
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Defending with Shared Resources on a Network∗

Minming Li,1 Long Tran-Thanh,2 Xiaowei Wu3

1Department of Computer Science, City University of Hong Kong
2Department of Economics and Computer Science, University of Southampton

3Faculty of Computer Science, University of Vienna
minming.li@cityu.edu.hk, l.tran-thanh@soton.ac.uk, wxw0711@gmail.com

Abstract

In this paper we consider a defending problem on a network.
In the model, the defender holds a total defending resource
of R, which can be distributed to the nodes of the network.
The defending resource allocated to a node can be shared by
its neighbors. There is a weight associated with every edge
that represents the efficiency defending resources are shared
between neighboring nodes. We consider the setting when
each attack can affect not only the target node, but its neigh-
bors as well. Assuming that nodes in the network have differ-
ent treasures to defend and different defending requirements,
the defender aims at allocating the defending resource to the
nodes to minimize the loss due to attack. We give polyno-
mial time exact algorithms for two important special cases of
the network defending problem. For the case when an attack
can only affect the target node, we present an LP-based ex-
act algorithm. For the case when defending resources cannot
be shared, we present a max-flow-based exact algorithm. We
show that the general problem is NP-hard, and we give a 2-
approximation algorithm based on LP-rounding. Moreover,
by giving a matching lower bound of 2 on the integrality gap
on the LP relaxation, we show that our rounding is tight.

1 Introduction

In the recent years, security games have gained an in-
creasing popularity within the artificial intelligence research
community, and have been widely used in many areas of
the field (Letchford, Conitzer, and Munagala 2009; Tambe
2011; Yin and Tambe 2012). Many of these games are
played within a network structure (i.e., network security
games), where a defender protects a set of targets from
an attacker by allocating defensive resources to nodes (or
edges) of a network. Such problems include, but are not
limited to, the following: designing network interdiction
strategies for infectious disease control (Assimakopoulos
1987), cybersecurity mechanisms for defending computer
networks (Schlenker et al. 2018), or police patrolling plans
in urban security domains (Zhang et al. 2017). Existing net-
work security models typically assume that: (i) one single
security resource can be used to protect one single target

∗The authors are ordered alphabetically.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

only; (ii) the resource allocation happens in a binary man-
ner, i.e., a target is either protected or not; and (iii) an at-
tack on a single target does not have effect to other (possibly
neighbouring) targets.

However, in many real-world scenarios security resources
often effectively protect multiple targets simultaneously.
Furthermore, multiple resources can be allocated to the same
target to strengthen the target’s defence.

Example 1.1 Consider a police patrolling problem in which
law enforcement forces are allocated to different districts of
a city for patrolling. The more resources are allocated to
a certain district, the more successful crime prevention can
be achieved. In addition, in case of an urban crime event
(e.g., bank robbery), patrolling forces from neighboring ar-
eas (i.e., nodes with edge connections to the target) can also
provide help to the resources already at the target node.

On the other hand, successful attacks can also produce
certain damages to neighboring targets.

Example 1.2 Consider the scenario when a chemical ter-
rorist attack in which a toxic chemical weapon (e.g., sarin
gas, or nerve agents) is used in a certain area. As the wind
can blow the gas away from the original target area, the
weapon can also generate damage in surrounding areas (al-
though this damage is typically weakened, compared to the
damage the attack would achieve at the original target).

Put differently, in many real-world applications, the dam-
age depends not only on how well the node under attack
is defended, but also on the defence of its neighbors. As
these examples demonstrate, it is essential to take into ac-
count both the ability of sharing defending resources be-
tween nodes of the network, and the wide coverage of the
attacks. In this paper, we consider a general defending prob-
lem on a network where

• the defending resource allocated to a node can be shared
by its neighbors;

• the damage due to attack at a target node depends not only
on the defending power of the target node, but also on that
of its neighboring nodes.

2111

1.1 Related Work

As mentioned above, most of the existing work in the secu-
rity domain ignore resource sharing between nodes. A no-
table exception is the work of (Gan, An, and Vorobeychik
2015), in which allocating a defending resource to a node
can also protect the neighbors of that node. However, their
model only looks at the binary version of resource alloca-
tion, where allocating multiple resources to the same node
is not considered. Thus it can not be used to tackle our prob-
lem. To address the multi-resource allocation problem, (Vu,
Loiseau, and Silva 2018) has looked at a Colonel Blotto for-
mulation of the security game setting. However, their work
does not exploit the underlying network structure. In addi-
tion, they do not consider the effect of the attacks to the sur-
rounding nodes. It is worth noting that there is a line of se-
curity games research that look at attackers with multiple re-
sources (Korzhyk, Conitzer, and Parr 2011; Yin et al. 2016;
Wang and Shroff 2017). These models can be seen as some-
what relevant to our work as a single attack can have im-
pact to more than one nodes. In addition, (Chan, Ceyko, and
Ortiz 2017) looked at the case that having an insufficiently
protected node can affect the defence level of neighboring
nodes, which is similar to our setting. However, these mod-
els do not take into account the defence side network-based
resource sharing.

There is a large body of literature that studies contagion
in network security games. For example, (Bachrach, Draief,
and Goyal 2013; Acemoglu, Malekian, and Ozdaglar 2016;
Lou, Smith, and Vorobeychik 2017) looked at stochastic
contagion in network security problems. However, their
model assume that the contagion is independently decided
at each node, which is not the case in our setting. In ad-
dition, (Tsai, Nguyen, and Tambe 2012; Alshamsi, Pinheiro,
and Hidalgo 2018) studied a shared resource model in which
two players, namely the attacker and the defender, try to
maximize their influence on a network. Similary, (Nguyen,
Alpcan, and Basar 2009; Vorobeychik and Letchford 2015)
looked at generic target interdependency (i.e., an attack at
one target might affect other targets as well) models. How-
ever, these models do not discuss the defending thresholds or
the loss due to attack, and thus are different from our model.

1.2 Our Results

Against this background, this paper addresses the network
defending problem with shared resources in the following
way: To capture the resource sharing ability, we allow a node
v to share its resource to its neighbor u (weighted with a
certain sharing coefficient wuv). In addition, we assign two
defence level thresholds LBu ≤ UBu to each node u to rep-
resent the spatial spread effect of an attack as follows: at
each target node u, we need at least LBu resources to pre-
vent any damages at the local level (i.e., on node u), and we
need at least UBu resources to stop the spread of the attack
to neighboring nodes of u (for more details see Section 2).

Given this model, we first look at two special cases,
namely: (i) when an attack cannot spread to the target node’s
neighbours; and (ii) when sharing defending resources is not
feasible. The former can be captured by setting LBu = UBu

for each node u, and thus, we refer to it as the Single Thresh-
old Model. The latter is referred to as the Isolated Model (as
resource sharing is not allowed between neighbors)1.

In particular, we prove the following theorems:

Theorem 1.3 (Single Threshold Model) The single
threshold network defending problem can be solved in
O(nω log n) time, where n is the number of nodes in the
network and ω ≈ 2.373 is the matrix multiplication factor.

Theorem 1.4 (Isolated Model) The isolated network de-
fending problem can be solved exactly in O(mn log n) time,
where n and m are the number of nodes and edges in the
network, respectively.

We also show that the general case of the problem is
NP-hard, and therefore, we propose a 2-approximation al-
gorithm. In particular, we prove the following theorems.

Theorem 1.5 (Problem Hardness) The network defending
problem is NP-hard.

Theorem 1.6 (Approximation Algorithm) There exists a
2-approximation algorithm for the network defending prob-
lem that runs in O(mn log n) time (n is the number of nodes,
and m is the number of edges).

We remark that our algorithm approximates the problem
in a resource augmentation manner. That is, we show that
by using a total defending resource 2R, the object of our al-
gorithm is at most that of any algorithm that uses defending
resource R. As we will show in Section 4, the problem with
the objective of minimizing the damage does not admit any
polynomial time approximation algorithm, unless P=NP.

2 Model Description

We model the network as an undirected connected graph
G(V,E), where each node u ∈ V has a lower bound LBu

and an upper bound UBu, where LBu ≤ UBu, that repre-
sent the defending requirement. Besides, each node u has a
value gu and a discounted value g′u ≤ gu that represent the
damage due to attack on node u.
Definition 2.1. (Defending Resource and Defending
Power) The defender has a total resource of R that can
be distributed to nodes in V , where ru is the defending re-
source2 allocated to node u, and

∑
u∈V ru = R.

The defending power of node u is given by

pu := ru +
∑

v:(u,v)∈E wuv · rv,
where wuv is the weight of edge (u, v) that represents the
efficiency defending resource is shared between u and v.

When the attacker attacks a node u:

1. If the defending power pu ≥ UBu, the attacker gains 0.

2. If the defending power pu ∈ [LBu,UBu), the attacker
gains g′u if u has neighbor v with defending power pv <
LBv; gains 0 otherwise.

1The name “isolated” means that defending resources can not
be shared. However, the damage due to attack still depends on the
defending powers of the target node and its neighbors.

2In our model the resource can be allocated continuously.

2112

3. If the defending power pu < LBu, the attacker gains gu.

The intuition behind this formulation is that if there is
sufficiently large defending power at target node u (i.e.,
pu ≥ UBu), the attack can be quickly mitigated (e.g., the
robber will be quickly caught, or the toxic gas can be com-
pletely neutralized). Thus neither the target node nor its
neighbors suffer from any damage. On the other hand, if
the attack cannot be quickly mitigated, but the defending
power at target u is sufficient to locally stop the attack (i.e.,
LBu ≤ pu < UBu), then the attack may spread to the neigh-
bors of u with a weakened power. In this case, the weak-
ened attack achieves some success (i.e., g′u damage) if some
neighbor of u is not sufficiently protected (i.e., has inade-
quate defending power). Finally, if the target node itself has
insufficient protection (i.e., pu < LBu, the attack achieves
its maximal damage gu.

The objective of the defender is to allocate the defending
resource to the nodes to minimize the gain of the attacker
(which can attack only one node). We call {ru}u∈V a de-
fending strategy. For every defending strategy, there exists a
node by attacking which the attacker gains the most. We call
the resulting gain of the attacker the defending result.

We call the model single threshold if LBu = UBu for all
nodes u ∈ V : in this model, when some node u is attacked,
the attacker gains either gu or 0, e.g., the attack does not
spread to any neighbor of u. This model is inspired by many
real-world scenarios, ranging from urban crime and conven-
tional terrorist attacks, to various cybersecurity threats and
wildlife reservation problems (i.e., green security games).
The common in these scenarios is that a single attack does
not have a spreading effect, and thus the damage does not
depend on the defending power of neighboring nodes.

We call the model isolated if wuv = 0 for all edges
(u, v) ∈ E. The intuition behind this special case is that
in some real-world applications, we cannot share resources
between nodes. For example, consider a disease outbreak
scenario where the success of defence depends on the size
of vaccinated population at each region. While the disease
itself can spread to the neighboring areas if the vaccinated
population is not sufficiently high (i.e., pu < UBu), the
strength of defence of a particular area cannot be transferred
to another region.

We use N(u) := {v : (u, v) ∈ E} to denote the set of
neighbors for every node u ∈ V . We use n and m to denote
the number of nodes and edges in the graph G, respectively.
We use OPT to denote the optimal defending result.

3 Exact Algorithms for Special Cases

Before turning to the general version of the problem, as a
warm-up, we first consider the two special cases in this sec-
tion. We present polynomial time algorithms that solve the
two cases exactly.

3.1 Naı̈ve Attempt

Observe that for any defending strategy, there exists a node
on which the attacker has maximum gain, which we refer
to as the vulnerable node. Since the goal of the problem is
to minimize the defending result, a natural algorithm would

keep allocating defending resources to the vulnerable node
until all resources are spent. We refer to this algorithm as
Greedy. Unfortunately, as Figure 1 shows, even in the iso-
lated model, Greedy can perform arbitrarily bad. Since node
u1 has the largest value, the Greedy algorithm will allocate
at least 2 units of resource to u1. Consequently, both u2, u3

have defending power at most 1, which results in ALG = 10,
where ALG is the defending result of the Greedy algorithm.

Figure 1: Hard instance for Greedy, in which g′u = gu, R =
3, and wu1u2

= wu2u3
= 0 (isolated model). It is easy to

check that for this instance, OPT = 0 by allocating one unit
of resource to each node, while ALG = 10.

The intuition is, there are two solutions to protect the vul-
nerable node u in the isolated model by allocating defending
resources: either we guarantee that pu ≥ UBu, or all neigh-
bors v of u has pv ≥ LBv . However, solving the problem
“locally” (as Greedy does) does not lead to a good defend-
ing strategy. This observation implies that the defending re-
sources should be allocated in a “global” way that considers
the effect on both the vulnerable node and its neighbors.

While this problem does not exist in the single threshold
model, it is easy to show that the Greedy also performs arbi-
trarily bad in this model: consider the graph instance shown
in Figure 1, where we change wu1u2 = wu2u3 = 1 and
LBu = UBu = 3 for all u ∈ {u1, u2, u3}. Obviously we
still have OPT = 0. However, Greedy will allocate all re-
sources to either u1 or u3, which results in ALG = 10.

The two hard instances for the Greedy algorithm imply
that to solve the problem, we need to take into account the
effect on neighbors of u, when allocating defending resource
to a node u. A key difference between our algorithms and
the Greedy algorithm is that we set a defending result goal
before allocating any resource, and try to allocate resource
globally to achieve this goal. In order to produce defending
strategies in a global manner, we use the linear programming
(LP) and maximum flow techniques.

3.2 Single Threshold Model

We first consider the single threshold model, i.e., LBu =
UBu for every node u ∈ V . We show that combining the
linear programming technique with a simple binary search,
we can solve this problem exactly in polynomial time.

Since LBu = UBu for all u ∈ V , the attack is either
successful or unsuccessful immediately after attacking some
node. Therefore, while there are infinitely many defending
strategies, the number of defending results is bounded by
n+ 1. Let G = {gu : u ∈ V } ∩ {0} be the defending result
space, i.e., the possible defending results.

2113

Suppose for every α ∈ G, we can decide in polynomial
time whether the defending result α is achievable (and out-
put a solution if it is), then we can compute the optimal de-
fending strategy in polynomial time. Here we call α ∈ G
achievable if and only if there exists a defending strategy
(using R defending resource) with defending result α. In the
following, we show how to decide the achievability for ev-
ery α ∈ G. More importantly, we output a feasible defending
strategy if α is achievable.

Definition 3.1 (Vulnerable Nodes) Let

Aα := {u ∈ V : gu > α}
be the nodes that need a defending power at least LBu, if the
target defending result is α.

By definition, if any of u ∈ A has defending power
pu < LBu, then the attacker gains gu > α by attacking
u, which violates our target defending result. Hence the goal
is to compute a defending strategy under which every node
u ∈ A has defending power at least LBu.

This is actually a simple task, as we can formulate the
problem as a feasibility linear program, in which the defend-
ing resources allocated to the nodes are the variables.

min . 0

s.t.
∑

u∈V ru = R,

ru +
∑

v∈N(u) wuvrv ≥ LBu, ∀u ∈ Aα

ru ≥ 0, ∀u ∈ V.

Observe that any feasible solution for the above LP gives
a defending strategy with defending result at most α. On the
other hand, if the LP is infeasible, then the target defending
result α is not achievable.

By the state-of-the-art result by (Cohen, Lee, and Song
2019), we can solve the above LP in O(nω) time, where
ω ≈ 2.373 is the matrix multiplication factor. Thus by triv-
ially enumerating all possible values of α ∈ G, we can solve
the problem in O(nω+1) time. Indeed, observe that if α is
achievable, then all values at least α are also achievable.
Thus by using a binary search on α ∈ G, we can output
the feasible solution for the minimum achievable α as the
optimal defending strategy in O(nω log n) time, which com-
pletes the proof of Theorem 1.3.

3.3 Isolated Model

Next we turn to the isolated model. Recall that by definition
we have wuv = 0 for all (u, v) ∈ E, but nodes can have ar-
bitrary upper and lower bounds. We show in this section that
the isolated model can be solved exactly in polynomial time,
using the maximum flow technique. Similar to the previous
analysis, observe that given gu and g′u for all u ∈ V and c,
we have OPT ∈ G := {gu : u ∈ V } ∪ {g′u : u ∈ V } ∪ {0}.
In other words, there are at most 2n+ 1 different defending
results. Hence to solve the problem, we only need to identify
the minimum value in G that is achievable using R defend-
ing resource, and output a defending strategy achieving it.

Let α ∈ G be the aim of the defending result.

Algorithm for Testing the Achievability of α. As before,
we define Aα = {u ∈ V : gu > α} to be the vulnerable
nodes that need to receive at least LBu of defending power.
Note that in the isolated model, we must allocate a defending
resource at least LBu to every u ∈ Aα to guarantee a defend-
ing result at most α. Let Bα ⊆ Aα be {u ∈ V : g′u > α},
i.e., those u ∈ Aα who need to receive at least UBu of
defending power, or each of its neighbors v ∈ N(u) has
pv ≥ LBv . We call Bα the set of crucial nodes. It remains to
decide which crucial nodes u should be assigned defending
power UBu (the remaining nodes will be covered by their
neighbors). For ease of notation we drop the subscript α on
Aα and Bα in the following discussion.

Suppose S ⊆ B are the nodes we decide to allocate
a defending resource of UBu to, i.e., we allocate an extra
UBu − LBu to every node u ∈ S. To achieve the defending
result, we need to guarantee that every neighbor v ∈ N(u)
of u ∈ B \ S receives at least LBv . Since all nodes u ∈ A
are already allocated a defending resource LBu, it suffices to
allocate LBv to every v ∈ (V \A) ∩⋃

u∈B\S N(u).
Let N(B\S) = ⋃

u∈B\S N(u) be the neighbors of nodes
in B \ S. The total resource required is given by

∑

u∈A

LBu +
∑

u∈S

(UBu − LBu) +
∑

v∈(V \A)∩N(B\S)

LBv.

In the following, we show that the problem of computing
the set S ⊆ B that minimizes the total defending resource
can be solved by computing a maximum flow on a directed
network with O(|V |) nodes and O(|E|) edges. Note that the
defending result α is achievable if and only if the minimum
defending resource required is at most R.

Flow Network. Let the nodes of the directed flow network
be {uin, uout : u ∈ B}∪{vin, vout : v ∈ V \A}∪{s, t}, where
s is the source and t is the sink. The edges of the network
are constructed as follows.

1. For every u ∈ B ∪ (V \ A), let there be a directed edge
from uin to uout. For all u ∈ B, let the capacity of the
edge be UBu − LBu. For all v ∈ V \ A, let the capacity
of the edge be LBv .

2. For every u ∈ B, let there be a directed edge from s to
uin. For every v ∈ V \ A, let there be a directed edge
from vout to t. For every (u, v) ∈ E such that u ∈ B and
v ∈ V \ A, let there be a directed edge from uout to vin.
Let the capacity of these edges be infinity.

Figure 2: Illustrating figure of the flow network.

2114

The flow network has O(n) nodes and O(n+m) edges.
Intuitively, we construct a directed network based on the

bipartite graph between B and V \ A. Observe that in the
directed flow network, to separate s and t, either the edge
(uin, uout) is cut for u ∈ B, or (vin, vout) is cut for every
neighbor v ∈ V \A of u. By setting the capacities as above,
we guarantee that every cut separating s and t corresponds
to a feasible defending strategy.

By the max-flow min-cut theorem, computing the maxi-
mum flow from s to t is equivalent to finding the minimum
s-t cut. Consider the minimum s-t cut that partitions the
nodes into two sets S and T , such that s ∈ S and t ∈ T .
Let cut(S, T) be the total capacity of edges between S and
T .

Since the edges from s and the edges to t have infinite
capacity, we have uin ∈ S for all u ∈ B, and vout ∈ T for all
v ∈ V \A. Observe that for every u ∈ B,
1. if uout /∈ S, then the edge (uin, uout) is cut by (S, T);
2. if uout ∈ S, then for every v ∈ N(u) ∩ (V \ A), i.e.,

neighbor of u that is not in A, we must have vin ∈ S, as
the capacity of the edge from uout to vin is infinity. Con-
sequently, we know that edge (vin, vout) is cut by (S, T).

Let Bs := {u ∈ B : uout ∈ S} and Bt = B \ Bs. Let
N(Bs) =

⋃
u∈Bs

N(u) be the neighbors of nodes in Bs.
Then we have

cut(S, T) =
∑

u∈Bt

(UBu − LBu) +
∑

v∈N(Bs)∩(V \A)

LBv.

In other words, the total capacity of the cut is exactly the
defending resource required to increase the defending power
of every u ∈ Bt from LBu to UBu, and every neighbor v of
u ∈ Bs that is not in A from 0 to LBv . Hence the minimum
s-t cut corresponds to the optimal defending strategy with
defending result α.

Running Time. The maximum flow problem on a directed
network with n nodes and m edges can be solved in O(mn)
time by (Orlin 2013). Testing the achievability of every α ∈
G (and outputting a solution, if any) can be done in O(mn)
time. As before, by adopting a binary search on values of G,
we can identify the minimum achievable α in O(mn log n)
time, which completes the proof of Theorem 1.4.

4 Hardness Results

As we have shown in the previous section, for the single
threshold model (i.e., every node u has LBu = UBu) and
the isolated model (i.e., wuv = 0 for all (u, v) ∈ E), the
problem is polynomial time solvable. A natural idea is to
combine the two techniques we have used to solve the spe-
cial cases, namely the linear programming and the maximum
flow computation, and solve the general problem in polyno-
mial time. Unfortunately, as we will show in this section, the
general version of the problem is indeed NP-hard and thus
the approach fails.

Nevertheless, we will show in the next section that, the
combination of the techniques provides a tight rounding
scheme that gives a 2-approximation algorithm.

To prove the NP-hardness (Theorem 1.5), we use a reduc-
tion from a fundamental boolean function satisfactory prob-
lem called MAX-DNF.

Definition 4.1 (MAX-DNF) In the problem, we have
boolean variables x1, . . . , xp and clauses C1, . . . , Cq ,
where each clause Ci is the conjunction (“and”) of vari-
ables or their negations (see Figure 3 for an example). The
problem aims at finding an assignment to the variables such
that a maximum number of clauses are satisfied.

The problem is shown to be NP-hard by (Bazgan and
Paschos 2003; Escoffier and Paschos 2007). In the follow-
ing, we show how to reduce the MAX-DNF problem to ours.
In other words, we show that if the network defending prob-
lem can be solved in polynomial time, then the MAX-DNF
problem can also be solved in polynomial time.

Figure 3: Illustrating example with p = 3 variables
x1, x2, x3 and q = 4 clauses C1, C2, C3, C4.

Reduction. Given any MAX-DNF problem instance, we
create 2p nodes, labeled by x1, x1, . . . , xp, xp; and q nodes
labeled by C1, . . . , Cq . We call these nodes variable nodes
and clause nodes, respectively. Let there be an edge between
every pair of xi and xi. For every clause Ci = a1 ∧ . . .∧ak,
where each aj represents a variable or its negation, we create
k nodes, each labeled by (Ci, aj). We call these nodes con-
nectors. Let connector (Ci, aj) be connected to aj and Ci.
Note that in the resulting graph, every connector has degree
two, every variable node has degree equal to its total num-
ber of appearances in the clauses, and every clause node has
degree equal to the number of variables it contains (see Fig-
ure 3 for an illustrating example).

Let we = 1 for the edges e adjacent to variable nodes;
let we = 0 for the edges e adjacent to clause nodes. Let
gu = g′u = 1 for variable nodes and clause nodes; let gu =
g′u = 0 for connectors. For every variable node or connector,
let UBu = LBu = 1; for every clause node, let UBu = 1

q

and LBu = 0. Let R = p+ q−t
q , for some t < q.

We show that there exists a defending strategy with de-
fending result 0 if and only if there exits an assignment to
the variables such that at least t clauses are satisfied.

First, if there exits an assignment to the variables such that
at least t clauses are satisfied, then we

2115

• allocate 1 unit of defending resource to every variable
node that is “true” in the assignment;

• allocate 1
q defending resource to every unsatisfied clause.

Trivially, the total defending resource required is at most p+
q−t
q . Next we show that the defending result is 0.
Since the edges adjacent to variable nodes have weight

1, every variable node u has defending power 1 = UBu.
Moreover, if a variable (or its negation) is true, then each of
its connector neighbors v has defending power 1 = UBv .
Consequently, if a clause is satisfied, then all its connector
neighbors have defending power above their lower bound.
Therefore, the defending result is 0, as all variable nodes
and clause nodes are well-defended.

Next we show the other direction, i.e., the optimal defend-
ing strategy corresponds to an assignment of variables such
that at least t clauses are satisfied.

We first show that every defending strategy can be trans-
formed into a canonical form, while the defending result is
not affected. Fix any defending strategy {ru}u∈V .

Canonical Transformation. For every connector u, if
ru > 0, then we reallocate the resource to its variable node
neighbor. Since the edge between u and its variable node
neighbor has weight 1 while the edge between u and its
clause node neighbor has weight 0, reallocating the resource
does not decrease the defending power of any node. Next,
if ru < 1 for a variable node u, then we reallocate its de-
fending resource to its variable node neighbor, which does
not change its defending power. The defending power of the
connector neighbors of u will be decreased (to 0). However,
since ru < 1, the defending powers of these connectors were
less than their lower bounds. Hence decreasing their defend-
ing power does not affect the defending result.

Fix the optimal defending strategy of canonical form.
Suppose the defending result is 0. Then at least one of xi

and x̄i must be assigned defending resource 1. Given that
R < n + 1, exactly one of xi, x̄i has defending resource 1,
while the other has defending resource 0 (which corresponds
to an assignment to the variables). A connector has defend-
ing power 1 if it is connected to a variable node with de-
fending resource 1. Hence, if all neighbors (which are con-
nectors) of some clause node Ci have defending power 1,
then we do not need to allocate any defending resource to
Ci. On the other hand, if a clause u is not satisfied, then 1

q

defending resource must be allocated to u. Since the total
defending resource deployed is at most p + q−t

q , we know
that at most q − t clause nodes receive non-zero defend-
ing resource. Therefore, we can retrieve an assignment of
variables such that at least t clauses are satisfied given the
optimal defending strategy.

Note that by varying t from 1 to q, we can solve the MAX-
DNF problem using q computations3 of our problem. Thus
the problem is NP-hard.

Since it is NP-hard to distinguish whether OPT = 0 for
the above hard instance, the problem does not admit any ap-

3Indeed, we can apply a binary search, which reduces the num-
ber of computations to O(log q).

proximation algorithm with bounded ratio: any such algo-
rithm can be used to distinguish whether OPT = 0.
Corollary 4.1 The network defending problem (that aims
at minimizing the defending result) does not admit any
polynomial-time approximation algorithm, unless P= NP.

5 Resource Augmentation Algorithms
Since the network defending problem is not approximable,
instead of comparing the gain of the attacker with bounded
defending power, we measure the approximation ratio of the
problem in terms of defending power deployed in this sec-
tion. Formally speaking, we call an algorithm k-approximate
if by using R defending resource, the defending result is
at most that of any optimal defending strategy using R

k re-
source. In other words, a k-approximate algorithm guaran-
tees that by using k times more resource, the defending re-
sult is at least as good as the optimal solution (without aug-
menting the resource).

In this section, we present a 2-approximate algorithm for
the general network defending problem (Theorem 1.6).

As before, for every fixed α ∈ G = {gu : u ∈ V } ∪
{g′u : u ∈ V } ∪ {0}, we check if it is possible to allocate
the R defending resource such that the resulting defending
result is at most α. Note that to achieve an approximation
ratio of 2, we show that, as long as α is achievable (by the
optimal solution) using R

2 defending resource, our algorithm
(with R defending resource) computes in polynomial time a
defending strategy with defending result at most α.

Vulnerable and Crucial Nodes. Again, let A = {u :
gu > α} be the vulnerable nodes, and B = {u : g′u >
α} be the crucial nodes. Then the problem is (similar to
what we have done in Section 3.3) to (1) decide a set of
nodes S ⊆ B; (2) allocate the resources such that every
u ∈ S has a defending power at least UBu, and every
v ∈ A ∪⋃

u∈B\S N(u) has a defending power at least LBv .
Note that for every fixed S ⊆ B, the second step can be

easily done using an LP, as we have done in Section 3.2. The
difficulty, thus, lies in identifying the subset S ⊆ B such that
the required total defending resource is minimized.

Integer Program Formulation. Observe that we can for-
mulate the problem into a feasibility integer program. In the
integer program, there is a variable yu ∈ {0, 1} associated
with every u ∈ B indicating whether u is in S, i.e., receives
defending power UBu; there is a variable yv ∈ {0, 1} asso-
ciated with every v ∈ V \ A indicating whether v receives
defending power LBv . The solution y is feasible if
(1) for every u ∈ B such that yu = 0, all its neighbors v in

V \A have yv = 1. In other words, yu + yv ≥ 1;
(2) there exists {ru}u∈V with

∑
u∈V ru = R such that

LBu + yu · (UBu − LBu) ≤ pu, ∀u ∈ B

LBu ≤ pu, ∀u ∈ A \B
yv · LBv ≤ pv, ∀v ∈ V \A

where pu = ru +
∑

v∈N(u) wuv · rv is the defending
power of u, under defending strategy {ru}u∈V .

2116

In other words, constraint (1) requires that, for every
u ∈ B, either u has defending power UBu, i.e., yu = 1;
or all its neighbors4 v has defending power at least LBv .
Constraint (2) requires that there exists a defending strat-
egy using total resource R such that all nodes receive the
specified defending power. Given that we are aiming for a
2-approximation, we change the constraint

∑
u∈V ru = R

to
∑

u∈V ru = R
2 , i.e., we are comparing with the optimal

defending strategy using R
2 defending resource.

The standard LP relaxation (similar to the minimum cut
problem) can be formulated as follows. Let F := E ∩ (B ×
(V \A)) be the edges between B and V \A.

min . 0

s.t. yu + yv ≥ 1, ∀(u, v) ∈ F

yu ≥ 0, ∀u ∈ B ∪ (V \A)

LBu + yu · (UBu − LBu) ≤ pu, ∀u ∈ B

LBu ≤ pu, ∀u ∈ A \B
yv · LBv ≤ pv, ∀v ∈ V \A

ru +
∑

v∈N(u) wuv · rv = pu, ∀u ∈ V
∑

u∈V ru = R/2.

It is easy show that the above LP is indeed a relaxation of
the integer problem of interest. As long as constraint (1) is
satisfied, the first constraint of the above LP is satisfied. The
remaining constraints are satisfied by constraint (2).

Next, we show that the LP is feasible if there exists a de-
fending strategy {ru}u∈V using R

2 resource with defending
result at most α. Fix any such defending strategy. It gives a
feasible solution for the above LP as follows:

1. ∀u ∈ B, set yu = 1 if pu ≥ UBu; yu = 0 otherwise;

2. ∀v ∈ V \A, set yv = 1 if pv ≥ LBv; yv = 0 otherwise.

It suffices to check the first set of constraints to guarantee
feasibility. By the feasibility of the strategy, for every pair of
neighbors u ∈ B and v ∈ V \A, at least one of yu, yv is set
to be 1. Thus the constraints are satisfied.

It remains to show that, if the LP is feasible, then our al-
gorithm computes (in polynomial time) a defending strategy
with defending result at most α using R defending resource.
Our defending strategy is constructed using any feasible so-
lution of the LP as a guidance. In the following, we give a
geometric interpretation for the solution, which reveals some
connections between our approximation algorithm and our
max-flow based algorithm in Section 3.3.

Geometric Interpretation. Imagine there are two extra
nodes s and t, where s is at position 0 and t is at position
1. It would be easier to imagine the two nodes as the source
and sink, as we have done in Section 3.3. For every u ∈ B,
variable yu ∈ [0, 1] indicates the distance between s and u;
for every v ∈ V \A, yv indicates the distance between v and
t. If yu = 1 for some u ∈ B, i.e., we put node u at position
of t, then we ensure that u has defending power UBu (recall

4Given that nodes v ∈ A have defending power at least LBv in
any case, we only need to put constraints on its neighbors in V \A.

that in Section 3.3, this is the case when edge (uin, uout) is
cut). If yv = 1 for some v ∈ V \ A, i.e., we put node v
at position of s, then we ensure that v has defending power
LBv (recall that in Section 3.3, this is the case when edge
(vin, vout) is cut). The constraint yu + yv ≥ 1 for every pair
of neighbors u ∈ B and v ∈ V \A guarantees that the posi-
tion of v is before that of u. Specifically, if u ∈ B does not
have defending power at least UBu, then all its neighbors
v ∈ V \A should have defending power at least LBv .

Rounding and Feasibility. Given the optimal solution
(y, r) for the above LP, we construct a feasible integral so-
lution (Y, r′), i.e., a defending strategy using R defending
resource, as follows. For every u ∈ B ∩ (V \A), set Yu = 1
if yu ≥ 1

2 ; Yu = 0 otherwise. Set r′u = 2 · ru. Observe that
after the rounding, all variables Y take values in {0, 1}, and
the total defending resource used is R.

For the first set of constraints, observe that for every pair
of neighbors u ∈ B and v ∈ V \ A, (by feasibility of y)
at least one of yu, yv is at least 1

2 . Thus after rounding at
least one of them is 1. In other words, the integral solution
satisfies the first set of constraints. For the third, fourth and
fifth sets of constraints, observe that our integral solution
increases the defending power pu of every node u by a factor
of 2, while increases yu by a factor of at most 2. Thus these
constraints are all satisfied.

As long as it is possible to achieve defending result α
using R

2 defending resource, our algorithm (which uses R
defending resource) computes a feasible defending strategy
in polynomial time. Thus our algorithm is 2-approximate,
which completes the proof of Theorem 1.6.

Integrality Gap. While we do not have a matching lower
bound on the approximation of the problem, we show that
any rounding algorithm based on this LP cannot do better
than 2-approximate. More specifically, there exists an in-
stance for which any solution achieving defending result α
requires defending resource R, while there exists a fractional
solution for the above LP (using R

2 resource) that is feasible.
In other words, the integrality gap of the LP relaxation is 2.

Let the graph be two nodes u and v connected by an edge.
Let R = wuv = gu = g′u = 1 and g′v = gv = 0. Let
LBu = 0 and UBu = 1; LBv = 1 and UBv = 2. In the opti-
mal solution, by allocating 1 defending resource arbitrarily,
the attacker has gain 0. Moreover, if R < 1, then no mat-
ter how the defending resource is distributed, the attacker
always gains 1 by attacking u. However, in the fractional
solution, by setting yu = yv = ru = 0.5 and rv = 0, the
solution is actually feasible for the above LP. In other words,
the LP is feasible when R = 0.5.

6 Conclusion

In this paper, we propose a network security game that al-
lows the sharing of defending resource between neighbor
nodes, and the spread of attack damage to the neighbors of
the target. The model captures features of many real-world
applications that are not covered by existing network secu-
rity game models. We present polynomial time algorithms

2117

for two natural and important special cases of the problem.
We show that the general problem is NP-hard, and propose
an LP-rounding based 2-approximation algorithm.

The most interesting open problem is whether the approx-
imation ratio 2 we obtained in Section 5 can be improved.
While we have shown that our rounding is tight, the inte-
grality gap does not directly translate to hardness result on
inapproximability. We believe that it is possible to prove an
APX-hard result for the general problem.

Acknowledgement

Minming Li was partially supported by NNSF of China
under Grant No. 11771365, and by Project No. CityU
11200518 from Research Grants Council of HKSAR.

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of De-
fence or the U.K. Government. The U.S. and U.K. Govern-
ments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion hereon. In addition, Tran-Thanh and Li would like to
acknowledge the financial support from the Royal Society’s
Kan Tong Po Fellowship (KTP \R1 \170018).

The research leading to these results has received funding
from the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement No. 340506.

References

Acemoglu, D.; Malekian, A.; and Ozdaglar, A. 2016. Net-
work security and contagion. Journal of Economic Theory
166:536–585.
Alshamsi, A.; Pinheiro, F. L.; and Hidalgo, C. A. 2018. Opti-
mal diversification strategies in the networks of related prod-
ucts and of related research areas. Nature communications
9(1):1328.
Assimakopoulos, N. 1987. A network interdiction model
for hospital infection control. Computers in biology and
medicine 17(6):413–422.
Bachrach, Y.; Draief, M.; and Goyal, S. 2013. Contagion
and observability in security domains. In 2013 51st Annual
Allerton Conference on Communication, Control, and Com-
puting (Allerton), 1364–1371. IEEE.
Bazgan, C., and Paschos, V. T. 2003. Differential approx-
imation for optimal satisfiability and related problems. Eu-
ropean Journal of Operational Research 147(2):397–404.
Chan, H.; Ceyko, M.; and Ortiz, L. E. 2017. Interdependent
defense games with applications to internet security at the
level of autonomous systems. Games 8(1):13.
Cohen, M. B.; Lee, Y. T.; and Song, Z. 2019. Solving linear
programs in the current matrix multiplication time. In STOC,
938–942. ACM.

Escoffier, B., and Paschos, V. T. 2007. Differential approx-
imation of min sat. European Journal of Operational Re-
search 181(2):620–633.
Gan, J.; An, B.; and Vorobeychik, Y. 2015. Security games
with protection externalities. In AAAI, 914–920. AAAI
Press.
Korzhyk, D.; Conitzer, V.; and Parr, R. 2011. Security games
with multiple attacker resources. In IJCAI, 273–279. IJ-
CAI/AAAI.
Letchford, J.; Conitzer, V.; and Munagala, K. 2009. Learn-
ing and approximating the optimal strategy to commit to. In
SAGT, volume 5814 of Lecture Notes in Computer Science,
250–262. Springer.
Lou, J.; Smith, A. M.; and Vorobeychik, Y. 2017. Multide-
fender security games. IEEE Intelligent Systems 32(1):50–
60.
Nguyen, K. C.; Alpcan, T.; and Basar, T. 2009. Stochastic
games for security in networks with interdependent nodes.
In 2009 International Conference on Game Theory for Net-
works, 697–703. IEEE.
Orlin, J. B. 2013. Max flows in o(nm) time, or better. In
STOC, 765–774. ACM.
Schlenker, A.; Thakoor, O.; Xu, H.; Fang, F.; Tambe, M.;
Tran-Thanh, L.; Vayanos, P.; and Vorobeychik, Y. 2018.
Deceiving cyber adversaries: A game theoretic approach.
In AAMAS, 892–900. International Foundation for Au-
tonomous Agents and Multiagent Systems Richland, SC,
USA / ACM.
Tambe, M. 2011. Security and game theory: algorithms,
deployed systems, lessons learned. Cambridge University
Press.
Tsai, J.; Nguyen, T. H.; and Tambe, M. 2012. Security
games for controlling contagion. In AAAI. AAAI Press.
Vorobeychik, Y., and Letchford, J. 2015. Securing interde-
pendent assets. Autonomous Agents and Multi-Agent Sys-
tems 29(2):305–333.
Vu, D. Q.; Loiseau, P.; and Silva, A. 2018. Efficient com-
putation of approximate equilibria in discrete colonel blotto
games. In IJCAI, 519–526. ijcai.org.
Wang, S., and Shroff, N. B. 2017. Security game with non-
additive utilities and multiple attacker resources. In SIG-
METRICS (Abstracts), 10. ACM.
Yin, Z., and Tambe, M. 2012. A unified method for handling
discrete and continuous uncertainty in bayesian stackelberg
games. In AAMAS, 855–862. IFAAMAS.
Yin, Y.; Vorobeychik, Y.; An, B.; and Hazon, N. 2016. Opti-
mally protecting elections. In IJCAI, 538–545. IJCAI/AAAI
Press.
Zhang, Y.; An, B.; Tran-Thanh, L.; Wang, Z.; Gan, J.; and
Jennings, N. R. 2017. Optimal escape interdiction on trans-
portation networks. In IJCAI, 3936–3944. ijcai.org.

2118

