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Abstract

Congestion is a severe problem in cities. A large popula-
tion with little information about each other’s preferences
hardly reaches equilibrium and causes unexpected conges-
tion. Controlling such congestion requires us to collect in-
formation dispersed in the market and to coordinate actions
among agents. We aim to design a mediator that a) induces a
game with high social welfare in equilibrium, b) computes an
equilibrium efficiently, c) works without common prior, and
d) performs well even when only some of the agents in the
market use the mediator. We propose a mediator based on a
version of best response dynamics (BRD). We prove that, in a
simple setting with two resources, “good behavior” (reporting
truthfully and following the recommendation) forms an (ap-
proximate) ex-post Nash equilibrium in the mediated game;
in the equilibrium, the welfare is close to the first-best when
preferences diverge enough. Furthermore, under a certain be-
havioral assumption, those who are not using the mediator
can always enjoy non-negative payoff gain by joining it even
without the full participation of others. Additionally, our ex-
perimental results suggest that such results remain valid for
more general settings.

1 Introduction

Congestion is a severe problem in cities. For example, traf-
fic congestion not only impedes the smooth transfer of in-
habitants (Kreindler 2018) or causes air pollution (Gibson
and Carnovale 2015), but it also increases people’s mental
burden (Anderson et al. 2016). Congestion in public trans-
portation also decreases productivity, as it results in many
delays and accidents. The social cost caused by congestion
in Tokyo’s railway is estimated at $3.03 billion per year
(Okano, Ota, and Hirota 2017; NAVITIME 2018). Other ex-
amples of congestion include those in museums, amusement
parks, tourist spots, or restaurants. Without a doubt, a prac-
tical solution to such congestion is urgently needed.

The crowded markets are usually large, and then, each
agent may know little to nothing about each other’s pref-
erences, making it difficult for agents to reach equilibrium,
which causes unexpected congestion. Congestion games are
extensively studied in algorithmic game theory literature,
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but many papers consider a complete information setting,
which seems to be unrealistic in our context. Even if we
admit the complete information, the coordination problem
still exists: there may be multiple equilibria, and agents will
have difficulty agreeing on which one to play. It is also pos-
sible that agents will have difficulty computing equilibrium,
as they are boundedly rational. Additionally, previous work
has shown that agents following a simple learning algorithm
may not reach equilibrium (Palaiopanos, Panageas, and Pil-
iouras 2017). In any case, we cannot always expect agents
in the crowded market to play an equilibrium.

In order to mitigate the congestion, it is crucial to col-
lect information from agents and coordinate their actions.
It is well known that Nash equilibria are often near-optimal
in congestion games with complete information under rel-
atively weak assumptions; hence, it is worth investigating
how we implement such equilibria. To this end, we intro-
duce a mediator to the large crowded market.

The mediator listens to the reports from agents and sends
back individual recommendations. For the moment, it may
be helpful to think of the mediator as a web application.
Each agent tells the mediator his preference over resources
and his opportunity cost (i.e., the degree of congestion aver-
sion). Given this reported type profile, the mediator com-
putes a Nash equilibrium in the induced complete informa-
tion game via best response dynamics (BRD); then, the me-
diator recommends that each agent take action in the com-
puted equilibrium. We design the mediator so that good be-
havior (opt-in the mediator, report their type truthfully, and
follow the recommendation) forms an approximate ex-post
Nash equilibrium. By this property, the mediator can guide
people to the state in which each agent can use his preferred
resource with reduced congestion.

One notable feature of our mediator is that its power is
very weak: it cannot compel obedience from agents, and
agents can opt-out of the mediator, misreport their types,
and ignore the recommendation if they want. This property
makes it easy to introduce the mediator to the market.

Our mediator differs from the existing countermeasures
for congestion. First, peak-load pricing (Vickrey 1963) is
the most popular and influential way of handling conges-
tion, but in practice, institutional barriers or regulations of-
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Simplicity Running-time Class of Games Safe Participation

PRESL
(Cummings et al. 2015)

Parameter tuning
Random

Exponential in
# of resources Aggregative ?

P-BR
(Kearns et al. 2015)

Parameter tuning
Random

Polynomial in
# of agents and resources Congestion ?

CRAB No tuning
Deterministic

Polynomial in
# of agents and resources

Congestion w/
individual preference Yes

Table 1: Comparison of the mediators. Note that “Random” means random mechanism based on differential privacy techniques;
CRAB is almost deterministic except that ties are broken uniformly at random (see Algorithm 1). “?” appears in the last column
because the listed previous work does not consider the existence of outsiders.

ten prevent such pricing. For example, public transportation
fares are often regulated by law and hard to change flexi-
bly. Our mediator does not need a monetary transfer so it
is more widely applicable. Second, moral suasion is some-
times used for energy conservation in peak-demand hours,
but empirical studies show that its effect, particularly the
long-run effect, is ambiguous (Allcott and Rogers 2014;
Ito, Ida, and Tanaka 2018). By contrast, our mediator has
an incentive guarantee. Third, the congestion information is
disclosed to control the crowd (e.g., Google Maps). While
each agent changes his behavior individually under such in-
formation, our mediator alters the behavior of agents as a
whole. Moreover, our mediator recommends action to each
agent; this solves the coordination problem and helps bound-
edly rational agents to play equilibrium. In summary, our
mediator is supposed to be more widely applicable than
peak-load pricing and more effective than moral suasion and
naive information disclosure.

Our results

For theoretical analysis, we first focus on a simple setting
with two resources where agents have the same opportunity
cost, and both resources have the same throughput rate. We
show that good behavior forms an approximate ex-post Nash
equilibrium where the approximation rate tends to zero as
the market gets large. Secondly, those who opt-out the me-
diator, or outsiders, can enjoy nonnegative payoff gain by
joining the mediator even when only some of the agents use
the mediator if all outsiders choose their favorites. We also
generalize these results to the case where agents have differ-
ent opportunity costs, and resources differ in the throughput
rates.

Furthermore, we conduct a welfare analysis. We introduce
the notion of the price of mediation (POM), which is the ra-
tio between the welfare attained in the equilibrium induced
by the mediator and the first-best. We compute the POM ex-
plicitly; in the large market, POM attains 1 at best, and it
keeps close to 1 as long as preferences diverge enough. (NB:
POM is 1 iff the mediated equilibrium attains the first-best.)

We also conduct multiple kinds of experiments. Our first
set of experiments shows that the mediator works well
in more general settings. Even when there are more than
two resources and agents have heterogeneous opportunity
costs, the approximation rate of ex-post Nash equilibrium is
bounded by the value inferred from the theoretical results on
simple cases.

Our experiments also confirm that our mediator does sat-
isfy the safe participation property in the general cases.
Moreover, in the experiments, more outsiders can enjoy
strictly positive payoff gain by joining the mediator as a) the
larger fraction of people use the mediator and b) the market
gets larger. These results suggest that our mediator performs
better in larger markets.

Our second set of experiments investigates the effect of
different specifications of BRD. In the usual definition of
BRD, the initialization and the rule to pick a mover at each
step are not defined. There are several possible ways of im-
plementation. We observe that our specification of BRD out-
performs other versions both in the realized social welfare
and in the computation time.

Our contribution

This paper is directly motivated by previous work that has
proposed weak mediators, P-BR (Kearns et al. 2015) and
PRESL (Cummings et al. 2015); both are applicable to con-
gestion games. They rely on algorithms based on differential
privacy techniques. Though their mediators have various fa-
vorable theoretical properties, we face difficulties when im-
plementing it in practice, as we will discuss shortly. We aim
at an implementation-oriented mediator.

Our conceptual contribution is the introduction of a me-
diator named Credible Recommender based on Agent-made
Billboard (hereafter called CRAB), based on a simple BRD.
The previous work argues that a mediator who naively com-
putes a Nash equilibrium of the complete information game
induced by reported types may fail (Kearns et al. 2014). In
order to prevent such failure, it is crucial to ensure that each
agent can hardly affect the output of the mediator by mis-
reporting; this is why they use differentially private algo-
rithms. However, we show that, in congestion games (with
player-specific utilities), the mediator based on a simple
BRD performs well. CRAB has the following distinctive
features (see also Table 1):

Simplicity CRAB is simple in the following two senses:
First, given a reported type profile, CRAB returns an equi-
librium action profile with certainty. In contrast, both P-BR
and PRESL return a non-equilibrium action profile, which
can result in poor social welfare with a small probability.
This property is sometimes problematic when we persuade
practitioners to use the mediator. Second, unlike CRAB, we

2031



need hyperparameter tuning for P-BR and PRESL. This
point also makes them hard to deploy.

Fast computation The running time of CRAB is polyno-
mial in both the number of agents and resources (Propo-
sition 1) since it relies on a simple ε-BRD. In contrast,
PRESL takes time exponential in the number of resources.
P-BR’s running time is also polynomial, but we show
through experiments that ours is more efficient. Table 2
shows the running time of CRAB and P-BR.

(n, k) CRAB P-BR

(100, 5) 0.003s 2.326s
(100, 10) 0.005s 3.522s
(200, 5) 0.013s 29.332s
(200, 10) 0.022s 71.988s
(500, 5) 0.0647s 466.132s

Table 2: CRAB vs. P-BR: Running time comparison. (n, k)
is a pair of the number of agents n and the number of re-
sources k.

Generality CRAB can deal with singleton congestion
games with player-specific utilities (Milchtaich 1996). This
game class is a subclass of multi-dimensional aggrega-
tive games, but a superclass of simple singleton congestion
games (Ieong et al. 2005), and general enough to treat allo-
cation problems with negative externality.

Safe participation When we consider introducing a new
mechanism to the existing market, it is quite likely that only
some of the people will start to use it. Even if a mecha-
nism has favorable theoretical properties, assuming that all
the agents in the market use it, the existence of outsiders can
potentially negatively affect its excellence. Although few pa-
pers have carefully considered such problem, CRAB guar-
antees that each outsider can always enjoy nonnegative pay-
off gain by joining it even without the full participation of
others.

Welfare guarantee To our knowledge, there is no wel-
fare guarantee, such as POA (Roughgarden 2005), applica-
ble to our case: agent-specific affine edge costs with pos-
sibly negative constants. In a simple setting with two re-
sources, we evaluate the social welfare attained by CRAB.
Notably, the welfare under CRAB is near-optimal when
agents’ preferences diverge enough. Moreover, the experi-
mental results are also of interest: Our specific initialization
rule and choice rule contribute to high welfare under various
parameters.

Related work

The notion of a mediator in a game-theoretic setting has a
long history (Aumann 1974; Forges 1986; Myerson 1986;

Bergemann and Morris 2019). Recent works consider sev-
eral versions of mediation tailored to specific settings, in-
cluding recommendation system, auction, and routing (Ash-
lagi, Monderer, and Tennenholtz 2009; Monderer and Ten-
nenholtz 2004; 2009; Kakade et al. 2003; Rozenfeld and
Tennenholtz 2007; Rogers and Roth 2014). In particular, as a
way to mediate in congestion games, a weak mediator is in-
troduced (Cummings et al. 2015; Kearns et al. 2015). Weak
mediators are supposed to be easier to introduce to the real
market than one with stronger power (Rozenfeld and Ten-
nenholtz 2007). Thus, this paper focuses on the weak medi-
ator.

Congestion games have also been studied extensively in
the field of algorithmic game theory (Nisan et al. 2007).
Many versions have been proposed, and our formulation
lies in congestion games with player-specific costs (Milch-
taich 1996). The existence of pure Nash equilibrium is guar-
anteed in this game class even when each agent has his
own weight (Mavronicolas et al. 2007; Milchtaich 2009;
Ackermann, Roglin, and Vocking 2009).

In reality, it is quite likely that only some of the agents
will participate in the mechanism after its introduction to
the market; it is worth investigating whether outsiders want
to start using the mechanism without the full participation of
others. However, few papers have carefully considered this
safe participation problem (Roth and Shorrer 2018). One no-
table exception is a routing mediator (Rozenfeld and Ten-
nenholtz 2007), in which the authors let the mediator be
informed of the behavior of all agents, including outsiders.
Though the assumption is acceptable in their setting, it may
not be the case in our large market setting.

2 Model

In this section, we introduce our mathematical model of
games and equilibrium concepts. We consider a congestion
game with incomplete information where agents have pri-
vate preferences over resources. We call this original one-
shot game the underlying game: the strategic situation where
agents somehow make their decisions without a mediator.
Formally, our underlying game is defined as a tuple G =
〈I, {Ai, Ti, ui}i∈I〉, where each element is defined as fol-
lows:

• Let I be the finite set of all agents in the market. |I| = n.

• Let Ai ≡ A be the finite set of resources. The parameter
tk > 0 represents the throughput rate of resource k. 1

• xi ∈ A denotes the action of agent i: xi = k iff agent i
chooses k. We call x = (xi)i∈I action profile.

• Let nk(x) be the number of agents choosing k given ac-
tion profile x:

nk(x) := |{i ∈ I : xi = k}| .

1When resources are trains, for example, we may regard tk as
the capacity of train k. In such cases, λi represents agent i’s degree
of congestion aversion.
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• The payoff of each agent i given action profile x is:

ui(x) := vi(xi)︸ ︷︷ ︸
preference term

− λi︸︷︷︸
opportunity cost

· nxi
(x)

txi︸ ︷︷ ︸
waiting time

where λi > 0 represents the opportunity cost of agent
i: the larger λi is, the more congestion-averse agent i is.
vi(k) ∈ R is agent i’s utility of using resource k. The
payoff is measured in terms of money.
• τi :=

(
vi(·), λi

)
is agent i’s type, which is i’s private in-

formation. Let Ti ≡ T = R
A × R>0 be the type space.

Mediator and mediated game

First, we introduce a mediator to the underlying game de-
scribed above. The mediator collects private information
from each agent and suggests an action to each agent, hoping
for mitigating congestion and attaining high social welfare.
The introduction of the mediator induces an extensive form
game named mediated game; the timing is as follows:
1. Each agent decides whether to use the mediator or not.
2. If he uses the mediator, he reports his type to it.
3. The mediator sends back a recommendation to each

agent. Only those who report their type receive the rec-
ommendation.

4. All agents in the market, including those who opt-out, si-
multaneously decide which resource to choose; the pay-
off is realized.
Each agent can decide whether to utilize the mediator;

even when he opts in, he can misreport his type; he is also
free to ignore the suggestion. What the mediator can do is
just listen to agents’ reports and send back a non-binding
recommendation. In this sense, we say the mediator is weak.

Formally, mediator is a tupleM = 〈{Ri}i∈I , μ〉, where:
• Ri ≡ R = {T ∪ {⊥}} is the message space of agent i

where⊥means opting out of the mediator. Agent i reports
ri ∈ Ri to the mediator.

• μ : Rn → Δ(An) is the recommendation rule: it defines
how the mediator sends back a recommendation given the
reported profile r = (ri)i ∈ Rn.
The mediated game is defined as a tuple GM =

〈I, {AM
i , Ti, ui},M〉, where AM

i ≡ AM = A′ ∪ A⊥ is
the new action space where:
• A′ := T ×AA is the action space of those who opt-in the

mediator. The function f ∈ AA determines which action
to choose given the suggestion.
• A⊥ := {⊥} × A is the action set for those who opt-out.

They can freely choose the resource based on their private
information.
We do not assume any prior distribution over type space

because our solution concept is ex-post Nash equilibrium.
This concept of equilibrium is more robust than Bayesian
Nash equilibrium, which is usually adopted as a solution
concept of an incomplete information game. Weak assump-
tions on information enables the mediator to be introduced
to a variety of situations in the real world.

Definition 1 (Approximate Ex-Post Nash Equilibrium).
Given ε > 0, a pure strategy profile σ := (σi)i∈I , where
σi : T → AM for each i, is ε-approximate ex-post pure
strategy Nash equilibrium in the mediated game if:

∀τ ∈ T n ∀i ∈ I ∀xi ∈ A;
ui(σi(τi), σ−i(τ−i)) ≥ ui(xi, σ−i(τ−i))− ε.

Next, we define a specific strategy in the mediated game
named good behavior: when following good behavior, an
agent uses the mediator, reports his type truthfully, and fol-
lows the recommendation. The formal definition is as fol-
lows:
Definition 2 (Good behavior). Let id : A → A be the iden-
tity function. The strategy σi of agent i in the mediated game
is said to be good behavior if σi(τi) = (τi, id) for any
τi ∈ T .

Suppose that the mediator can compute a Nash equilib-
rium of the complete information game induced by the re-
ported type profile and send it back to agents. Then, if good
behavior forms an ex-post Nash equilibrium in the medi-
ated game, agents can agree to play one specific equilib-
rium. Moreover, particularly in a congestion game, we can
expect that the social welfare under such equilibrium is near-
optimal. Thus, our agenda is to design a mediator with this
property.

Credible Recommender based on Agent-made
Billboard (CRAB)

Figure 1: Whole process of CRAB

Now we introduce our mediator, CRAB. Given Ri, we
construct the recommendation rule μ. Suppose that, among
n agents in the market, m agents use the mediator. Given the
report profile (τ1, . . . , τm), the algorithm runs BRD for the
induced game played with m agents.

We adopt a version of the famous BRD as our recommen-
dation rule (see Algorithm 1). 2 In the usual definition of
BRD, an initialization rule (which resource agents initially
choose) and a choice rule (who moves in each iteration) are
undefined, and there is room for exploration. We adopt best
as our initialization rule, and max increment as our choice
rule: best puts each agent on his best resource initially; max
increment chooses the agent who can increase his payoff

2BRi(x) ∈ argmaxx′
i
ui(x

′
i, x−i) denotes agent i’s best re-

sponse to x−i.
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most by a deviation (in case multiple agents meet this crite-
rion, ties are broken at random). This specification simplifies
the theoretical analysis of the algorithm. Moreover, it con-
tributes to the better performance of CRAB as we will see
in the experimental results section.

Algorithm 1 ε-BRD(τ = (τ1, · · · , τm) , ε)

xi := argmaxkvi(k) for all i.
while ∃ i� s.t. ui� (BRi�(x), x−i�) ≥ ui�(x) + ε do
M ← argmaxi {ui (BRi(x), x−i)− ui(x)}
Choose i from M uniformly at random.
Let xi ← BRi(x)

end while

The next proposition guarantees that CRAB always com-
putes equilibrium, and its calculation is fast.
Proposition 1. For any reported type profile and ε > 0,
CRAB computes a pure ε-Nash equilibrium in polynomial
time (polynomial in the number of agents and resources).

Proof. Let

Φ(x) :=
∑
i

[
2 · vi(xi)

λi
+

1

txi

(nxi
(x) + 1)

]
.

Then, for any i, x, xi and x′
i, we have

Φ(xi, x−i)−Φ(x′
i, x−i) =

2

λi
[ui(xi, x−i)− ui(x

′
i, x−i)] .

(This follows from Theorem 6 of Mavronicolas et al.
(2007)). We observe that the range of Φ is polynomial in
the number of agents and goods. Moreover, in each itera-
tion, the value of Φ decreases by at least 2ε/(mini λi). The
claim follows.

3 Theoretical Results

In this section, we focus on the simple two-resource case
and prove the theoretical results. Though we only give the
proof for the relatively simple cases, in the following sec-
tion, we confirm that similar results hold in more general
settings through numerical experiments. Due to space con-
straints, we defer all proofs to Appendix.

For our analysis, we pose some assumptions. The first as-
sumption is that the throughput rates go to infinity as the
number of agents gets large. Naturally, the capacity of each
resource is high in a market with a large population (or we
may think that there appear to be many similar resources).
This assumption is commonly adopted in the literature of
congestion games with a large population. (Feldman et al.
2016).
Assumption 1. For any resource k, tk →∞ as n→∞.

Next, we assume the behavior of outsiders: each agent
chooses his favorite when he opts-out. This can occur as a re-
sult of agents’ rational decision making when, for example,
agents are optimistic enough to believe that their favorites
will not be too crowded. More realistic is that they cannot
help doing so due to scarce information about each other’s
preferences.

Assumption 2. If an agent opts out of the mediator, he
chooses his favorite resource. 3

Homogeneous setting There are two resources 1 and 2.
In our homogeneous setting, they have the same throughput
rate t in common. Moreover, agents have the same opportu-
nity cost λ.

There are two types of agents, τ1 and τ2: an agent with
τk prefers resource k to another. If an agent uses his favorite,
his payoff is v1 minus the congestion cost; if he uses the less-
preferred one, it is v2 minus the congestion cost. The values
v1, v2 are common across agents. For example, if an agent
with type τ2 uses resource 1, his payoff is v2 − (λ/t) · n1.

First, we can show that good behavior forms an equilib-
rium with CRAB, assuming the participation of all agents in
the market.

Theorem 1 (Implementation [homogeneous case]). Assume
that all agents opt-in the mediator. In a homogeneous set-
ting, good behavior forms (λ/t)-approximate ex-post Nash
equilibrium in the mediated game. The approximation factor
tends to zero as the market gets large under Assumption 1.

Proof sketch. Let sk be the number of agents with τk (k ∈
{1, 2}). Wlog, assume s1 ≥ s2. The simplicity of the setting
allows us to analyze the behavior of CRAB in detail. We
can show that what our BRD does is to move agents with τ1

from 1 to 2 until it reaches equilibrium. By this property, we
can divide the proof into subtle cases and obtain the state-
ment. See the Appendix for further details.

Next, we consider the case where only some of the agents
currently uses the mediator. We show that it is safe for each
outsider to start using CRAB.

Theorem 2 (Safe participation [homogeneous case]). Sup-
pose that all users of CRAB follow good behavior. Then, in
a homogeneous setting, each outsider enjoys non-negative
payoff gain when joining the mediator under Assumption 2.

Lastly, we conduct a welfare analysis. It is well known
that the welfare under a pure Nash equilibrium in congestion
games and its variants are often near-optimal (POA is close
to 1 (Roughgarden 2016)); it is naturally expected that the
same is true in the settings with individual preference, v1
and v2.

Below, we additionally assume that throughput rates (tk)k
cannot increase as rapidly as population n. This seems natu-
ral given the law of diminishing marginal returns.

Assumption 3. tk = o(n) for any k.

The following theorem provides the welfare guarantee:
the price of mediation (POM) is the ratio between the so-
cial welfare under the good behavior equilibrium and the
first-best, which is the maximized social welfare, ignoring
the incentive constraints. Formally:

POM =

∑
i ui

(
μ((τi)i)

)
maxx

∑
i ui(x)

3We use Assumption 2 only when proving Theorem 2 and 5.
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Let s ∈ [0, 1] be the fraction of agents with τ1. Wlog, we
assume s ∈ [1/2, 1]. Note that the social welfare can be both
positive and negative in general. However, if n is so large
that v1 <

(
2s2 − 2s+ 1

)
nc, we can show that the first-best

takes a negative value (see the Appendix for details). As we
focus on the large market, we restrict our attention to such
case where POM is more than or equal to 1.

We can compute the upper bound of POM in the large
market explicitly (see the Appendix for the details):

Theorem 3 (POM bound in the large market). For a suffi-
ciently large market, POM is bounded from above by:

1

4
(2s− 1)4 +

1

2
(2s− 1)3 +

13

4
(2s− 1)2 + 1.

POM attains its minimum 1 at s = 1/2 and attains
its maximum 5 at s = 1. It is increasing on [1/2, 1].
Moreover, it is convex and increases slowly when s is not
close to 1. This means that as long as the agents’ pref-
erences diverge enough, the social welfare attained at the
equilibrium induced by the mediator is close to the first-
best. Table 3 expresses the exact POM value at each s =
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

s 0.5 0.6 0.7 0.8 0.9 1.0
POM 1.00 1.13 1.56 2.31 3.44 5.00

Table 3: POM increases slowly as long as s is not very close
to 1.

Heterogeneous setting Our heterogeneous setting is more
general than the homogeneous setting in two senses: First,
resources differ in throughput rates, or t1 �= t2. Second,
agents have different opportunity costs λH and λL, where
λH > λL.

There are four types of agents: (τ1, λH), (τ1, λL),
(τ2, λH), and (τ2, λL). Again, agents with τk prefer re-
source k. For instance, the payoff of an agent with (τ2, λH)
choosing resource 1 is v2 − (λH/t1)n1.

We have the generalizations of Theorem 1 and Theorem 2
for this setting:

Theorem 4 (Implementation [heterogeneous case]). As-
sume that all agents opt-in the mediator. In a hetero-
geneous setting, good behavior forms (λH/min{t1, t2})-
approximate ex-post Nash equilibrium in the mediated
game. The approximation factor tends to zero as the mar-
ket gets large under Assumption 1.

Theorem 5 (Safe participation [heterogeneous case]). Sup-
pose that all users of CRAB follow good behavior. Then, in
a heterogeneous setting, each outsider enjoys non-negative
payoff gain when joining the mediator under Assumption 2.

In the following section, we confirm that the results of
these theorems can be extended to more general settings
with experiments. In particular, Theorem 4 leads us to guess
about the upper-bound of the payoff gain by deviation: we
guess the bound is λ̄/t, where λ̄ := maxi λi and t =
mink tk, which also tends to zero under Assumption 1.

Figure 2: The maximum payoff gain by deviation from good
behavior is bounded from above by the value inferred from
Theorem 4, even with more than two resources.

4 Experimental Results

In this section, we show the results of our series of exper-
iments. The experimental details, including the precise pa-
rameter settings, are provided in the Appendix.

Extensions to general cases

We confirm that the theoretical results we have shown in the
previous section can be extended to more general cases.

First of all, we check whether the payoff gain by devia-
tion from good behavior is bounded from above. From The-
orem 4, we guess that the upper bound should be λ̄/t where
λ̄ := maxi λi and t = mink tk. We conduct simulations in a
large number of different parameter settings with 3 or more
resources to check this hypothesis.

Figure 2 summarizes the results. The horizontal line cor-
responds to the inferred upper bound λ̄/t, and the vertical
line is the maximum payoff gain. Each instance represented
by a dot comes below the 45-degree line, which indicates the
inferred upper bound is valid when the number of resources
is more than two.

We also check if the safe participation property holds in
the more general cases. We conduct simulations in various
parameter settings with up to 10 resources.

The first remarkable observation is that no outsider de-
creases his payoff by entering the mediator regardless of the
market size and the participation rate. Furthermore, we find
two general trends; more outsiders get strictly positive pay-
off gains by joining the mediator as:
1. the participation rate gets higher for any market size; and
2. the number of existing agents gets larger for any partici-

pation rate.
Figure 3 summarizes the simulation results. These fea-

tures suggest that CRAB can benefit the individual more
when the market size is large and more people use CRAB.
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Figure 3: Plot the average rate of outsiders with positive gain
at each participation rate. We take an average of 20 experi-
ments with 4 resources.

Close study of the detail of BRD

With the actual implementation in mind, we analyze how the
details of BRD affect the performance of the mediator. Our
objective is to make the mediator faster, more robust, and
more efficient.

In order to define BRD precisely, we need to fix the choice
rule and the initialization rule, neither of which the usual
definition of BRD precisely determines. The choice rule
specifies who moves at each step of BRD. Here, we con-
sider two options: (1) to pick the agent with the maximum
payoff gain (max increment), or (2) to pick the one with
the minimum payoff gain (min increment). As for the ini-
tialization rule, we compare three alternatives: initially, all
agents choose (1) their best preferred resources (best), (2)
their worst preferred ones (worst), and (3) the same one
resource (oneside). The BRD used by CRAB adopts the
pair of rules max increment and best. We call this pair the
CRAB rule. The CRAB rule not only simplifies the theoreti-
cal analysis, as shown in Appendix, but also enables CRAB
to perform better in practice.

We conduct experiments in a two-resource setting. We try
2, 160 parameters made from reasonable values. For all pairs
of rules, we compare the realized social welfare, which is
the summation of the payoffs of all agents, and the iteration
numbers required to reach equilibrium.

BEST WORST ONESIDE

MAX INCREMENT 0.904 0.826 0.830
MIN INCREMENT 0.823 0.812 0.830

Table 4: Equilibrium selection. CRAB rule (top, left) gives
the highest rate of obtaining the best equilibrium among the
six pairs. The different rules may converge to the same best
equilibrium; the sum of all cell values may not be 1.

Each cell in Table 4 indicates the fraction of parameter
sets in which a corresponding pair of rules attain the highest
social welfare among the six rules. The CRAB rule obtains
the highest social welfare in 90% of the parameters, which
outperforms the other pairs of rules.

In the experiments, we observe that the max increment

Figure 4: Histogram of necessary iterations for each initial
state. We consider only the max increment picking rule.

demands fewer iterations than the min increment. We fix
the picking rule to the former and compare the required steps
for each initialization rule. Figure 4 gives the histogram of
the number of iterations to reach an equilibrium: the CRAB
rule requires a fewer number of iterations than the others.

5 Discussion and Future Directions

We prove our theoretical results for the two-resource case.
One natural extension is to provide the proofs for general
cases; for the moment, we observe that the results are likely
to hold just experimentally. It is worth exploring whether
similar results hold when (1) there are more than two re-
sources, (2) the number of sets of opportunity costs is more
than two, or (3) the values of the utility of resources differ
among agents (NB: we assume that agents have v1 and v2 in
common).

We are now planning to implement CRAB as a web ap-
plication in a real crowded market to evaluate its practical
performance (see also the Appendix). Such empirical work
is also one possible research direction.

However, to this end, we need to resolve the report cost
problem, the classical problem in the mechanism design lit-
erature: it is too demanding for agents to report their prefer-
ences over all the alternatives. It is unrealistic to require peo-
ple to rank all available alternatives and report that ordering;
it is not only burdensome but also cognitively challenging.

Another problem regarding report costs, which is unique
to the congestion problem, is that the mediator needs to
know not only the agents’ valuations about resources, vi(·),
but also their opportunity costs λi. We cannot expect them
to report their opportunity costs in addition to the preference
list. It is nearly impossible to ask questions like: “Which do
you prefer, a) resource 1 with a waiting time of 10 minutes,
b) resource 2 with a waiting time of 30 minutes, or c) re-
source 3 with a waiting time of 25 minutes?”

We believe that the mediator incorporating statistical anal-
ysis enables us to handle the report cost problems. CRAB,
in real markets, estimates the true parameter values and re-
trieves the full preference lists, utilizing the data collected
through the repeated use of the application. This topic must
be of interest from both theoretical and practical perspec-
tives.
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