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Abstract

Computation of equilibria for congestion games has been an
important research subject. In many realistic scenarios, each
strategy of congestion games is given by a combination of ele-
ments that satisfies certain constraints; such games are called
combinatorial congestion games. For example, given a road
network with some toll roads, each strategy of routing games
is a path (a combination of edges) whose total toll satisfies
a certain budget constraint. Generally, given a ground set of
n elements, the set of all such strategies, called the strategy
set, can be large exponentially in n, and it often has compli-
cated structures; these issues make equilibrium computation
very hard. In this paper, we propose a practical algorithm for
such hard equilibrium computation problems. We use data
structures, called zero-suppressed binary decision diagrams
(ZDDs), to compactly represent strategy sets, and we develop
a Frank–Wolfe-style iterative equilibrium computation algo-
rithm whose per-iteration complexity is linear in the size of the
ZDD representation. We prove that an ε-approximate Wardrop
equilibrium can be computed in O(poly(n)/ε) iterations, and
we improve the result to O(poly(n) log ε−1) for some special
cases. Experiments confirm the practical utility of our method.

1 Introduction

Congestion games form an important subclass of non-
cooperative games since they can model various resource allo-
cation scenarios. Motivated by a wide variety of applications,
computation of equilibria for congestion games, which enable
us to examine structures of equilibria (e.g., the price of anar-
chy), has been an attracting research subject. In many practi-
cal congestion games, each strategy forms a subset of a finite
ground set, [n] := {1, . . . , n}, and the set of all strategies, or
the strategy set, can be large exponentially in n. We call such
games combinatorial congestion games. A typical example is
selfish routing (Roughgarden 2005): Given a graph with edge
set [n] and origin-destination pair (s, t), each player chooses
an s–t path selfishly to go from s to t as fast as possible. In
this case, the strategy set is the collection of all s–t paths,
whose size is generally exponential in n. For the standard self-
ish routing, efficient equilibrium computation methods have
been developed (Fabrikant, Papadimitriou, and Talwar 2004;
Thai 2017). These methods handle the huge strategy sets by
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utilizing efficient polynomial-time algorithms for the min-
cost flow or shortest path problems. In more general settings,
however, strategy sets can have more complicated structures,
for which such polynomial-time algorithms are unavailable.
Below we list two such examples:

Budgeted Selfish Routing. We consider a variant of selfish
routing based on (Jahn et al. 2005): The graph representing
a road network has some edges corresponding to toll roads,
and players do not choose s–t paths whose total toll is too ex-
pensive. Namely, each strategy must satisfy a certain budget
constraint. Given a cost value for each edge, which indicates
the degree of congestion, to find the minimum-cost s–t path
is at least as hard as the NP-hard knapsack problem.

Multi-location Communication. We consider the multi-
location communication problem on a network based on
(Imase and Waxman 1991). Let [n] be an edge set of a graph
representing the communication network. Each edge con-
nects two cities, and there are some special cities called
terminals. In this game, a player is a group of people who are
in the terminals and have a multi-person conference. Each
strategy is a Steiner tree that includes all the terminals, and
each player chooses a Steiner tree selfishly to minimize com-
munication delay. Given the degree of delay for each edge,
the problem of finding the Steiner tree with the smallest delay
reduces to the APX-hard minimum Steiner tree problem.

Congestion games have many other applications related to
resource allocation on networks (Shakkottai, Altman, and Ku-
mar 2007; Han et al. 2012), and their combinatorial variants
can naturally appear in practice. Therefore, to develop practi-
cal equilibrium computation methods that can handle various
combinatorial strategy sets is important for advancing studies
into real-world congestion games. However, we are currently
missing such general methods due to the difficulty of dealing
with a wide variety of huge and complicated strategy sets.

1.1 Our Contribution

We develop a practical equilibrium computation algorithm
for combinatorial congestion games. Motivated by the fact
that many real-world games have a huge number of players,
we employ the continuous-player setting (Sandholm 2001),
where there are infinitely many players with an infinitesi-
mal mass. As elucidated later, equilibrium computation for
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such games can be reduced to constrained potential function
minimization problems, which are generally NP-hard due to
the complicated structures of strategy sets. We address this
hardness by using data structures called zero-suppressed bi-
nary decision diagrams (ZDDs), which can represent various
combinatorial strategy sets compactly. We minimize potential
functions with a Frank–Wolfe-style iterative algorithm that
utilizes the compact ZDD representation. In practice, since
the algorithm is performed with finite precision, output solu-
tions generally have objective errors. Fortunately, however,
we can prove that the solutions achieve an ε-approximate
Wardrop equilibrium. Below we detail our contributions:
• We propose a Frank–Wolfe-style iterative equilibrium com-

putation algorithm for continuous-player combinatorial
congestion games, whose per-iteration complexity is linear
in the total size of ZDDs representing strategy sets.

• We prove that our algorithm outputs an ε-approximate
Wardrop equilibrium in O(poly(n)/ε) iterations if po-
tential functions have differentiability, convexity, and
Lipschitz-continuous gradient. We also improve the result
to O(poly(n) log ε−1) with some additional assumptions.

• We validate the proposed method via experiments. The
results demonstrate that our method is useful for practical
equilibrium computation problems.
While ZDDs can generally be large exponentially in n,

their empirical sizes are often small enough for practical use.
Moreover, ZDD sizes can sometimes be polynomial in n
(see, Section 2.3). In such cases, our method can compute
an ε-approximate Wardrop equilibrium in O(poly(n)/ε) (or
O(poly(n) log ε−1)) time.

Our method can also compute the social optimum as in
Section 2.1. Therefore, our method can be used for examining
the price of anarchy, which is defined by the ratio of the total
cost value of the equilibrium to that of the social optimum.

1.2 Related Work

Continuous-player games and their connection to continuous
optimization have been widely studied. Beckmann, McGuire,
and Winsten (1956) first used a convex optimization for-
mulation to study traffic equilibria. Sandholm (2001) estab-
lished a general framework of continuous-player games char-
acterized as potential function minimization, called poten-
tial games, but combinatorial strategy sets were not con-
sidered. As regards the combinatorial setting, many ex-
isting works are devoted to selfish routing (Roughgarden
2005): Roughgarden and Tardos (2002) studied the ineffi-
ciency of equilibria, or the price of anarchy. Convergence
of various dynamics to equilibria were also studied in (Fis-
cher and Vöcking 2004; Blum, Even-Dar, and Ligett 2006;
Fischer, Räcke, and Vöcking 2010). Fabrikant, Papadimitriou,
and Talwar (2004) developed a polynomial-time algorithm for
computing an approximate equilibrium. Optimization-based
algorithms, including the Frank–Wolfe algorithm, for equilib-
rium computation have also been widely studied (Vliet 1987;
Bar-Gera 2002; Correa and Stier-Moses 2011; Thai 2017);
note that our work is the first that shows the relationship be-
tween the precision of a Frank–Wolfe-style algorithm and ap-
proximate Wardrop equilibria. Congestion games other than

selfish routing have also been studied (Altman et al. 2006;
Shakkottai, Altman, and Kumar 2007; Han et al. 2012), but
those did not consider addressing the computational hard-
ness caused by the huge and complicated strategy sets. Jahn
et al. (2005) addressed a computationally hard problem of
finding system-optimal flow for the budgeted routing setting.
Their approach is, however, based on a linear integer pro-
gramming formulation specialized for the budgeted routing
setting, while our method can work with various combina-
torial strategy sets that can be represented with ZDDs as in
Section 2.3.

The Frank–Wolfe algorithm (Frank and Wolfe 1956), a.k.a.
conditional gradient algorithm, is a well-established algo-
rithm for constrained convex minimization, and it has re-
cently been attracting much attention thanks to the useful
convergence analysis based on the duality gap (Jaggi 2013).
Lacoste-Julien and Jaggi (2015) studied several variants of
the Frank–Wolfe algorithm and proved their global linear
convergence under some assumptions; our method uses one
of the variants called the fully-corrective Frank–Wolfe algo-
rithm. Abernethy and Wang (2017) studied the Frank–Wolfe
algorithm from a perspective of zero-sum games; note that
their research direction is different from ours. As explained
in Section 2.2, a typical bottleneck of the Frank–Wolfe al-
gorithm is a linear optimization step. While this bottleneck
can be resolved in some cases (Lacoste-Julien et al. 2013;
Kerdreux, Pedregosa, and d’Aspremont 2018; Braun, Pokutta,
and Zink 2019), these techniques do not work in our case
with huge and complicated strategy sets.

Minato (1993) proposed ZDDs as a variant of binary de-
cision diagrams (Bryant 1986). As with our method, many
optimization methods that take advantages of decision dia-
grams have recently been developed (Morrison, Sewell, and
Jacobson 2016; Bergman et al. 2016); most of them con-
sider optimizing linear objective functions. To the best of
our knowledge, our work provides the first ZDD-based algo-
rithm for constrained optimization with (non-linear) convex
objective functions.

2 Background
We introduce our problem settings and basic techniques.

2.1 Problem Settings

Let [r] := {1, . . . , r} be the set of populations. We consider
the combinatorial setting: Given a finite ground set [n], each
strategy is given by S ⊆ [n]. For each p ∈ [r], we define
strategy set Sp := {S1, . . . , S|Sp|} ⊆ 2[n]. Given any S ⊆
[n], we let 1S ∈ {0, 1}n denote an indicator vector whose
ith entry is 1 if i ∈ S and 0 otherwise. We sometimes abuse
the notation and regard 1S in the same light as S.

We then explain the continuous-player setting. Each p ∈
[r] has infinitely many players with an infinitesimal mass;
let mp ∈ R be the total mass. We assume

∑
p∈[r] m

p = 1

w.l.o.g. Let zpS ∈ [0, 1] denote the proportion of players
who choose strategy S ∈ Sp; we have

∑
S∈Sp z

p
S = 1.

Consequently, mpzpS represents the mass of players in p who
choose S ∈ Sp. We call zp = (zpS1

, . . . , zpS|Sp|) a strategy
profile of p and z = (z1, . . . , zr) a strategy profile.
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We finally explain the congestion game setting. Given any
strategy profile z, we let xp =

∑
S∈Sp z

p
S1S ∈ [0, 1]n for

each p ∈ [r] and x = (x1, . . . ,xr). Note that the ith entry
of y :=

∑
p∈[r] m

pxp, denoted by yi, represents the mass
of players who choose strategies including i ∈ [n]. For any
p ∈ [r], the cost of strategy S ∈ Sp is given by cS(y) :=∑

i∈S ci(yi), where ci(θ) (θ ∈ [0, 1]) is a function that indi-
cates the cost of using i ∈ [n] when the mass of players using
i ∈ [n] is θ. For convenience, we also define cost functions on
R

rn as CS(x) := cS(
∑

p∈[r] m
pxp). Each player chooses a

strategy selfishly to minimize the cost. We define potential
function Φ : Rn → R as Φ(y) :=

∑
i∈[n]

∫ yi

0
ci(θ)dθ. Note

that we have ci(y) = ∇Φ(y)i and cS(y) = ∇Φ(y)�1S . We
impose some assumptions on the cost and potential functions
as summarized below; particularly, we assume Φ(·) to be
convex. As in (Sandholm 2001), strategy profile z achieves
an equilibrium iff it satisfies the KKT condition; thanks to
the convexity of Φ(·), it is characterized as a minimizer of

minimize
z≥0

Φ

⎛
⎝∑

p∈[r]

mp
∑
S∈Sp

zpS1S

⎞
⎠

subject to
∑
S∈Sp

zpS = 1 (∀p ∈ [r]).

Since z generally consists of exponentially many variables,
to directly solve this problem is too expensive; hence we con-
sider reformulating it. We define V := S1×· · ·×Sr. Since the
Cartesian products “×” and convex hulls “conv(·)” are com-
mutative, we have conv(S1)× · · · × conv(Sr) = conv(V),
and so the above problem can be equivalently rewritten as

minimize
x=(x1,...,xr)∈Rrn

F (x) := Φ

⎛
⎝∑

p∈[r]

mpxp

⎞
⎠

subject to x ∈ conv(V),
(1)

which has rn variables. We aim to solve this problem in what
follows. Note that, for any p ∈ [r], the gradient of F (x)
w.r.t. xp, denoted by ∇pF (x), is given by mp∇Φ(y) ∈ R

n,
where y =

∑
p∈[r] m

pxp.
We need some remarks. Although the minimizer, x, of (1)

indicates the proportion of players choosing i ∈ [n] for each
p ∈ [r], it does not give us strategy profile z. Fortunately,
however, the Frank–Wolfe-style algorithms output a solution
as a convex combination of vertices, which enable us to ob-
tain a strategy profile (see, Section 3.2). As in (Roughgarden
2005), we can confirm that any minimizer of (1) has the fol-
lowing uniqueness of cost values: Given any two minimizers,
x1 and x2, of (1), we have ci(y1) = ci(y2) (∀i ∈ [n]), where
yj =

∑
p∈[r] x

p
j (j = 1, 2). Therefore, the total cost of an

equilibrium,
∑

i∈[n] yi · ci(yi), can be uniquely computed by
solving (1). Furthermore, computation of the social optimum
can be formulated in almost the same manner as (1): We min-
imize Ψ(y) :=

∑
i∈[n] yi · ci(yi) instead of Φ(y), which our

method can (approximately) solve under some assumptions
detailed below. The price of anarchy can be computed as the
ratio of those two total costs.

Assumptions on Cost and Potential Functions. We as-
sume ci(·) (∀i ∈ [n]) to be non-decreasing on [0, 1], which
implies that Φ(·) and F (·) are convex on [0, 1]n and [0, 1]rn,
respectively. We also make the following assumptions to
guarantee the convergence the Frank–Wolfe-style algorithm.
Let m := maxp∈[r] m

p and m := minp∈[r] m
p. We as-

sume Φ(·) to have L-Lipschitz-continuous gradient (L > 0)
on [0, 1]n, which is equivalent to L-Lipschitz-continuity of
ci : [0, 1] → R (∀i ∈ [n]); i.e., |ci(y1)−ci(y2)| ≤ L|y1−y2|
for any y1, y2 ∈ [0, 1]. This is a common assumption (see,
e.g., (Fabrikant, Papadimitriou, and Talwar 2004)). Note that,
if Φ(·) has L-Lipschitz-continuous gradient, F (·) also has
Lipschitz-continuous gradient with constant Lm ≤ L. In
Theorem 2, we obtain an improved result by assuming F (·)
to be strongly convex with some constant μ > 0: F (x+d) ≥
F (x)+ 〈∇F (x),d〉+ μ

2 ‖d‖22 for any x,d ∈ R
rn. Note that,

if Φ(·) is μ-strongly convex, then F (·) is also strongly con-
vex with constant μm. Below we present a standard example
setting satisfying the above assumptions.

When computing the social optimum, we need additional
assumptions as in (Roughgarden 2005). We assume ci(·) to
be differentiable and semi-convex (i.e., y·ci(y) is convex w.r.t.
y) on [0, 1], which makes Ψ(·) differentiable and convex. We
also assume Ψ(·) to have Lipschitz-continuous gradient.

Example: Budgeted Selfish Routing. Given a graph with
edge set [n], edge weights (or tolls) w1, . . . , wn, origin-
destination pairs (s1, t1), . . . , (sr, tr), and budget value W ,
each player at sp selfishly chooses an sp–tp path whose total
weight is at most W . In this case, each strategy S ∈ Sp

is an edge subset that forms an sp–tp path and satisfies∑
i∈S wi ≤ W . If the congestion degree of each edge i ∈ [n]

increases linearly in the amount of traffic, the cost function of
i ∈ [n] is given by ci(yi) = aiyi + bi with some ai, bi ≥ 0.
The potential function is Φ(y) =

∑
i∈[n]

∫ yi

0
ci(θ)dθ =∑

i∈[n](
1
2aiy

2
i + biyi), which is differentiable and convex.

Note that each ci(·) is ai-Lipschitz continuous and that Φ(·)
is strongly convex with constant mini∈[n] ai. Furthermore,
Ψ(y) =

∑
i∈[n] yi · ci(yi) =

∑
i∈[n](aiy

2 + biy) is differen-
tiable, convex, and has Lipschitz-continuous gradient with
constant 2×maxi∈[n] ai.

2.2 Frank–Wolfe Algorithm

The Frank–Wolfe algorithm is an effective approach to con-
strained convex minimization problem minx∈D f(x), where
D ⊆ R

n is a convex feasible region and f(·) is a convex ob-
jective function. Specifically, given an initial point x0 ∈ D,
we update it for k = 0, . . . ,K as follows:

1. sk ∈ argminv∈D 〈∇f(xk),v〉,
2. xk+1 = (1− γk)xk + γksk,

where γk is usually set to 2
k+2 . It is known that xk converges

to an optimal solution, x∗, at a rate of O(poly(n)/k) if f(·)
has Lipschitz-continuous gradient (Frank and Wolfe 1956;
Jaggi 2013). Therefore, if the linear optimization problem on
D can be solved, we can obtain a sequence of solutions that
converges to x∗.
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Figure 1: The left figure is a graph with origin s, destination t,
and edge set [n], where n = 5. Let S ⊆ 2[n] be the collection
of all s–t paths. The right figure illustrates ZDD ZS = (V,A)
that represents S. Each node v ∈ V is labeled by lv ∈ [n],
and the top node labeled by 1 is the root node, r ∈ V. Each
dashed (solid) arc represents 0-arc (1-arc). The square node
labeled with ⊥ () is 0-terminal (1-terminal).

Frank–Wolfe-style algorithms require to solve the linear
optimization problem time and again as in Step 1, and thus
how to solve it heavily affects the efficiency of the algo-
rithms. For the case of standard selfish routing, the linear
optimization can be solved efficiently with algorithms for
finding the shortest path, but this is not always the case with
other settings. For example, if Sp (p ∈ [r]) is a collection
of Steiner trees on a given graph with terminals, to solve
the linear optimization problem on D = conv(V) is at least
as difficult as the APX-hard minimum Steiner tree problem.
Note that, while the Frank–Wolfe algorithm accepts additive
errors when solving the linear optimization (Jaggi 2013), the
error value must converge to 0 as k increases. To achieve
this is still difficult particularly when the linear optimization
is APX-hard, which is true if Sp is the collection of Steiner
trees. Jaggi (2013) also mentioned the difficulty of perform-
ing the Frank–Wolfe algorithm for the case where the linear
optimization step is NP-hard. In Section 3.1, we address this
hardness by using ZDDs.

2.3 Zero-suppressed Binary Decision Diagrams

Given a set family, S ⊆ 2[n], ZDD ZS = (V,A) is a DAG-
shaped data structure that compactly represents S . The node
set, V, contains one root node r and two terminal nodes ⊥
and , called 0- and 1-terminals, respectively. Each non-
terminal node v ∈ V\{⊥,} is labeled by lv ∈ [n] and has
two outgoing arcs, 0- and 1-arcs. We define 0-child c0v (1-
child c1v ) of v as a node pointed by the 0-arc (1-arc) outgoing
from v. We define R ⊆ 2A as the set of all directed paths
connecting r to . Given R ∈ R, we define X(R) := {lv ∈
[n] | (v, c1v) ∈ R}. We have S = {X(R) | R ∈ R}, which
means there is one-to-one correspondence between S ∈ S
and R ∈ R. In other words, each S ∈ S is represented as a
directed path, R ∈ R, from r to ; we can recover S from
R by taking label lv ∈ [n] assigned to the tail of every 1-
arc in R. Figure 1 illustrates an example of a ZDD for the
case where S is a collection of s–t paths; e.g., an s–t path
{1, 4} ∈ S corresponds to a directed path whose arcs are
labeled by {(1, 3), (3, 4), (4,)} in the ZDD.

As regards the ZDD construction, various efficient meth-

Algorithm 1 FCFW with ZDDs for equilibrium computation

1: Construct ZS1 , . . . ,ZSr .
2: Choose Sp ∈ Sp for p ∈ [r].
3: Let xp

0 = 1Sp , Ap
0 = {Sp}, and zpSp = 1 for p ∈ [r].

4: x0 = (x1
0, . . . ,x

r
0).

5: for k = 0, . . . ,K do
6: yk =

∑
p∈[r] m

pxp
k.

7: for each p ∈ [r] do

8:
Compute spk ∈ argminu∈Sp 〈∇Φ(yk),u〉 by
DP on ZSp .

9: Let dp
k = spk − xp

k and gpk = 〈−∇Φ(yk),d
p
k〉.

10: end for
11: if maxp∈[r] g

p
k ≤ ε then

12: return xk, {Ap
k}p∈[r], and {{zpS}S∈Ap

k
}p∈[r].

13: end if

14:
Execute Correction(xk, {Ap

k}p∈[r], {spk}p∈[r], ε)
to get xk+1 = (x1

k+1, . . . ,x
r
k+1) , {Ap

k+1}p∈[r],
and {{zpS}S∈Ap

k+1
}p∈[r].

15: end for

ods have been developed. In particular, the frontier-based
search (Kawahara et al. 2017), which is based on the Knuth’s
Simpath algorithm (Knuth 2011), is known to be effective
when S is specified on graphs (e.g., s–t paths, Steiner trees,
matchings, and cliques). By utilizing the well-established
family algebra (Minato 1993; Knuth 2011), we can also con-
struct ZDDs representing logically constrained strategy sets.
For example, given a graph with edge costs and multiple bud-
get constraints, we can construct ZDDs representing the set of
all s–t paths satisfying at least one of the budget constraints.
The ZDD size, |V|, and the complexity of its construction are
generally exponential in n, but its empirical size is often small
enough for practical use. Moreover, if S is defined on a graph
with a constant pathwidth, the resulting ZDD size and con-
struction complexity can be poly(n) (Inoue and Minato 2016;
Kawahara et al. 2017).

3 Proposed Method

A high-level sketch of our method is as follows: We first
construct ZDD ZSp that represent Sp for each p ∈ [r], and
then we perform the fully corrective Frank–Wolfe algorithm
(FCFW) by utilizing the ZDD representation of the strategy
sets. Our algorithm, described in Algorithm 1, consists of
two main building blocks: Linear optimization with ZDDs
(Step 8) and update of solutions (Step 14), called full correc-
tion, which we detail in Sections 3.1 and 3.2, respectively.
Section 3.2 also explains how to obtain a strategy profile, and
we prove that the obtained solution achieves an ε-approximate
Wardrop equilibrium in Section 3.3.

3.1 Linear Optimization with ZDDs

In Step 8, we need to solve spk ∈ argminu∈Sp 〈∇Φ(yk),u〉
for each p ∈ [r]. Note that, since 〈∇Φ(yk),u〉 is linear w.r.t.
u and ∇pF (xk) = mp∇Φ(yk) holds, we can rewrite the lin-
ear optimization as spk ∈ argminu∈conv(Sp) 〈∇pF (xk),u〉;
hence sk := (s1k, . . . , s

r
k) ∈ argminv∈conv(V) 〈∇F (xk),v〉
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Algorithm 2 Correction(xk, {Ap
k}p∈[r], {spk}p∈[r], ε)

Find xk+1 = (x1
k+1, . . . ,x

r
k+1) , {Ap

k+1}p∈[r], and
{{zpS}S∈Ap

k+1
}p∈[r] satisfying the following conditions:

1. xp
k+1 =

∑
S∈Ap

k+1
zpS1S for p ∈ [r].

2. F (xk+1) ≤ minγ∈[0,1] F (xk + γ(sk − xk)), where
sk = (s1k, . . . , s

r
k).

3. maxp∈[r] maxu∈Ap
k+1

〈−∇Φ(yk+1),x
p
k+1 − u

〉 ≤ ε,
where yk+1 =

∑
p∈[r] m

pxp
k+1.

holds, which implies that Step 8 can be seen as the linear op-
timization step of the Frank–Wolfe algorithm in Section 2.2.
Since this linear optimization problem is generally hard to
solve as mentioned in Section 2.2, we consider performing
this step efficiently by utilizing ZDDs.

Given ZSp = (Vp,Ap), spk ∈ argminu∈Sp 〈∇Φ(yk),u〉
can be solved by the standard dynamic programming (DP)
on ZSp as follows. We set the length of every 0-arc to 0
and that of 1-arc (v, c1v) to ∇Φ(yk)lv ; consequently, the
total length of a directed r– path, R ⊆ Ap, is equal to∑

i∈X(R) ∇Φ(yk)i =
〈∇Φ(yk),1X(R)

〉
. Therefore, thanks

to the one-to-one correspondence shown in Section 2.3, we
can obtain spk by performing DP on ZSp for finding the short-
est r– path. This ZDD-based linear optimization is suitable
as a subroutine of Frank–Wolfe-style algorithms since, once
ZDDs are constructed, we can reuse them for k = 0, . . . ,K.
To the best of our knowledge, this is the first Frank–Wolfe-
style algorithm that takes advantages of ZDDs. The complex-
ity of Step 8, which is the most expensive step, is linear in
the total size of ZDDs:

∑
p∈[r] |Vp|. If every Sp is defined on

a graph with a constant pathwidth and |Vp| is polynomial in
n as mentioned in Section 2.3, the per-iteration complexity
of our method is also polynomial in n.

3.2 Full Correction

We here detail Step 14, which computes xk+1 via full correc-
tion (Algorithm 2). For each p ∈ [r], Ap

k ⊆ Sp represents a
subset of strategies such that xp

k =
∑

S∈Ap
k
zpS1S with some

zpS ∈ (0, 1]; we call Ap
k the active set. Note that, if xk is

the output solution, the strategy profile of each p ∈ [r] (or
non-zero entries of zp ∈ [0, 1]|S

p|) is obtained as {zpS}S∈Ap
k
.

Roughly speaking, the full-correction step minimizes F (·)
on conv({A1

k ∪ {s1k}} × · · · × {Ar
k ∪ {srk}}), which can be

formulated as convex minimization on a probabilistic sim-
plex. An implementation of a similar full-correction step is
presented in (Krishnan, Lacoste-Julien, and Sontag 2015),
which uses a Frank–Wolfe-style algorithm called the away-
steps Frank–Wolfe, and our full-correction step can be imple-
mented by modifying it as detailed in the appendix. With the
implementation of the full-correction step, we have |Ap

k| ≤ k.
Therefore, while the size of a strategy profile is generally ex-
ponential in n, the strategy profile obtained by Algorithm 1
for each p ∈ [r] is at most as large as the number of iterations,
which can be bounded as in Theorem 2.

The fully corrective update of the current solution is more

expensive than that of the standard Frank–Wolfe algorithm
(Step 2 in Section 2.2). However, thanks to this full-correction
step, FCFW achieves a better convergence result for strongly
convex objective functions, which we will use in the proof
of Theorem 2. Empirically, although the full-correction step
increases the per-iteration computation time, it decreases the
number of iterations by a great margin, which often reduces
the total computation time. In our case, FCFW is a suitable
choice because the full-correction step is typically far cheaper
than the linear optimization with ZDDs, which means it is
effective to reduce the number of iterations via full correction.
Furthermore, thanks to the third condition of Algorithm 2, we
can prove that the output solution attains an ε-approximate
Wardrop equilibrium as shown below.

3.3 Approximate Wardrop Equilibrium

Let x = (x1, . . . ,xp) be the obtained solution. For each
p ∈ [r], we let Ap be the active set and {zpS}S∈Ap be the
strategy profile; we have xp =

∑
S∈Ap z

p
S1S . If our algo-

rithm is performed with infinite precision (ε = 0), the output
attains the following Wardrop equilibrium for every p ∈ [r]:
CS(x) ≤ CS′(x) for any S ∈ Ap and S′ ∈ Sp. Namely, no
player has an incentive to change his/her strategy. Unfortu-
nately, since ε = 0 is impossible in practice, the obtained
solution does not always satisfy the above condition. Fortu-
nately, however, we can show that the output of Algorithm 1
achieves an ε-approximate Wardrop equilibrium as follows:
Theorem 1. Fix any p ∈ [r]. Algorithm 1 outputs x satisfy-
ing CS(x)− ε ≤ CS′(x) + ε for any S ∈ Ap and S′ ∈ Sp.

Proof. Let y =
∑

p∈[r] m
pxp. Thanks to Step 11, we have

〈∇Φ(y),xp〉 ≤ min
u∈Sp

〈∇Φ(y),u〉+ ε = min
S′∈Sp

CS′(x) + ε.

From the third condition in Algorithm 2, we obtain

〈∇Φ(y),xp〉 ≥ max
u∈Ap

〈∇Φ(y),u〉 − ε = max
S∈Ap

CS(x)− ε.

Combining these inequalities, we obtain the claim.

The number of iterations required for computing the ε-
approximate Wardrop equilibrium can be bounded as follows:
Theorem 2. Algorithm 1 stops after O(poly(n)/ε) itera-
tions. If F (·) is strongly convex and the reciprocal of the
pyramidal width (Lacoste-Julien and Jaggi 2015) of conv(V)
is O(poly(n)), it stops after O(poly(n) log ε−1) iterations.

Proof. If F (·) has differentiability, convexity, and Lipschitz-
continuous gradient, the maxv∈conv(V) 〈∇F (xk), (xk − v)〉
value, so-called the duality gap, is bounded by O(poly(n)/k)
as in (Jaggi 2013). This fact implies that

∑
p∈[r] m

pgpk ≤
ε holds after k = O(poly(n)/ε) iterations. Since each
gpk is non-negative, we see that the algorithm stops af-
ter at most

⌈
k/minp∈[r] m

p
⌉
= O(poly(n)/ε) iterations.

We then obtain the improved result under the assump-
tions. Note that the third condition in Algorithm 2 implies
maxv∈conv(A1

k+1×···×Ar
k+1)

〈−∇F (xk+1),xk+1 − v〉 ≤ ε

since
∑

p∈[r] m
p = 1, which means that the so-called away

gap is less than or equal to ε (see, (Lacoste-Julien and Jaggi
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Figure 2: Figures 2a to 2c show the results of BSR instances, and Figures 2d to 2f show those of MC instances. Figures 2a and 2d
indicate the sizes of strategy sets and ZDDs; the strategy-set sizes are computed by DP on ZDDs. Figures 2b and 2e show the
times required for constructing ZS and enumerating all S ∈ S, where the enumerated strategy sets are used by the baseline
method. Figures 2c and 2f present the running times of FCFW (Algorithm 1) performed with the baseline and our methods,
where each curve and error band indicate the mean and standard deviation, respectively, over 50 random instances.

2015)). Consequently, the procedures of Algorithms 1 and 2
completely recover those of FCFW, and so, if the recipro-
cal of the pyramidal width is O(poly(n)), the duality gap
can be bounded by O(exp(−Θ(k/poly(n)))) as in (Lacoste-
Julien and Jaggi 2015). Therefore, the algorithm stops after
O(poly(n) log ε−1) iterations.

Lacoste-Julien and Jaggi (2015) conjectured that the pyra-
midal width is lower bounded by Ω(1/

√
n) in general. Under

the conjecture, its reciprocal is O(
√
n), and so the corre-

sponding assumption in Theorem 2 is satisfied.

4 Experiments

We evaluate the proposed method via experiments. In Sec-
tion 4.1, we show the empirical efficiency of our method with
synthetic instances. In Section 4.2, we demonstrate that our
method can work with real-world instances. For constructing
ZDDs, we use Graphillion (Inoue et al. 2016). All the algo-
rithms are implemented in C++, and the codes are complied
with clang++ (Apple LLVM v10.0.0). We set the ε value of
our algorithm to 10−10. All the experiments are conducted
on a 64-bit macOS (High Sierra) machine with 2.5 GHz Intel
Core i7 CPU (1 thread) and 16 GB RAM.

4.1 Synthetic Instances

We consider budgeted selfish routing (BSR) and multi-
location communication (MC) instances on undirected grid
graphs with 6 × M edges (M = 1, 2, . . . , 20); [n] is the
edge set with n = 13M + 6. For simplicity, we consider the
symmetric case (r = 1), and we omit index p ∈ [r]; e.g., S1

is denoted by S. In BSR instances, each S ∈ S is an s–t
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Figure 3: Figure 3a shows the strategy-set and ZDD sizes for
the BSR instances with M = 5 and α = 1.0, 1.5, . . . , 5.0.
Figure 3b indicates the times required for constructing ZS
and enumerating all S ∈ S .

path satisfying a budget constraint,
∑

i∈S wi ≤ W , where
s and t are placed on the diagonal corners of the grid. Edge
weight wi (i ∈ [n]) is chosen uniformly at random from
{0, 1, . . . , 10}, and we let W = 5α× (6 +M); note that, if
α = 1, W corresponds to the total weight of the shortest s–t
path on average. The choice of α affects the sizes of S and ZS .
Figure 3a presents their sizes for the case with M = 5 and
α = 1.0, 1.5, . . . , 5.0, where S includes all s–t paths when
α ≥ 4.5. In Figure 3b, we also present the times required for
constructing ZS and enumerating all S ∈ S . Note that, while
|S| increases with α, this is not always the case with |ZS |,
implying that our ZDD-based method can be applied to BSR
instances with large W values. In the following experiments,
we let α = 2. In MC instances, S is the collection of all
Steiner trees connecting four terminals placed on the corners
of the grid. With both BSR and MC instances, we use cost
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(a) BSR, p = 1 (b) BSR, p = 2 (c) BSR, p = 3 (d) BSR, p = 4

(e) MC, p = 1 (f) MC, p = 2 (g) MC, p = 3 (h) MC, p = 4

Figure 4: Each figure illustrates the topology of TW Telecom network. Figures 4a to 4d: For each p = 1, . . . , 4, the square and
triangular vertices indicate sp and tp, respectively, and the colored (bold) sp–tp path is the most-used strategy. Figures 4e to 4h:
For each p = 1, . . . , 4, the square vertices indicate the terminals, and the colored (bold) Steiner tree is the most-used strategy.

Table 1: Strategy-set sizes, ZDD sizes, and ZDD construction
times for real-world instances.

p Strategy-set size ZDD size Time (ms)

BSR

1 9.099× 105 3.925× 104 2340
2 2.725× 106 8.382× 104 4474
3 6.219× 105 3.504× 104 2565
4 9.426× 104 9.941× 103 485.9

MC

1 9.796× 1028 9.315× 104 121.5
2 4.286× 1028 7.930× 104 81.04
3 8.462× 1028 8.315× 104 102.5
4 9.281× 1028 8.798× 104 152.0

functions defined as ci(θ) = aiθ + 1 (i ∈ [n]), where ai is
drawn uniformly at random from [0, 10]. We make 50 random
copies of cost functions, and all results that can vary with the
objective function (i.e., those related to FCFW) are shown
by the mean and standard deviation calculated over the 50
random instances. As a baseline method, we employ the fol-
lowing enumeration-based algorithm: We first enumerate all
S ∈ S and then execute FCFW (Algorithm 1) whose linear
optimization step (Step 8) is performed by choosing the best
one from the enumerated S. By comparing our ZDD-based
method with the baseline, we examine how much the use of
ZDD makes the algorithm efficient.

Figure 2 presents the results. The baseline method does not
work with BSR and MC instances with M ≥ 8 and M ≥ 3,
respectively, due to memory shortage; note that the strategy-
set sizes of those instances are calculated by using ZDDs.
We see that ZDDs are far smaller than strategy sets, and
ZDD construction can be performed far more efficiently than
the enumeration of strategies. Thanks to the compactness of
ZDDs, our method runs far faster than the baseline method.
Our method is about 236 and 984 times faster than the base-
line in the BSR instance with M = 7 and MC instance with
M = 2, respectively.

4.2 Real-world Instances

We consider BSR and MC instances on a real-world net-
work. We use TW Telecom dataset of Internet Topology Zoo
(Knight et al. 2011), which is a U.S. communication net-
work. The original network has some isolated vertices and
multiple edges; we remove them and obtain a graph with 71
vertices and 115 edges. Figure 4 presents the topology of the
graph. In both BSR and MC instances, we let r = 4 and
(m1,m2,m3,m4) = (0.4, 0.3, 0.2, 0.1), and we use cost
function ci(θ) = aiθ

2 + bi; i.e., the cost increases quadrati-
cally in the mass of players. We let bi be the Euclid distance
of edge i and ai = biui, where ui is drawn uniformly at ran-
dom from [0, 100]. In the BSR instance, (s1, t1), . . . , (s4, t4)
are placed as in Figures 4a to 4d. We set edge weight wi at
�bi(100− ui)�. For each p = 1, . . . , 4, budget value W p is
set at 100Lp, where Lp is the length of the shortest sp–tp
path w.r.t. edge length bi. In the MC instances, the terminals
are placed as in Figures 4e to 4h.

We apply our method to the instances and study the ob-
tained results. Table 1 presents the strategy-set size, ZDD size,
and ZDD construction time for each p = 1, . . . , 4; notably,
with the MC instance, ZDDs are about 1024 times smaller
than the strategy sets. Additionally, FCFW takes 2391 ms and
3316 ms for BSR and MC instances, respectively. In total, our
method computes approximate equilibria in 1.226× 104 ms
and 3773 ms for BSR and MC instances, respectively. Since
our method can output a strategy profile, we can obtain the
most-used strategy for each p = 1, . . . , 4 as in Figure 4. We
see that the strategy of each p tends to avoid using the same
edges (resource) to each other. For example, in Figures 4g
and 4h, the leftmost vertex is chosen as a terminal, which has
two edges, and each strategy in p = 3 and 4 use one of the
two edges that is different from each other. This result implies
that the players successfully avoid congestion at the equilib-
ria, and so the price-of-anarchy (PoA) values are expected to
be close to 1; i.e., the equilibria are almost as efficient as the
social optima. In fact, the PoA values of the BSR and MC
instances are both about 1.01, which are obtained by comput-
ing the social optima with our method. Figure 5 presents the
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Figure 5: maxS∈Ap
k
CS(xk) − minS′∈Sp CS′(xk) values

(p = 1, . . . , 4) for real-world instances.

decrease in maxS∈Ap
k
CS(xk)−minS′∈Sp CS′(xk) values

over the iterations for p = 1, . . . , 4, which converge to 0 at
a rate of O(poly(n)/k) (or O(exp(−Θ(k/poly(n))))) as in
Theorems 1 and 2. Consistent with the theoretical results, the
values converge to 0 very quickly as k increases.

5 Conclusion

We developed a practical Frank–Wolfe-style equilibrium
computation method for continuous-player combinatorial
congestion games, which utilizes the empirical compact-
ness of ZDDs. We proved that the algorithm computes an
ε-approximate Wardrop equilibrium in O(poly(n)/ε) (or
O(poly(n) log ε−1)) iterations. Experiments demonstrated
that our algorithm is useful for computing and studying equi-
libria of realistic continuous-player combinatorial congestion
games, for which alternative methods are prohibitively costly.

Appendix: Implementation of Full-correction

We here detail the implementation of the full-correction
step (Algorithm 2). As mentioned before, the full correction
Correction(x, {Ap}p∈[r], {sp}p∈[r], ε) is, roughly speaking,
performed by minimizing F (·) on conv((A1∪{s1})×· · ·×
(Ar ∪ {sr})). Since this feasible region is again a convex
hull of some points in R

rn, the full correction can also be
performed with Frank–Wolfe-style algorithms. For example,
Krishnan, Lacoste-Julien, and Sontag (2015) implemented
the full-correction step with the away-steps Frank–Wolfe
(AFW) (Lacoste-Julien and Jaggi 2015), a variant of the
Frank–Wolfe algorithm that achieves linear convergence for
strongly convex functions. More precisely, they performed
the full correction with AFW whose stopping criterion re-
quires the away gap, as well as the Frank–Wolfe gap (or
the duality gap), to be small enough; thus they guaranteed
that the conditions required in the full-correction step of
(Lacoste-Julien and Jaggi 2015, Algorithm 4) is satisfied.
The conditions required by our full correction (Algorithm 2)
are analogous to those of (Lacoste-Julien and Jaggi 2015,
Algorithm 4), but they have a slight difference. Below we
detail the difference and explain how to implement the full-
correction step that works for our case.

In the original full-correction step of (Lacoste-Julien
and Jaggi 2015, Algorithm 4), the away gap is defined
on the full dimension, which corresponds to R

rn in our
case, and thus the aforementioned AFW-based full cor-

Algorithm 3 Modified AFW-based full correction:
AFWCorrection(x, {Ap}p∈[r], {sp}p∈[r], ε)

1: x0 = x = (x1, . . . ,xr).
2: for each p ∈ [r] do
3: Bp = Ap ∪ {sp} and Ap

0 = Ap.
4: end for
5: for l = 0, . . . , L do
6: yl =

∑
p∈[r] m

pxp
l .

7: for each p ∈ [r] do

8:
Let spl ∈ argminu∈Bp 〈∇Φ(yl),u〉 and
dp,FW
l = spl − xp

l .

9:
Let vp

l ∈ argmaxu∈Ap
l
〈∇Φ(yl),u〉 and

dp,A
l = xp

l − vp
l .

10: end for

11: if maxp∈[r]

〈
−∇Φ(yl),d

p,FW
l + dp,A

l

〉
≤ ε then

12:
return xl as xk+1, {Ap

l }p∈[r] as
{Ap

k+1}p∈[r],
and {{zpS}S∈Bp}p∈[r].

13: end if

14: gFW
l =

∑
p∈[r] m

p
〈
−∇Φ(yl),d

p,FW
l

〉
.

15: gA
l =

∑
p∈[r] m

p
〈
−∇Φ(yl),d

p,A
l

〉
.

16: if gFW
l ≥ gA

l then

17: dl = (d1,FW
l , . . . ,dr,FW

l ) and γmax = 1.
18: else

19:
dl = (d1,A

l , . . . ,dr,A
l ) and

γmax = minp∈[r] z
p
vp
l
/(1− zp

vp
l
).

20: end if
21: γl ∈ argminγ∈[0,γmax] F (xl + γdl).
22: Update xl+1 = xl + γldl.

23:
Update {zpS}S∈Bp accordingly for p ∈ [r]
(see (Lacoste-Julien and Jaggi 2015)).

24: Update Ap
l+1 = {S ∈ Bp | zpS > 0} for p ∈ [r].

25: end for

rection performed on R
rn works. In our case, however,

the third condition of Algorithm 2 requires the away gap
maxu∈Ap

k+1

〈−∇Φ(yk+1),x
p
k+1 − u

〉
to be small enough

for every p ∈ [r]; this is the difference to be considered.
Note that, since the “max” is taken for each p ∈ [r], the
away gap of each p ∈ [r] is not guaranteed to be small no
matter how small the away gap on R

rn is; this is the reason
why the original full correction does not work. Thus, we
consider modifying the AFW algorithm to make it work for
our use. The pseudocode of our AFW-based full correction is
presented in Algorithm 3. The differences from the original
AFW-based full correction (Krishnan, Lacoste-Julien, and
Sontag 2015) is as follows: We maintain the active set Ap

l
for each p ∈ [r], instead of the one defined on R

rn, and the
away direction, dp,A

l , is computed for each p ∈ [r] in Step 9.
Note that, as with the original full correction of (Krishnan,
Lacoste-Julien, and Sontag 2015), we employ the stopping
criterion that requires the away and Frank–Wolfe gaps to be
small (Step 11). The other parts are almost the same as those
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of AFW (Lacoste-Julien and Jaggi 2015). In Steps 15 and
16, we use ∇pF (x) = mp∇Φ(y) (∀p ∈ [r]) to compute the
Frank–Wolfe gap, gFW

l , and away gap, gA
l , defined on R

rn.
The resulting modified AFW exhibits the same convergence
behavior as the standard AFW as follows:

Theorem 3. After l iterations of Algorithm 3, the Frank–
Wolfe gap (FW gap) satisfies gFW

l ≤ O(poly(n)/l). Let
B := B1 × · · · × Br. If F (·) is strongly convex and the
reciprocal of the pyramidal width of conv(B) is O(poly(n)),
then we have gFW

l ≤ O(exp(−Θ(l/poly(n)))) after l iter-
ations. Moreover, the FW gap of each p ∈ [r], defined by

gp,FW
l :=

〈
−∇Φ(yl),d

p,FW
l

〉
, also converges at the same

rates.

Note that, once the convergence of the FW gap of each
p ∈ [r] is obtained, the away gap of each p ∈ [r], defined by
gp,Al :=

〈
∇Φ(yl),d

p,A
l

〉
, also asymptotically converges to

0 as follows: Since xp
l is can be written as

∑
S∈Ap

l
zpS1S in

each iteration, xp
l +

zp
S

1−zp
S
(xp

l −1S) =
1

1−zp
S
xp
l − zp

S

1−zp
S
1S ∈

conv(Bp) holds for any S ∈ Bp. Therefore, the definition
of the FW gap implies

〈
−∇Φ(yl),

zp
S

1−zp
S
(xp

l − 1S)
〉

=

zp
S

1−zp
S
〈−∇Φ(yl), (x

p
l − 1S)〉 ≤ gp,FW

l for any S ∈ Bp.
From the definition of the away gap and Ap

l ⊆ Bp, if we
let ζpl := minS∈Ap

l
zpS > 0, we have ζpl g

p,A
l ≤ gp,FW

l . Hence
the away gap converges to 0 if the FW gap does. To conclude,
Algorithm 3 can update the input so as to satisfy the third
condition in Algorithm 2. We can easily confirm that the first
and second conditions are also satisfied due to the procedure
of AFW (Algorithm 3).

Proof of Theorem 3. We first see that the convergence of gFW
l

implies that of the individual FW gaps, gp,FW
l (p ∈ [r]). Since

spl ∈ argminu∈conv(Bp) 〈∇Φ(yl),u〉 and xp
l ∈ conv(Bp),

we have gp,FW
l = 〈−∇Φ(yl), s

p
l − xp

l 〉 ≥ 0 for all p ∈ [r].
Since gFW

l =
∑

p∈[r] m
pgp,FW

l , we have gp,FW
l ≤ gFW

l /mp.

Therefore, individual gaps gp,FW
l (p ∈ [r]) converge to 0 if

gFW
l does.

Next, we show the O(poly(n)/l) convergence by follow-
ing the argument of (Lacoste-Julien and Jaggi 2015). Let x∗
be the minimizer of F (·) on conv(B) and hl = F (xl) −
F (x∗) be the suboptimality gap. Since F (·) has L-Lipschitz-
continuous gradient and convexity, for any γ ∈ [0, γmax],

F (xl+1) ≤ F (xl + γdl)

≤ F (xl) + γ 〈∇F (xl),dl〉+ γ2L‖dl‖2/2
≤ F (xl)− γgFW

l + γ2LD2/2

holds, where D is the diameter of conv(B); note that D ≤
O(poly(n)) holds. The third inequality is due to ‖dl‖ ≤ D
and 〈∇F (xl),dl〉 = min{−gFW

l ,−gA
l } ≤ −gFW

l (see,
Step 16). By subtracting F (x∗) from both sides, we ob-
tain hl+1 ≤ hl − γgFW

l + γ2LD2/2. Below we discuss the
convergence by using the number of steps where the line
search (Step 21) does not result in γ = γmax; such steps

are called good steps, and the number of good steps among
the first l steps, denoted by G(l), can be lower bounded as
follows: In a step with γ = γmax (called a drop step), we
set at least one of zpS > 0 to zero, which means the sum
of the sizes of active sets decreases by at least one. Thus,
the number of drop steps among the first l steps is upper
bounded by

∑
p∈[r] |Ap| + (l −∑

p∈[r] |Ap|)/2, which im-
plies G(l) ≥ (l − ∑

p∈[r] |Ap|)/2 = Θ(l). Following the
proof of (Jaggi 2013, Theorems 1 and 2), we can show that
gFW
l = O(poly(n)/G(l)) = O(poly(n)/l) holds; hence the

first clam is obtained.
Finally, we prove the linear convergence under the assump-

tions of the strong convexity and bounded pyramidal width.
We define error vector el := x∗ − xl and its normalized
version êl := el/‖el‖. Thanks to the argument of (Lacoste-
Julien and Jaggi 2015, Section 2.1), we have

hl − hl+1 ≥ μ

L‖dl‖2
〈−∇F (xl),dl〉2
〈−∇F (xl), êl〉2

hl

if the lth iteration is a good step. Since 〈−∇F (xl),dl〉 ≥
max{gFW

l , gA
l } ≥ (gFW

l + gA
l )/2 = 〈−∇F (xl), sl − vl〉 /2,

where sl := (s1l , . . . , s
r
l ) and vl := (v1

l , . . . ,v
r
l ), we have

hl − hl+1 ≥ μ

4LD2

〈−∇F (xl), sl − vl〉2
〈−∇F (xl), êl〉2

hl.

Here, vl ∈ R
rn is selected from A1

l × · · · ×Ar
l to maximize

〈∇F (xl),vl〉. Moreover, we can regard A1
l × · · · × Ar

l as
the active set of xl ∈ R

rn since
∑

u1∈A1
l

· · ·
∑

ur∈Ar
l

z1u1 · · · zrur (u1, . . . ,ur) = xl,

∑
u1∈A1

l

· · ·
∑

ur∈Ar
l

z1u1 · · · zrur = 1.

Therefore, by using (Lacoste-Julien and Jaggi 2015, Theorem
3), we can show that 〈−∇F (xl), sl − vl〉 / 〈−∇F (xl), êl〉
is lower bounded by pyramidal width δ > 0 of B. Conse-
quently, we obtain the geometric decrease of the subopti-
mality gap: hl+1 ≤ (1 − μ

4L (
δ
D )2)hl. Therefore, if 1/δ ≤

O(poly(n)), we have hl = O(exp(−Θ(G(l)/poly(n)))) =
O(exp(−Θ(l/poly(n)))). The linear convergence of the FW
gap gFW

l can be obtained from (Lacoste-Julien and Jaggi 2015,
Theorem 2), which shows gFW

l ≤ O(D
√
hl).

As mentioned in Section 3.3, δ is conjectured to be lower
bounded by Ω(1/

√
n) (Lacoste-Julien and Jaggi 2015). More

precisely, the pyramidal width of the rn-dimensional unit
cube {0, 1}rn is 1/

√
rn, and it is conjectured in (Lacoste-

Julien and Jaggi 2015) that the pyramidal width does not
increase when an another vertex is added. Following the
conjecture, the pyramidal width of any B is at least 1/

√
rn.
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L. 2006. A survey on networking games in telecommunications.
Comput. Oper. Res. 33(2):286–311.
Bar-Gera, H. 2002. Origin-based algorithm for the traffic assign-
ment problem. Transp. Sci. 36(4):398–417.
Beckmann, M.; McGuire, C. B.; and Winsten, C. B. 1956. Studies
in the Economics of Transportation. Yale University Press.
Bergman, D.; Cire, A. A.; van Hoeve, W.-J.; and Hooker, J. 2016.
Decision Diagrams for Optimization. Springer, first edition.
Blum, A.; Even-Dar, E.; and Ligett, K. 2006. Routing without
regret: On convergence to Nash equilibria of regret-minimizing
algorithms in routing games. In Proceedings of the 25th Annual
ACM Symposium on Principles of Distributed Computing, 45–52.
ACM.
Braun, G.; Pokutta, S.; and Zink, D. 2019. Lazifying conditional
gradient algorithms. J. Mach. Learn. Res. 20(71):1–42.
Bryant, R. E. 1986. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comput. 100(8):677–691.
Correa, J. R., and Stier-Moses, N. E. 2011. Wardrop equilibria.
In Wiley Encyclopedia of Operations Research and Management
Science. Wiley Online Library.
Fabrikant, A.; Papadimitriou, C.; and Talwar, K. 2004. The com-
plexity of pure Nash equilibria. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, 604–612. ACM.
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Fischer, S.; Räcke, H.; and Vöcking, B. 2010. Fast convergence to
Wardrop equilibria by adaptive sampling methods. SIAM J. Comput.
39(8):3700–3735.
Frank, M., and Wolfe, P. 1956. An algorithm for quadratic program-
ming. Naval Res. Logis. Quart. 3(1–2):95–110.
Han, Z.; Niyato, D.; Saad, W.; Baar, T.; and Hjrungnes, A. 2012.
Game Theory in Wireless and Communication Networks: Theory,
Models, and Applications. Cambridge University Press, 1st edition.
Imase, M., and Waxman, B. M. 1991. Dynamic Steiner tree problem.
SIAM J. Discrete. Math. 4(3):369–384.
Inoue, Y., and Minato, S. 2016. Acceleration of ZDD construction
for subgraph enumeration via path-width optimization. Technical
report, TCS-TR-A-16-80, Hokkaido University.
Inoue, T.; Iwashita, H.; Kawahara, J.; and Minato, S. 2016.
Graphillion: software library for very large sets of labeled graphs.
Int. J. Software Tool. Tech. Tran. 18(1):57–66.
Jaggi, M. 2013. Revisiting Frank–Wolfe: Projection-free sparse
convex optimization. In Proceedings of the 30th International
Conference on Machine Learning, volume 28, 427–435. PMLR.
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