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Abstract

Distortion-based analysis has established itself as a fruitful
framework for comparing voting mechanisms. m voters and
n candidates are jointly embedded in an (unknown) metric
space, and the voters submit rankings of candidates by non-
decreasing distance from themselves. Based on the submitted
rankings, the social choice rule chooses a winning candidate;
the quality of the winner is the sum of the (unknown) dis-
tances to the voters. The rule’s choice will in general be sub-
optimal, and the worst-case ratio between the cost of its cho-
sen candidate and the optimal candidate is called the rule’s
distortion. It was shown in prior work that every determinis-
tic rule has distortion at least 3, while the Copeland rule and
related rules guarantee distortion at most 5; a very recent re-
sult gave a rule with distortion 2 +

√
5 ≈ 4.236.

We provide a framework based on LP-duality and flow in-
terpretations of the dual which provides a simpler and more
unified way for proving upper bounds on the distortion of
social choice rules. We illustrate the utility of this approach
with three examples. First, we show that the Ranked Pairs
and Schulze rules have distortion Θ(

√
n). Second, we give

a fairly simple proof of a strong generalization of the upper
bound of 5 on the distortion of Copeland, to social choice
rules with short paths from the winning candidate to the opti-
mal candidate in generalized weak preference graphs. A spe-
cial case of this result recovers the recent 2 +

√
5 guaran-

tee. Finally, our framework naturally suggests a combinato-
rial rule that is a strong candidate for achieving distortion 3,
which had also been proposed in recent work. We prove that
the distortion bound of 3 would follow from any of three com-
binatorial conjectures we formulate.

1 Introduction

Voting is an important way for a group to choose one out
of multiple available candidate options. The group could be
a country, academic department, or other organization, and
the n candidate options they choose from could be courses
of action or human candidates. Typically, each voter submits
a total order of all options, called a ranking or preference
order. Based on all the submitted rankings, a social choice
rule (or mechanism) determines the winning option.
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Complementing the “traditional” axiomatic approach for
comparing social choice rules (see, e.g., (Brandt et al. 2016)
for a fairly recent overview), an alternative approach is to
view social choice through the lens of optimization and ap-
proximation. In this line of work (e.g., (Boutilier et al. 2015;
Caragiannis and Procaccia 2011; Procaccia 2010; Procac-
cia and Rosenschein 2006)), each voter has a cost/utility for
each candidate, and the social welfare of a candidate is the
sum/average of the costs/utilities of all voters.

While the social choice rule might aim to optimize social
welfare, it does not have access to the actual costs/utilities;
rather, it only receives the voters’ rankings, which convey
partial information. In other words, even though the voting
mechanism must optimize a cardinal objective function, it
only receives ordinal information as input, namely, for each
voter, whether her1 utility/cost for candidate x is larger or
smaller than that for candidate y. As a result, the mechanism
will typically select a suboptimal candidate. The distortion
of a mechanism is the worst-case ratio between the wel-
fare/cost of the mechanism’s selected (based only on ordinal
information) candidate and the optimum (with full knowl-
edge of the cardinal values) candidate, over all possible in-
puts. (Formal definitions of this concept and all other terms
can be found in Section 2.)

A particularly natural way of defining costs is via a joint
metric space on candidates and voters. The distance d(v, x)
between voter v and candidate x captures their difference in
opinion and hence the cost; therefore, voters rank candidates
by non-decreasing distance from themselves. This model-
ing approach was proposed in (Anshelevich, Bhardwaj, and
Postl 2015); see also (Anshelevich et al. 2018) for an ex-
panded/improved journal version, and (Anshelevich 2016)
for a broader overview of the area and its results.

The main result of (Anshelevich, Bhardwaj, and Postl
2015; Anshelevich et al. 2018) is that under the model of
metric costs, many widely used voting rules (including Plu-
rality, Veto, Borda count, and others) have distortion linear
in the number of candidates or worse. Furthermore, even
with just 2 candidates and a 1-dimensional metric space, ev-
ery deterministic voting mechanism has distortion at least 3.

1For ease of presentation, we use female pronouns for voters
and male pronouns for candidates throughout.
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On the positive side, any rule which always outputs a can-
didate from the uncovered set of candidates has distortion at
most 5, for all metric spaces and numbers of candidates. Un-
covered sets are defined in terms of the tournament graph G
on n candidates in which the directed edge (x, y) is present
iff a (weak) majority of voters prefer x to y. The uncovered
set is the set of candidates that have a directed path of length
at most 2 in G to every other candidate (see (Moulin 1986)).
Very recently, (Munagala and Wang 2019) gave a voting rule
based on uncovered sets in a weighted tournament graph
which improves the upper bound from 5 to 2+

√
5 ≈ 4.236.

There is an obvious gap between the lower bound of 3 for
the distortion of every mechanism, and the upper bound of
2 +

√
5. In the original version of (Anshelevich, Bhardwaj,

and Postl 2015), it was conjectured that a mechanism called
Ranked Pairs (defined in Section 2) achieves a distortion of
3. This conjecture was disproved by (Goel, Krishnaswamy,
and Munagala 2017), who showed a lower bound of 5 on
the distortion of Ranked Pairs (and the Schulze rule, also
defined in Section 2).

The proof of the upper bound of 5, the recent upper bound
of 2 +

√
5, and many other proofs in the literature are based

on reasoning about all metric spaces that are consistent with
assumed rankings. They often involve intricate case distinc-
tions and rather ad hoc arguments. So far, a more solid foun-
dation and framework for distortion proofs has been missing
from the literature.

1.1 Our Contribution

Our main contribution, presented in Section 3, is an analysis
framework based on LP duality and flows for proving upper
bounds on the metric distortion of voting mechanisms. Our
point of departure is a linear program for the following prob-
lem: given the rankings of all voters, a winning candidate
(presumably selected by a mechanism) and an “optimum”
candidate, find a metric space maximizing the distortion of
this choice.2 We show that the dual of the cost maximiza-
tion LP can be interpreted as a flow problem with an un-
usual objective function. Using this framework, in order to
show an upper bound on the metric distortion of a particu-
lar mechanism, rather than having to explicitly consider all
possible metric spaces, it is enough to exhibit a flow of small
cost meeting certain demands. We illustrate the power of this
analysis framework with three applications.

First, in Section 4, we resolve the distortion of the Ranked
Pairs and Schulze rules (defined in Section 2): we show that
both have distortion Θ(

√
n). The upper bound is a clean ap-

plication of the duality framework, while the lower bound is
obtained with a generalization of the example which (Goel,
Krishnaswamy, and Munagala 2017) used to lower-bound
the distortion of both rules by 5. The distortion of both
rules is thus significantly higher than the distortions of 5 and
2 +

√
5 achieved by the uncovered set mechanisms. Under-

standing the distortion of the Schulze rule in particular is of
importance because it is widely used in practice.

2This approach can of course immediately be leveraged into an
optimal polynomial-time voting mechanism; we discuss this more
in Section 3.

Then, in Section 5, we give a strong generalization of the
key lemmas from (Anshelevich, Bhardwaj, and Postl 2015)
(Theorem 7) and (Munagala and Wang 2019) (Lemma 3.7),
used to prove distortions of 5 and 2 +

√
5 for the respective

mechanisms. The common idea of both is that when a large
enough fraction of voters prefer x to y, and a large enough
fraction prefer y to z, then the cost of x can be bounded
in terms of the cost of z. These bounds immediately im-
ply the upper bounds on the distortion for any candidate in
the uncovered set of a suitably defined tournament graph.
We give a generalization to arbitrary chains of preferences,
and upper-bound the cost of x1 in terms of the cost of x�
when a pi fraction of voters prefers xi over xi+1, for each
i = 1, . . . , � − 1. For the specific case when all pi ≥ p, the
bound can be stated very cleanly: the cost of x1 is at most
�
p − 1 times that of x� if � is even, and at most �−1

p +1 times
that of x� if � is odd. Our results fully recover and generalize
the bounds of (Anshelevich, Bhardwaj, and Postl 2015) and
(Munagala and Wang 2019). The generalization to longer
path lengths can be useful in analyzing voting mechanisms
that are missing information. This can happen if the envi-
ronment restricts the communication between voters and the
mechanism, so that parts of the ranking remain unknown,
as in (Kempe 2020). In fact, the results of Section 5 can be
used to significantly improve the upper bounds on the per-
formance of “Copeland-like” mechanisms with missing in-
formation, compared to the bounds in (Kempe 2020).

As a third application, the flow interpretation naturally
suggests a candidate mechanism that might achieve distor-
tion 3, which we present in Section 6. The analysis points
to a sufficient condition for distortion 3: that for every given
preference profile of the voters, there be a candidate x such
that for all other candidates y, a certain bipartite graph
on the voters have a perfect matching. In fact, the mecha-
nism itself can be phrased in this terminology, leading to
a purely combinatorial polynomial-time mechanism. This
mechanism was independently discovered and presented in
(Munagala and Wang 2019). There, it is also shown — again
with a case distinction proof over metric spaces — that if
such a candidate x exists, the mechanism guarantees distor-
tion 3. Our duality framework gives a cleaner and simpler
proof of this fact. The main question is then whether the de-
sired candidate x always exists.

(Munagala and Wang 2019) conjecture — as do we —
that it does. In Section 6, we present several very different-
looking conjectures, each of which would resolve the ques-
tion positively, i.e., establish a distortion of 3. One of the
conjectures is phrased in terms of certain preferences be-
tween candidates and sets under randomly drawn preference
orders, while another talks about cycles in certain induced
subsets of a type of graph we define. The fact that they are
sufficient to establish distortion 3 is based on Hall’s Mar-
riage Theorem for bipartite graphs. We have verified the con-
jecture for n ≤ 7 using exhaustive computer search.

Due to space constraints, many proofs, as well as a more
in-depth discussion of related work, are omitted from this
conference version. A full version is available on the arXiv
(Kempe 2019).

2080



2 Preliminaries

2.1 Voters, Candidates, and Social Choice Rules

An instance (X,P) consists of a set of n candidates X , and
the voters’ preferences P among these candidates. Candi-
dates will always be denoted by lowercase letters w, x, y, z,
with w specifically reserved for a candidate chosen as win-
ner by a mechanism. Sets of candidates are denoted by up-
percase letters X,Y, Z. The m voters are denoted by v, v′
and variants thereof, and the set of all voters is V .

Each voter v has a total order (or preference order or
ranking) �v over the n candidates. x �v y denotes that v
(strictly) prefers x over y, and x �v y denotes that v weakly
prefers x over y (allowing x = y). We extend this nota-
tion to sets, writing, for instance, Y �v Z to denote that v
(strictly) prefers all candidates in Y over all candidates in
Z. We write [x � Y ] = {v ∈ V | x �v Y } for the set of
voters who rank x strictly ahead of all candidates in Y , and
[Y � x] = {v ∈ V | Y �v x} for the set of voters who
rank x strictly behind all candidates in Y .

A vote profile P is the vector of the rankings of all voters
P = (�v)v∈V . A social choice rule (or mechanism) f :
(X,P) 	→ w is given the rankings of all voters, i.e., P , and
deterministically produces as output one winning candidate
w = f(X,P) ∈ X .

2.2 (Pseudo-)Metric Space and Distortion

The voter preferences are assumed to be derived from dis-
tances between voters and candidates. The distance d(v, x)
between voter v and candidate x captures how similar their
positions on key issues are. The distances d form a pseudo-
metric, i.e., they are non-negative and satisfy the triangle in-
equality d(v, x) ≤ d(v, y)+d(v′, y)+d(v′, x) for all voters
v, v′ and candidates x, y.

A vote profile P is consistent with the pseudo-metric
d if and only if each voter ranks the candidates by non-
decreasing distance from herself; that is, if x �v y when-
ever d(v, x) < d(v, y). When P is consistent with d, we
write d ∼ P . If there are ties among distances, several vote
profiles will be consistent with d.

Definition 2.1 (Social Cost, Distortion) 1. The social cost
of candidate x is the sum of distances from x to all voters:
C(x) =

∑
v d(v, x).

2. A candidate is an optimum candidate iff he minimizes the
social cost: x∗d ∈ argminx∈X C(x).

3. The distortion of a mechanism f is the largest possible
ratio between the cost of the candidate chosen by f , and
the optimal (with respect to the pseudo-metric d, which
f does not know) candidate x∗d:

ρ(f) = max
P

sup
d:d∼P

C(f(X,P))

C(x∗d)
.

2.3 Ranked Pairs and the Schulze Rule

Both the Ranked Pairs and Schulze Rules are based on a
weighted directed graph on the set of candidates X . The
weight px,y of the edge from candidate x to y is the frac-
tion of voters who have x � y.

In Ranked Pairs (Tideman 1987), the (ordered) pairs
(x, y) are considered in non-increasing order of px,y . When
the pair (x, y) is considered, the directed edge (x, y) is in-
serted into the graph if and only if doing so creates no cy-
cle. When the insertion process terminates, the graph has a
unique source node, which is returned as the winner.

In the Schulze Method (Schulze 2011), a directed
weighted graph is created in which each ordered pair (x, y)
has an edge with weight px,y . Then, for each pair (x, y), let
sx,y be the width of the widest path from x to y, that is, the
largest p such that there is a path from x to y on which all
edges (x′, y′) have px′,y′ ≥ p. It has been shown (Schulze
2011) that there is a candidate node x such that sx,y ≥ sy,x
for all other candidates y. Any such candidate x is returned
as the winner.

For the purposes of our analysis, the only property of
these methods that matters is captured by the following
lemma, which is well known (and proved in the full version
for completeness).

Lemma 2.2 Let w be the candidate selected by the rule (ei-
ther Ranked Pairs or Schulze), and y any other candidate.
Then, there exists a p and a sequence of (distinct) candi-
dates x1 = w, x2, . . . , x� = y with the property that at least
a p fraction of voters prefer xi over xi+1 (for each i), and at
most a p fraction of voters prefer y over w.

3 The LP Duality Approach and Flows

In this section, we develop the key tool for our analysis: the
dual linear program for distortion in metric voting.

The voters’ preferences P = (�v)v are given. Let w be
a candidate that the mechanism is considering as a potential
winner, and x∗ the optimal candidate. Following (Anshele-
vich et al. 2018; Goel, Krishnaswamy, and Munagala 2017),
we phrase the problem of finding a distortion-maximizing
metric as a linear program whose variables dv,x denote dis-
tances between voters v and candidates x. These distances
must be non-negative, obey the triangle inequality, and be
consistent with the reported preferences of the voters. The
objective is to maximize the distortion, i.e., the ratio between
the cost of w and the cost of x∗.

Maximize
∑

v dv,w subject to
dv,x ≤ dv′,x + dv′,y + dv,y for all x, y, v, v′

(� Inequality)
dv,x ≤ dv,y for all x, y, v such that x �v y

(consistency)∑
v dv,x∗ = 1 (normalization)∑
v dv,x ≥ 1 for all x (optimality of x∗)

dv,x ≥ 0 for all x, v.

(1)

As is standard in the use of LPs for optimizing a ratio, the
normalization side-steps the issue of having to write a ratio:
for any worst-case metric, one could simply rescale all dis-
tances by a constant so that the normalization holds — this
does not change any ratios, and thus also not the distortion.

As discussed in (Anshelevich et al. 2018; Goel, Krish-
naswamy, and Munagala 2017), the LP can be immediately
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used to define an instance-optimal mechanism. However, an-
alyzing such a mechanism appears difficult. We will show
how to use the dual of the LP to obtain a general approach
for bounding the metric distortion of several different voting
rules.

3.1 The Dual Linear Program

Rearranging the primal LP into normal form, taking the dual,
and switching the signs of the αx variables yields the follow-
ing dual LP (2). In this LP, the ψ(v,v′)

x,y are the dual variables
for the triangle inequality constraints, φ(v)x,y are the dual vari-
ables for the consistency constraints, and the αx are the dual
variables for the normalization/optimality constraints.

Minimize
∑

x αx subject to
αx +

∑
y:x�vy

φ
(v)
x,y −∑

y:y�vx
φ
(v)
y,x

+
∑

y,v′

(
ψ
(v,v′)
x,y − ψ

(v,v′)
y,x − ψ

(v′,v)
x,y − ψ

(v′,v)
y,x

)

≥
{
1 if x = w

0 if x 
= w
for all v, x

ψ
(v,v′)
x,y ≥ 0 for all v, v′, x, y

φ
(v)
x,y ≥ 0 for all v, x, y
αx ≤ 0 for all x 
= x∗.

(2)

Notice that αx∗ is in fact unconstrained, due to the equal-
ity constraint in the normalization.

The advantage of studying the dual linear program instead
of the primal (or reasoning about the distortion directly) is
that it omits any reference to any metric space. The goal in
analyzing a mechanism is to show that for any voter prefer-
ences P , with a suitably chosen winner w, there is a setting
of the dual variables giving small objective value.

3.2 Using the Dual by Exhibiting Flows

The LP (2) looks rather unwieldy, mostly due to the terms
involving the ψ(v,v′)

x,y variables. However, by making some
specific choices for these variables, it can be interpreted as a
flow problem on a suitably defined graph, with a somewhat
unusual objective function. This is captured by the following
lemma:

Lemma 3.1 Let H = (U,E) be a directed graph with ver-
tex set U = V ×X , and edges defined as follows:

• Whenever x �v y, E contains the directed edge (v, x) →
(v, y). We call such edges preference edges.

• For all x and v 
= v′, E contains the directed edge
(v, x) → (v′, x). We call such edges sideways edges.

Let f be a flow on H such that exactly one unit of
flow originates at the node (v, w) for each voter v, and
flow is only absorbed at nodes (v, x∗) for voters v. Define
the cost of f at voter v to be γ(f)v =

∑
e into (v,x∗) fe +∑

x �=x∗
∑

v′ �=v(f(v′,x)→(v,x) + f(v,x)→(v′,x)).

Then, C(w) ≤ C(x∗) ·maxv γ
(f)
v .

The graph H has two types of edges. For any fixed voter
v, the preference edges (v, x) → (v, y) (over all candidate
pairs x, y) exactly correspond to v’s preference order. For
any fixed candidate x, the sideways edges (v, x) → (v′, x)
(over all voter pairs v, v′) form a complete directed graph.

The flow’s cost function has two terms for each voter v.
The first is fairly standard in the study of multi-commodity
flows: the capacity required at the sink node (v, x∗) to be
able to absorb all of the flow. The second one is rather non-
standard: for each voter v, there is an additional penalty term
for all incoming and outgoing flows of nodes (v, x) for x 
=
x∗ along sideways edges. In other words, using preference
edges is much less costly than using sideways edges: the
former just route flow, while the latter route the flow, but
also incur a cost penalty at both endpoints.

4 Distortion of Ranked Pairs and Schulze

As a first application of Lemma 3.1, we pin down the distor-
tion of the Ranked Pairs and Schulze rules to within constant
factors.

Corollary 4.1 Both the Ranked Pairs mechanism and the
Schulze rule asymptotically have distortion at most 5

√
n +

o(
√
n) and at least

√
2
2

√
n.

Proof. The lower bound is based on a straightforward gen-
eralization of the construction of (Goel, Krishnaswamy, and
Munagala 2017), which showed a lower bound of 5 on the
distortion. It is given in the full version. Here, we prove the
upper bounds. Let w be the candidate selected by the rule,
and x∗ the optimum candidate. By Lemma 2.2, applied with
y = x∗, there exists a p and a sequence of distinct candi-
dates x1 = w, x2, . . . , x� = x∗ with the property that for
each i, at least a p fraction of voters prefer xi over xi+1, and
at most a p fraction of voters prefer x∗ over w. The exis-
tence of x1, . . . , x� with these properties is all that we need
from the specific voting rules. The rest of the proof will be
completely generic, and would thus also apply to any other
voting rule satisfying Lemma 2.2.

We consider two cases, depending on the value of p. The
case p ≤ 1− 2

5
√
n

is easy. In this case, at least a 1−p ≥ 2
5
√
n

fraction of voters preferw over x∗. Lemma 6 from (Anshele-
vich et al. 2018) states that if at least a q fraction of voters
prefer x over x′, then C(x) ≤ (1 + 2(1−q)

q ) · C(x′). Apply-
ing this lemma to w and x∗, the distortion of w is at most
2

1−p − 1 ≤ 5
√
n.

When p > 1− 2
5
√
n

, we use Lemma 3.1, and define a flow.
Let λ = �√n/2�.3 Let B = ��/λ�. Because � ≤ n, we get
that B+1 ≤ 2

√
n+ o(

√
n). Consider the B+1 candidates

yj := xjλ+1 for j = 0, 1, . . . , B − 1, and yB := x�. For
each j < B, let Aj be the set of voters who prefer candidate
yj to yj+1. Because for each i, at least a 1− 2

5
√
n

fraction of
voters prefer xi to xi+1, a union bound over the candidates

3To ensure that λ ≥ 1, we may assume that n ≥ 4. For smaller
n, it is easy to see that the distortion of both rules is at most a
constant, which of course can be absorbed in the o(

√
n) term.
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xjλ+1, xjλ+2, . . . , x(j+1)λ shows that for each j < B, at
least a 1 − λ · 2

5
√
n

≥ 4
5 fraction of voters prefer yj over

yj+1; that is, |Aj | ≥ 4
5 ·m.

We are now ready to construct the flow, which we will do
by increasing j. Initially, each node (v, x1) = (v, y0) has
one unit of incoming flow. Each node (v, y0) with v /∈ A0

distributes its unit of flow evenly over the nodes (v′, y0) with
v′ ∈ A0. Then, for each j = 0, . . . , B − 1 and each voter
v ∈ Aj , the node (v, yj) routes all its flow to the node
(v, yj+1) along the preference edge (v, yj) → (v, yj+1);
this preference edge (v, yj) → (v, yj+1) exists because
v ∈ Aj . Subsequently, the flow into (v, yj+1) gets dis-
tributed uniformly to nodes (v′, yj+1) with v′ ∈ Aj+1 along
sideways edges. This concludes the description of the flow.

We now analyze the flow’s cost, according to the cost met-
ric of Lemma 3.1. Because |Aj | ≥ 4

5 ·m for all j, no node
ever has more than 5

4 units of flow. Now focus on any voter
v. Cost for v is incurred by incoming flow into nodes (v, yj)
along sideways edges, outgoing flow from nodes (v, yj)
along sideways edges, and flow into (v, yB). Each of these
cost terms is bounded by 5

4 by the preceding observation.
Thus, the total cost for node v associated with one particular
yj (for j < B) is at most 5

2 , while the cost associated with
yB is at most 5

4 . Adding these terms for all j = 0, . . . , B

gives an upper bound of 5
4 +5

√
n+o(

√
n). Since this holds

for each v, Lemma 3.1 implies that the distortion is at most
5
√
n+ o(

√
n).

Remark 4.2 The upper bound in Corollary 4.1 was a direct
application of our flow-based framework. While the lower
bound did not explicitly use the framework, the counter-
example was in fact discovered after failed attempts to im-
prove the upper bound. The failure to find ways to route flow
very clearly suggested the types of rankings that were obsta-
cles (i.e., reversed block structures).

5 Generalization of Distortion Bounds for

Undominated Nodes

As a second corollary of Lemma 3.1, we obtain a strong
generalization of Theorem 7 in (Anshelevich, Bhardwaj, and
Postl 2015) and Lemma 3.7 of (Munagala and Wang 2019)
(which are given below for comparison). The most general
version can be stated as follows:

Corollary 5.1 Let x1, x2, . . . , x� be (distinct) candidates
such that for each i = 2, . . . , �, at least a pi > 0 fraction
of voters prefer candidate xi−1 over candidate xi. Define
λ1 = 1, λ2 = 2

p2
− 1, and λi = 2

pi
for 2 < i ≤ �. Let

Λ = maxS⊆{1,...,�},S indep.
∑

i∈S λi. (Here, independence of
a set S of natural numbers means that the set contains no
two consecutive numbers.) Then, C(x1) ≤ Λ · C(x�).
Proof. We define a flow f and analyze its cost. For each i,
we call the nodes (v, xi) (for all voters v) layer i. Let Vi
be the set of voters v with xi−1 �v xi, with V1 := V for
notational simplicity.

We construct the flow layer by layer; our construction will
ensure that each node (v, xi) with v ∈ Vi has exactly m

|Vi|
units of flow entering. This holds in the base case i = 1,
because each node in layer 1 is the source node of one unit
of flow.

For the ith step of the construction, we first route all the
flow within layer i using sideways edges, from nodes (v, xi)
with v ∈ Vi to nodes (v′, xi) with v′ ∈ Vi+1. We then
route it to nodes (v′, xi+1) in layer i + 1 using preference
edges. More specifically, to route the flow within layer i,
we first consider voters v ∈ Vi ∩ Vi+1. For those voters,
min( m

|Vi| ,
m

|Vi+1| ) units of flow simply stay at (v, xi). The
node (v, xi) for such v will have additional incoming flow
from other nodes (if m

|Vi+1| >
m
|Vi| ) or additional outgoing

flow to other nodes (if m
|Vi+1| <

m
|Vi| ). The remaining flow is

routed arbitrarily using sideways edges from nodes (v, xi)
with v ∈ Vi to nodes (v′, xi) with v′ ∈ Vi+1, of course en-
suring that each such node (v′, xi) has in total m

|Vi+1| units
of flow entering.

After this redistribution within layer i, each (v, xi) routes
its flow to (v, xi+1). Notice that this is always possible, be-
cause xi �v xi+1 for all v ∈ Vi+1. The construction is
illustrated with an example in Figure 1.

v1 v2 v3 v4

x1

�v1

x2

�v1,v2

x3

�v2,v3,v4

x4

1

1

1

4

2

2 2

4/3

2/3

2/3

4/3 4/3 4/3

Figure 1: An illustration of the flow construction. In the ex-
ample, there are 4 voters and 4 relevant candidates, with
voter preferences shown on the left. The preference frac-
tions are p1 = 1/4, p2 = 1/2, p3 = 3/4. Sideways flows
are shown in solid red, while flow along preference edges is
shown in dashed lines. The dashed lines into nodes for can-
didate x4 are shown in blue (instead of black), to emphasize
that they contribute to the objective function. The amount of
flow is given numerically, and also shown using the width
of the lines/arcs. Edges that are not used by the flow are not
shown.
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We now analyze the cost associated with any fixed voter v.
The cost has two components: the incoming flow at (v, x�)
(shown in blue in Figure 1), and the cost associated with
incoming/outgoing flow using sideways edges incident on
(v, xi) for i < � (shown in red in Figure 1). We begin with
the incoming flow at (v, x�): if v ∈ V�−1, the incoming flow
is m

|V�| =
1
p�

; otherwise, it is 0.
Next, we consider the cost associated with sideways

edges. As a general guideline (subtleties will be discussed
momentarily), when v ∈ Vi, the node (v, xi) has m

|Vi| =
1
pi

units of flow coming in along sideways edges, and the node
(v, xi+1) has the same amount of flow leaving along side-
ways edges. The associated cost of both together is 2

pi
. Two

obvious exceptions are layers i = 1 and i = �−1. For i = 1,
one unit of flow simply originates with (v, x1), resulting in
no cost. For i = � − 1, no sideways edge is used to route
outgoing flow; however, this is compensated by the incom-
ing flow at (v, x�) (discussed in the preceding paragraph),
which adds the same cost term.

However, simply adding up the bounds from the preced-
ing paragraph over all steps i with v ∈ Vi is too pessimistic,
because our flow construction avoids routing more flow than
necessary when v ∈ Vi ∩ Vi+1. A tighter bound is captured
by the following lemma:

Lemma 5.2 Let I be the set of all indices i with
v ∈ Vi. I can be partitioned into disjoint in-
tervals of integers {L1, L1 + 1, . . . , R1}, {L2, L2 +
1, . . . , R2}, . . . , {LK , LK + 1, . . . , RK} (for some K ≥ 1)
such that:
1. For each k, there exists an index Mk ∈ {Lk, . . . , Rk}

such that pLk
≥ pLk+1 ≥ · · · ≥ pMk

> 0 and
pMk

≤ pMk+1 ≤ · · · ≤ pRk
; that is, the pi are mono-

tone non-increasing from Lk to Mk, and monotone non-
decreasing from Mk to Rk.

2. The total cost of flow (both sideways flow and flow into
(v, x�) in case Rk = �) associated with nodes (v, xi)
with Lk ≤ i ≤ Rk is at most λMk

.

To apply Lemma 5.2, the key observation is that the set
{M1,M2, . . . ,MK} is independent, i.e., contains no two
consecutive integers. If it did — say, i = Mk and i + 1 =
Mk′ — then both i, i+ 1 ∈ I . If pi+1 ≤ pi, this would con-
tradict the maximality of i in the definition of Mk; on the
other hand, if pi+1 > pi, then i + 1 ≤ Rk by the definition
of Rk, so it is impossible that i+ 1 =Mk′ .

Now, summing up the costs for each of the disjoint inter-
vals, we obtain that the total cost of the flow at nodes asso-
ciated with v (both sideways flow and flow into (v, x�)) is
at most

∑K
k=1 λMk

; because the set of Mk is independent,
this sum is at most Λ. Using Lemma 3.1, this completes the
proof.

5.1 Special Cases

Lemma 3.7 of (Munagala and Wang 2019) is the special case
of Corollary 5.1 with � = 3, x1 = w, x3 = x∗, and p1 =
3−√

5
2 , p2 =

√
5−1
2 . Our Corollary 5.1 then exactly recovers

the bound of 2 +
√
5.

When we have a uniform lower bound on the pi, Corol-
lary 5.1 can be simplified significantly.

Corollary 5.3 Let x1, x2, . . . , x� be (distinct) candidates
such that for each i = 2, . . . , �, at least a p > 0 frac-
tion of the voters prefer candidate xi−1 over candidate xi.
Then, if � is even, C(x1) ≤ ( �p − 1) · C(x�); if � is odd,
C(x1) ≤ ( �−1

p + 1) · C(x�).
Proof. We substitute pi ≥ p for all i in Corollary 5.1; then,
we observe that for even �, the independent set of integers
giving the largest sum is {2, 4, . . . , �}, while for odd �, it is
{1, 3, . . . , �}.

When p = 1
2 (i.e., in the case of the majority graph),

the bound simply becomes 2� − 1. The result thus strongly
generalizes Theorem 7 in (Anshelevich, Bhardwaj, and Postl
2015), which is the special case of p = 1

2 and � = 3.

6 A Candidate Algorithm for Distortion 3

As a third application, we derive a purely combinatorial (i.e.,
not LP-based) voting mechanism, which we conjecture to
have distortion 3. We show that this conjecture would fol-
low from any of three different-looking combinatorial con-
jectures we will formulate.

The point of departure for the derivation of the mechanism
is Corollary 6.1, which simplifies Lemma 3.1, reducing it to
a purely combinatorial property of a certain graph. Corol-
lary 6.1 was proved as Theorem 4.4 in (Munagala and Wang
2019), using a significantly more complex proof.

For any two candidates x, y, we consider the following
bipartite graph Hx,y on the node set (V, V ); that is, there is
one node on the “left” for each voter v, and one node on the
“right” for each voter v′. (We will use “left” and “right” to
distinguish the two vertex sets.) There is an edge (v, v′) if
and only if there exists a candidate z ∈ X (z = x or z = y
are explicitly allowed) such that x �v z and z �v′ y.

Corollary 6.1 Let x 
= y be two candidates. If Hx,y has a
perfect matching, then C(x) ≤ 3C(y).

Proof. Assume that there is a perfect matching in Hx,y; for
each voter v, let μv be the voter v is matched with. By defi-
nition of Hx,y , there is a candidate zv such that x �v zv and
zv �μv y.

We now define the flow f from each source node (v, x).
We route one unit of flow along the path (v, x) → (v, zv) →
(μv, zv) → (μv, y). Notice that by definition of zv , the first
and third edge always exist. Also, if zv = x, then the first
two nodes are the same, and we omit the first edge. Similarly,
if μv = v, we omit the second edge, and if zv = y, we omit
the third edge.

This construction defines a valid flow, routing one unit of
flow from each (v, x) to some (v′, y) (for some v′). So it
only remains to bound γ(f)v ≤ 3 for all v.

Because μ is a matching, there is exactly one unit of flow
arriving at each node (v, y). For a given voter v, let v′ be
the unique voter with μv′ = v. Then, the only two edges
of the form (v, z) → (v′, z) or (v′, z) → (v, z) that can be
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used by f are (v, zv) → (μv, zv) and (v′, zv′) → (v, zv′).
Hence, the second part of the cost term γ

(f)
v is at most 2,

meaning that γ(f)v ≤ 3. The claim now follows by applying
Lemma 3.1.

Corollary 6.1 immediately suggests a natural mechanism
with distortion at most three, which was also given as
MATCHINGUNCOVERED in (Munagala and Wang 2019):

ALL BIPARTITE MATCHINGS:
Find a candidate w such that for all other candidates x,
the bipartite graph Hw,x has a perfect matching.

The mechanism ALL BIPARTITE MATCHINGS sidesteps
having to solve the Θ(n2) LPs (1), instead solving Θ(n2)
bipartite matching problems. The question then is whether
such a candidate w actually exists. We present three differ-
ent conjectures, each of which would imply the existence of
w, and thus, by Corollary 6.1, that ALL BIPARTITE MATCH-
INGS has distortion 3.

6.1 The Candidate Comparison Graph G
A key analysis tool in this section is a directed graph G on
the set of all candidates X , which we call the Candidate
Comparison Graph. G contains the directed edge (y, x) if
and only if the graph Hx,y does not have a perfect match-
ing. Any candidate w without incoming edges in G is a safe
choice as a winner, because Corollary 6.1 implies a bound
of 3 on its cost ratio to (the unknown) x∗.

One sufficient condition for the existence of a source node
in G (i.e., a node without incoming edges) is for G to be
acyclic. This gives rise to our first conjecture, which was
also given as Conjecture 4.8 in (Munagala and Wang 2019):

Conjecture 1 For every instance (X,P), the graph G =
G(X,P) is non-Hamiltonian.4

Despite appearances, Conjecture 1 is equivalent to the
guaranteed existence of a source node, as we show in the
following proposition:

Proposition 6.2 ALL BIPARTITE MATCHINGS succeeds on
all inputs if and only if Conjecture 1 is true.

Notice that the proposition does not say that whenever a
specific instance violates Conjecture 1, the algorithm will
fail on that instance. It only implies that the algorithm fails
on some (potentially different) instance.

6.2 Distributions of Permutations

We next derive a much simpler-looking — but actually
equivalent — conjecture, which is phrased only in terms of
distributions of permutations. The key lemma for deriving
this equivalent conjecture is the following:

Lemma 6.3 G contains the edge (y, x) if and only if there
exists a set Zx,y of candidates with x ∈ Zx,y and y /∈ Zx,y

such that
4Recall that a directed graph is Hamiltonian if it contains a di-

rected cycle of all nodes.

|[y � Zx,y]|+ |[Zx,y � x]| > m. (3)

Based on Lemma 6.3, we formulate the following conjec-
ture, and prove it equivalent to Conjecture 1.

Conjecture 2 Let Z1, Z2, . . . , Zn ⊆ {1, . . . , n} be arbi-
trary sets with i ∈ Zi. Define the following two indicator
functions over elements i and total orders �:

α(i,�) =

{
1 if i+ 1 � Zi

0 otherwise;
β(i,�) =

{
1 if Zi � i

0 otherwise;
(4)

here all additions/subtractions are modulo n; that is, n +
1 := 1, and 1− 1 := n.

Let D be any distribution over total orders � of
{1, . . . , n}. Then, there exists an i such that

E�∼D [α(i,�) + β(i,�)] ≤ 1. (5)

Proposition 6.4 Conjecture 2 is true if and only if Conjec-
ture 1 is true.

6.3 A Graph-Theoretic Reformulation

Our attempts to prove Conjecture 2 (so far unsuccessful)
have been based on proofs by contradiction. The assumed
constraints from Conjecture 2 prescribe several constraints
on rankings that must hold simultaneously; using transitiv-
ity, this leads to a contradiction by forcing preferences to
contain cycles. The essence of this approach is captured by
another conjecture. To formulate it, we define the following
class of directed graphs, which we term Constraint-Choice
Graphs.

Definition 6.5 (Constraint-Choice Graph) Let Yn =
{y1, . . . , yn}, An = {a1, . . . , an}, Bn = {b1, . . . , bn} be
three disjoint sets of nodes. A constraint-choice graph for a
given n contains 3n nodes Un = Yn ∪ An ∪ Bn, and the
following edges:

• For each i, it contains the directed edges5

(yi, ai−1), (yi, bi−1), (ai, yi), (bi, yi).
• For each i, j with j 
= i, j 
= i− 1, it contains exactly one

of the two directed edges (aj , yi), (yi, bj).

An example of a constraint choice graph is shown in Fig-
ure 2. The edges listed first in Definition 6.5 are shown
in solid black, while the edges listed second are shown in
dashed red lines.

Conjecture 3 For every n and every constraint choice
graph Gn of 3n nodes, there exists a non-empty index set
S ⊆ {1, . . . , n} with the following property: For every ver-
tex set T ⊆ {ai, bi | i ∈ S} of size |T | > |S|, the induced
subgraph Gn[Yn ∪ T ] contains a directed cycle.

5As before, we define 1− 1 := n and n+ 1 := 1.
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y1 y2 y3 y4

a1 a2 a3 a4

b1 b2 b3 b4

Figure 2: An illustration of a constraint-choice graph for n =
4 candidates.

Remark 6.6 Notice that the conjecture indeed talks about
the subgraph induced by all nodes yi (not just those with
indices in T ), in addition to at least |S|+1 nodes from among
the ai, bi with i ∈ S.

Proposition 6.7 If Conjecture 3 is true, then Conjecture 2
is true.

7 Conclusions

Our work raises a very obvious question: prove (or possi-
bly disprove) the conjectures stated in Section 6. Based on
exhaustive computer search, it seems more likely that the
conjectures are true, and the ALL BIPARTITE MATCHINGS
mechanism in fact is always able to find a candidate with
distortion at most 3.

Going beyond these conjectures, we believe that the
duality-based framework may be useful for bounding the
performance of other voting mechanisms, in particular, those
that may miss information on parts of voters’ ranking. For
instance, such a situation can occur in the setting of (Kempe
2020), where voters can only name the candidates in a sub-
set of positions on their ballot, rather than giving a complete
ranking. The analysis of a mechanism proposed in (Kempe
2020) becomes much simpler (and tighter) using the tech-
niques developed here.

While we have only studied deterministic mechanisms
here, the framework can also be extended to randomized
mechanisms. When the mechanism selects a candidate x
with probability qx, an upper bound can be obtained by
bounding a flow that inserts qx units of flow at each of the
nodes (v, x), which again have to be routed to x∗.

It is conceivable that duality-based approaches similar
to the one we developed could be helpful for the analysis
of mechanisms for other problems in the cardinal/ordinal
framework: a worst-case metric for a given input can of-
ten be characterized in terms of a linear program, and the
dual may in general lead to a framework for proving upper
bounds on the performance of a chosen mechanism.
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