011, 73–78.
Bouveret, S., and Lang, J. 2014. Manipulating picking
sequences. In ECAI 2014 - 21st European Conference on
Artificial Intelligence, 18-22 August 2014, Prague, Czech
Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014), 141–146.
Brams, S. J., and Taylor, A. D. 2000. The win-win solution
- guaranteeing fair shares to everybody. W. W. Norton &
Company.
Budish, E., and Cantillon, E. 2012. The multi-unit as-
signment problem: Theory and evidence from course allo-
cation at harvard. THE AMERICAN ECONOMIC REVIEW
102(5):2237–2271.
Cechlárová, K.; Klaus, B.; and Manlove, D. F. 2018. Pareto
optimal matchings of students to courses in the presence of
prerequisites. Discrete Optimization 29:174–195.
Kalinowski, T.; Narodytska, N.; and Walsh, T. 2013. A so-
cial welfare optimal sequential allocation procedure. In IJ-
CAI 2013, Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, Beijing, China, August 3-9,
2013, 227–233.
Kohler, D. A., and Chandrasekaran, R. 1971. A class of
sequential games. Operations Research 19(2):270–277.
Kojima, F., and Ünver, M. U. 2014. The “boston” school-
choice mechanism: an axiomatic approach. Economic The-
ory 55(3):515–544.
Levine, L., and Stange, K. E. 2012. How to make the most
of a shared meal: Plan the last bite first. The American Math-
ematical Monthly 119(7):550–565.
Tominaga, Y.; Todo, T.; and Yokoo, M. 2016. Manipulations
in two-agent sequential allocation with random sequences.
In Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, Singapore, May 9-
13, 2016, 141–149.

2309

