
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Bidding in Smart Grid PDAs: Theory, Analysis and Strategy

Susobhan Ghosh,1 Sujit Gujar,1 Praveen Paruchuri,1 Easwar Subramanian,2 Sanjay P. Bhat2

1Machine Learning Lab, IIIT Hyderabad, India susobhan.ghosh@research.iiit.ac.in, {sujit.gujar, praveen.p}@iiit.ac.in
2Tata Consultancy Services, TCS Innovation Labs, Hyderabad, India {easwar.subramanian, sanjay.bhat}@tcs.com

Abstract

Periodic Double Auctions (PDAs) are commonly used in the
real world for trading, e.g. in stock markets to determine stock
opening prices, and energy markets to trade energy in order
to balance net demand in smart grids, involving trillions of
dollars in the process. A bidder, participating in such PDAs,
has to plan for bids in the current auction as well as for the fu-
ture auctions, which highlights the necessity of good bidding
strategies. In this paper, we perform an equilibrium analy-
sis of single unit single-shot double auctions with a certain
clearing price and payment rule, which we refer to as ACPR,
and find it intractable to analyze as number of participating
agents increase. We further derive the best response for a bid-
der with complete information in a single-shot double auction
with ACPR. Leveraging the theory developed for single-shot
double auction and taking the PowerTAC wholesale market
PDA as our testbed, we proceed by modeling the PDA of
PowerTAC as an MDP. We propose a novel bidding strategy,
namely MDPLCPBS. We empirically show that MDPLCPBS
follows the equilibrium strategy for double auctions that we
previously analyze. In addition, we benchmark our strategy
against the baseline and the state-of-the-art bidding strategies
for the PowerTAC wholesale market PDAs, and show that
MDPLCPBS outperforms most of them consistently.

Introduction

Auctions are mechanisms which facilitate buying and selling
of goods or items amongst a group of agents. Double auc-
tions are prevalent when both the sides of a market actively
bid. For example, in the New York Stock Exchange, open-
ing prices are determined using double auctions (Parsons,
Rodriguez-Aguilar, and Klein 2011). In smart grids, multi-
ple power generating companies and different distributing
agencies (brokers) trade electricity in the wholesale markets
using double auctions.

In this work, we focus primarily on electricity markets. In
July 2019, approximately 1.2 Billion Euros worth electricity
was traded in Nord Pool alone, with 52% of the volume be-
ing traded using APIs (Nord Pool AS 2019). Any small im-
provement in cost optimization by deploying better bidding
strategies can lead to significant improvements in the profits
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of the distributing agencies. Motivated by this, we take up
a formal game-theoretic approach in this work for devising
bidding strategies.

Typically, for double auctions, clearing price and payment
rules differ from market to market. Equilibrium analysis of
double auctions has been explored extensively with differ-
ent payment and clearing price rules (Wilson 1992). Specif-
ically, for k-double auctions, Satterthwaite and Williams
(1989) proved the existence of multiple non-trivial equilibria
for k ∈ [0, 1]. They also focused on a class of well-behaved
equilibria, by making generalist assumptions on buyer’s and
seller’s bidding strategies. Our focus in this paper is Average
Clearing Price Rule (ACPR) based Periodic Double Auc-
tions (PDAs), commonly used in smart grids (Power TAC
(Ketter, Collins, and Weerdt 2017)). In ACPR, the clearing
price set as the average of last executing bid and last execut-
ing ask (a special case of k-double auction with k = 0.5).

For ACPR, Chatterjee and Samuelson (1983) constructed
a symmetric equilibrium for the case of one buyer and one
seller with uniformly distributed valuations. However, in the
vast literature of double auctions, a generic equilibrium anal-
ysis for ACPR with more buyers has not been well explored
(Wilson 1992). We take up a double auction with ACPR
as a case study. We assume all the agents involved (buyers
and sellers) deploy scaling based strategies, and identify the
Nash Equilibrium (NE) of the induced game. Researchers
have used fictitious play-based convergence to equilibrium
(e.g., (Shi et al. 2010)) in double auctions. However, such
strategies are not useful in PDAs when the agents need to
place bids in real-time for new auctions. In such settings,
we believe scaling based strategies are easy to interpret and
implement. The equilibrium analysis of non-linear or other
complex forms are analytically difficult to compute; more-
over may not be appealing to the real users of these markets.

We characterize NEs for One Buyer and One Seller
(OBOS) and Two Buyer and One Seller (TBOS) analytically
(Theorem 1 and 2). Given our assumption of scaling based
bidding strategies and uniform type distributions, generic
equilibrium analysis of double auctions, following ACPR,
beyond these settings is challenging. To test our double auc-
tion strategies, we take the help of the PowerTAC simula-
tion environment. PowerTAC is a simulation platform that
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replicates crucial elements of the smart grid, where multi-
ple distributing agencies (brokers) compete across markets
to generate the most profit. Note that, the double auctions
in PowerTAC; for that matter actually in electricity markets;
are PDAs. In PDAs, the market clears multiple times, each
after a specific time interval.

Now, if a buyer knows all the bids in a double auction, we
argue that it is a best response for the buyer to bid as close as
possible to the last clearing bid in order to procure the full
required energy (Proposition 1). However, in reality, buy-
ers never have access to such information. To address this
incomplete information, we model the bidding process in
PowerTAC PDAs as a Markov Decision Process (MDP), and
solve it using dynamic programming and Last Clearing Price
(LCP) prediction. Motivated by Power TAC’s fast response
time constraints, we propose a PDA bidding strategy MD-
PLCPBS (Algorithm 1). Though our MDP formulation is in-
spired by Urieli and Stone (2014), the novelty lies in the re-
ward, solution, and application to place bids. First, we illus-
trate that the MDP based strategy indeed achieves the equi-
librium strategy characterized for OBOS setting. Then, we
conduct different experiments to compare MDPLCPBS with
the following strategies: ZI (Gode and Sunder 1993), ZIP
(Tesauro and Das 2001), TacTex (Urieli and Stone 2014),
and MCTS (Chowdhury et al. 2018). Our analysis shows
that MDPLCPBS outperforms ZI, TacTex, and ZIP in all the
cases, and closely matches with MCTS. Simultaneously, we
show that it predicts the LCP with minimal error. We used
this bidding strategy to great effect during PowerTAC 2018
Finals (Ghosh et al. 2019b) (Ghosh et al. 2019c).

In summary, our contributions are as follows:
• We analytically characterize NE strategies for OBOS and

TBOS settings (Theorem 1 and Theorem 2).
• We propose the best response in a complete information

multi-unit double auction.
• For bidding in PDAs such as PowerTAC, we design an

algorithm MDPLCPBS (Algorithm 1). It is based on dy-
namic programming and LCP prediction.
• Experimentally, we validate that MDPLCPBS achieves

the equilibrium characterized for OBOS setting. Further,
we demonstrate its efficacy against state of the art strate-
gies for PowerTAC, and also show that it predicts the LCP
with minimal error.

Definitions & Background

We first define all the required terms formally.
Definition 1. (Periodic Double Auction (PDA)) A type of
auction, for buying and selling some resource, with multiple
discrete clearing periods i.e. clearing after a specific time in-
terval. Potential buyers submit their bids and potential sell-
ers simultaneously submit their asks to an auctioneer. Then
the auctioneer matches the bids and asks, and chooses some
clearing price, denoted as CP , that clears the auction (Wur-
man, Walsh, and Wellman 1998). The allocation rule deter-
mines the quantity bought/sold by each buyer/seller, while
the payment rule determines how much each buyer/seller
pays/earns for buying/selling that quantity.

Definition 2. (Last Clearing Bid/Ask (LCB/LCA)) Last
Clearing Bid (Ask) of an auction refers to that partially or
fully cleared bid (ask) which has the lowest (highest) limit-
price. It is referred to as “last clearing” since it is the last bid
(ask) to be cleared by the clearing mechanism of the auction.

Definition 3. (Last Clearing Price (LCP)) Last Clearing
Price (LCP) of bids (asks) refers to the limit-price of the
Last Clearing Bid (Ask).

Definition 4. (The k-Double Auction) If a buyer and seller
participate in a double auction, and if the sealed bid b by the
buyer is higher than the sealed bid s by the seller, then CP
is given by kb+ (1− k)s for some fixed k ∈ [0, 1].

Definition 5. (Average Clearing Price Rule (ACPR)) In a
double auction, the clearing price and payment rule is ACPR
if the clearing price is given by (b+ s)/2 where b is the last
executed bid, and s is the last executed ask. It is a special
case of k-double auction, with k = 0.5.

Consider a game Γ = 〈N, (Si)i∈N , (ui)i∈N 〉, where N =
{1, 2, . . . , n} is the set of players, Si is the strategy set of the
player i, and ui : S1×S2× . . .×Sn → R for i = 1, 2, . . . n
are utility functions.

Definition 6. (Best Response) Given a game Γ, the best
response correspondence for player i is the mapping Bi :
S−i → Si defined by Bi(s−i) = {si ∈ Si : ui(si, s−i) ≥
ui(s

′
i, s−i)∀s′i ∈ Si}. That is, given a profile s−i of strate-

gies of the other players, Bi(s−i) gives the set of all best
response strategies of player i.

Definition 7. (Nash Equilibrium) Given a game Γ, a strat-
egy profile s∗ = (s∗1, s

∗
2, . . . , s

∗
n) is said to be a Nash Equi-

librium of Γ if, ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i)∀si ∈ Si, ∀i =

1, 2, . . . , n. That is, each player’s Nash Equilibrium strategy
is a best response to the Nash Equilibrium strategies of the
other players.

Definition 8. (Markov Decision Process (MDP) (Puterman
1994)) A Markov Decision Process (MDP) is a tuple given
by M = (S,A, P, r, γ) where S is the set of states, A is the
set of actions, P is the state transition probability function,
where P (s′|s, a) = P (st+1 = s′|st = s, at = a) is the
probability that action a in state s at time t will lead to state
s′ at time t+1, r is the reward function, with r(s, a) denoting
the reward obtained by taking action a in state s, and γ ∈
[0, 1] is the discount factor.

PowerTAC In this work, we focus more on smart grids.
The Power Trading Agent Competition (PowerTAC) (Ketter,
Collins, and Weerdt 2017) environment simulates a smart
grid for approximately 60 days, where multiple brokers
compete against each other across three markets - tariff,
wholesale and balancing market - to generate the most profit.
Each broker maintains a portfolio of consumers and produc-
ers, and buys and sells energy in the wholesale market. The
broker with the highest bank balance at the end of the sim-
ulation, wins the game. We use the PowerTAC simulator to
benchmark our bidding strategy.

The PowerTAC wholesale market employs PDAs for
wholesale market energy trading. The clearing price and
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payment rule for the PowerTAC PDA, is given by ACPR.
Three types of entities participate in these auctions - (1)
Generating Companies (GenCos), (2) Miso Buyer, and (3)
PowerTAC brokers. GenCos place only asks to sell energy,
while the Meso Buyer places very low bid prices to buy en-
ergy. The PowerTAC brokers are free to place a bid or an ask
depending on their requirement, or not place a bid at all.

The brokers can always participate in 24 auctions to trade
energy, one auction for each of the next 24 timeslots. Each
broker is notified about identity of other brokers participat-
ing in the PDAs at the beginning of the simulation. Each bro-
ker estimates its own energy requirement, and knows its own
type. However, it does not know the types and requirements
of the competing brokers. Every broker is allowed to submit
an unlimited number of bids for each auction. After clear-
ance, the clearing price and total cleared quantity of the auc-
tion is made public to all the brokers, while the last cleared
bid or ask is not revealed. Additionally, each broker is pri-
vately notified about the cleared quantity and clearing price
of any of its cleared bids/asks. The orderbook of the auction,
which is the set of uncleared bids and asks without identity
of the bidders, is also made public to all the brokers. If a bro-
ker fails to balance its retail demand portfolio after all the 24
auctions in the wholesale market, the balancing market au-
tomatically supplies the energy while charging the broker a
balancing-price for its imbalance. The balancing-price is
comparatively higher than the wholesale market price, and
is meant to penalize the broker for having an imbalance. For
more details about the PowerTAC simulation, we refer the
reader to the Power TAC 2018 Game Specification (Ketter,
Collins, and Weerdt 2017).

Related Work
Most bidding strategies for double auctions are designed
for Continuous Double Auctions (CDAs) and would need
to be modified for PDAs. Bidding strategies for PDAs, out-
side PowerTAC, are very limited. Wah, Hurd, and Well-
man (2016) showed that in equilibrium, slow traders have
higher welfare compared to fast traders in PDAs. As for
bidding strategies for the PowerTAC wholesale market, As-
tonTAC (Kuate et al. 2013) uses Non-Homogeneous Hid-
den Markov Models (NHHMM) to predict energy demand
and clearing price, which are then fed to an MDP to de-
termine bid prices. TacTex (Urieli and Stone 2014; 2016a;
2016b) uses an MDP and dynamic programming based strat-
egy derived from Tesauro and Bredin’s bidding strategy to
predict bid prices, which is the motivation for our MDP-
based strategy. Chowdhury 2016 predicts bid prices for the
wholesale market PDAs using REPTree, Linear Regression
and NN with weather data, with the former being is used in
the SPOT (Chowdhury et al. 2017) broker. Chowdhury et al.
2018 use a Monte Carlo Tree Search (MCTS) based strat-
egy coupled with a REPTree based price predictor (Chowd-
hury 2016) and heuristics, to determine optimal bid prices.
AgentUDE (Özdemir and Unland 2015) uses an adaptive Q-
learning based strategy in the wholesale market. None of
these strategies are backed up by game theoretic analysis,
where as our work is to build strategies derived from Nash
Equilibrium.

Theoretical Approach and Proofs

In this section, we focus solely on the best response and
Nash Equilibrium analysis of double auctions.

Nash Equilibrium analysis in single unit Double
Auctions

Consider a single unit double auction, with the clearing
price and payment rule given by ACPR. To find a generic
Nash Equilibrium in this setting, we first try to simplify the
double auction by restricting the number of buyers and sell-
ers and their behavior. Upon doing so, we derive the follow-
ing case-wise results.

One buyer and One Seller (OBOS) Let’s assume that
one buyer and one seller participate in the double auction,
with their types as θB and θS respectively. We assume that
both deploy scaling based strategies, i.e., a bid by a buyer
is bB = αBθB and an ask by the seller is bS = αSθS
where αB and αS are the scale factors by which the buyer
and seller scale their true types while bidding, respectively.
Motivated by the literature (Rothkopf 1980) (Vincent 1995)
(Narahari 2014), we choose scale based bidding strategies
for this Nash Equilibrium analysis, as compared to additive
bidding strategies.

We assume θB ∼ U [lB , hB ] and θS ∼ U [lS , hS ] and this
is common knwoledge. We also assume Equation (1), which
states that the buyer’s bid (seller’s ask) at any point will be
less (higher) than or equal to the highest (lowest) possible
seller’s ask (buyer’s bid).

αB

αS
θB ≤ hS ,

αS

αB
θS ≥ lB (1)

Thus, the utility of the buyer if its bid gets cleared, is de-
noted by the difference of true valuation and clearing price.
Given the true types are picked over a distribution, the ex-
pected utility is computed as:

uB =

∫ αB
αS

θB

lS

[
θB −

(αBθB + αSθS
2

)]
dθS

=

∫ αB
αS

θB

lS

[(
1− αB

2

)
θB − αSθS

2

]
dθS

= θB
(
1− αB

2

)(αB

αS
θB − lS

)− αS

4

[(αB

αS
θB

)2 − l2S
]

(2)
Now assuming that the buyer decides to fix its αB before

even seeing its own type, then its utility is given by:

UB =

∫ hB

lB

uBdθB =

∫ hB

lB

[
θB

(
1− αB

2

)(αB

αS
θB − lS

)

− αS

4

[(αB

αS
θB

)2 − l2S
]]

dθB

=
(h3

B − l3B
3

)(αB

αS
− 3α2

B

4αS

)− lS
(
1− αB

2

)(h2
B − l2B

2

)

+
αS

4
l2S
(
hB − lB

)

(3)

Now, differentiating w.r.t. αB and equating to 0 to find max-
ima:
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∂UB

∂αB
= 0 ⇒ (h3

B − l3B
3

)( 1

αS
− 3αB

2αS

)
+ lS

(h2
B − l2B

4

)
= 0

⇒ αB =
2

3
+

αS lS

2

(h2
B − l2B

h3
B − l3B

) ⇒ αB =
4

3

(
2 + lSx

4− lShBxy

)

(4)
where h2

B−l2B
h3
B−l3B

= x and h2
S−l2S

h3
S−l3S

= y.
Similarly, for the seller, assuming that the seller decides

to fix its αS before even seeing its own type, we get:

αS =
4

3

(
2 + hBy

4− lShBxy

)
(5)

Due to space constraints, we refer the reader to the extended
version of our paper (Ghosh et al. 2019a) for the thorough
derivation. Putting lS = lB = 0 and hS = hB = 1 in Equations
(4) and (5), we get αS = 1 and αB = 2

3 . The above discussion
is summarized as the following theorem.
Theorem 1. For a single unit double auction with ACPR,
with only one buyer and one seller, whose true types are
drawn from a 0− 1 uniform distribution, if they deploy scal-
ing based bidding strategies bB and bS which satisfy Equa-
tion (1) and fix their scaling factors αB and αS before seeing
their true types, then αS = 1 and αB = 2

3 constitute a Nash
Equilibrium.

Two Buyers and One Seller (TBOS) Let’s assume that
two buyers B1 and B2, and one seller participate in the dou-
ble auction, with types θB1, θB2 and θS respectively. We as-
sume that all deploy scaling based strategies, and both buy-
ers have the same scaling factor αB . Thus, a bid by buyer
B1 is bB1 = αBθB1 and by buyer B2 is bB2 = αBθB2,
while a bid by the seller is bS = αSθS . We also assume
Equation (6), which states that the first buyer’s (seller’s) bid
at any point will be less than or equal to the highest possible
seller’s (buyer’s) bid.

αB

αS
θB1 ≤ hS ,

αS

αB
θS ≤ hB (6)

First, we find the utility of the first buyer. We consider the
following cases:

1. bB1 ≥ bB2 ⇒ θB1 ≥ θB2 and bB2 ≥ bS⇒ θS ≤ αB

αS
θB2

2. bB1 ≥ bS ⇒ θB1 ≥ αS

αB
θS and bB2 ≤ bS ⇒ θB2 ≤

αS

αB
θS

Similar to OBOS, we assume that the first buyer decides
to fix its αB before even seeing its own type. We find its
utility and differentiate it w.r.t αB and equate it to 0 to find
the maxima, and we get:

[
αB

6αS
(−2h3

B + 4l3B + l2BhB − 2lBh2
B) +

αS

4α2
B

(hB l2S + lB l2S)

+
lS(h

2
B − 2l2B − 2hB lB)

12
+

3h3
B − 4l3B − 4hB l2B − lBh2

B

12αS

]
= 0

(7)
Similarly, for the seller, we consider the following 4 cases:

1. bB1 ≥ bB2 ⇒ θB1 ≥ θB2 and bB2 ≥ bS ⇒ θB2 ≥
αS

αB
θS

2. bB2 ≥ bB1 ⇒ θB2 ≥ θB1 and bB1 ≥ bS ⇒ θB1 ≥
αS

αB
θS

3. bB1 ≥ bS ⇒ θB1 ≥ αS

αB
θS and bB2 ≤ bS ⇒ θB2 ≤

αS

αB
θS

4. bB2 ≥ bS ⇒ θB2 ≥ αS

αB
θS and bB1 ≤ bS ⇒ θB1 ≤

αS

αB
θS

Again, similar to the buyer, we assume that the seller de-
cides to fix its αS before even seeing its own type. Then, we
find its utility and differentiate w.r.t αS and equate it to 0 to
find maxima, and we get:

− α2
S

4α2
B

(h4
S − l4S) +

αS

αB
(
h4
S − l4S
4αB

+
(h3

S − l3S)(3lB − hB)

6
)

− lB

αB
(
h3
S − l3S
3

) + (
h2
S − l2S
2

)(−hB lB

2
+

h2
B

2
) = 0

(8)

We refer the reader to the our extended version of the pa-
per (Ghosh et al. 2019a) for the thorough derivation. From
Equation (7) and Equation (8), we get bi-variate cubic and
quadratic equations in αB and αS . Putting lS = lB = 0 and
hS = hB = 1 in Equation (7) and Equation (8), we get αS =
1+

√
10

4 ≈ 1.0406 and αB = 3
4 = 0.75. The above discussion

can be summarized as the following theorem.
Theorem 2. For a single unit double auction with ACPR
with two buyers and one seller, whose true types are drawn
from a 0 − 1 uniform distribution, if they deploy scaling
based strategies bB1, bB2 and bS , with buyers having the
same scaling factor αB , which satisfy Equation (6) and fix
their scaling factors αB and αS before seeing their true
types, then αS = 1+

√
10

4 and αB = 3
4 constitute a Nash

Equilibrium.
As seen, with the increase in just one buyer, the complex-

ity of the solution increases. It becomes increasingly diffi-
cult to extend and generalize the above results for a realistic
market setting. Thus, moving forward, taking the PowerTAC
wholesale market as testbed, we present a bidding strategy
and experimentally show that it follows the theoretical re-
sults obtained in this section.

Best Response analysis in multi-unit Double
Auctions with complete information

In practice, there are key differences between double auc-
tions implemented in markets, and the theoretical results ar-
rived above, stated as follows:
1. Quantity may be involved in the trading market auctions,

which is not considered above.
2. The seller needs to use the same bidding strategy for one

to achieve the above result, which may not the case.
So, considering a multi-unit double auction with ACPR,

where bids are of the form (quantity, price), we propose
the best response if all the other bids are known to the bidder
(i.e. complete information).
Proposition 1. When a buyer (seller) has complete informa-
tion about the auction, and it desires to procure (sell) entire
energy it bids (asks) for, it’s a best response to bid as close
as possible to the last clearing bid (ask).
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Since the proof is trivial, we refer the reader to the ex-
tended version of our paper (Ghosh et al. 2019a) for the
same. Given the above proposition in a complete informa-
tion setting, we further propose a MDP-based bidding strat-
egy, which uses the past auction trends and statistics, to
achieve the best response with incomplete information in the
PowerTAC wholesale market.

MDPLCPBS: PowerTAC Wholesale Market

Bidding Strategy

We introduce the MDP and LCP based Bidding Strat-
egy (MDPLCPBS) for the PowerTAC wholesale market.
The PowerTAC wholesale market accepts bids of the form
(energy amount, limit-price). With respect to a broker,
let the energy amount being sold be positive, while the en-
ergy amount being bought be negative. Meanwhile, let neg-
ative price indicate a broker is earning revenue, while posi-
tive price indicate it is paying or losing revenue. Thus, from
the viewpoint of a broker, a buy order is seen to have a
negative energy amount and a positive limit-price, while
a sell order (termed as an ask), is seen to have a positive
energy amount and a negative limit-price.

At timeslot t, assuming a broker has a predicted de-
mand profile Dt = {dt+1, dt+2, . . . , dt+24}, where di
is the predicted net demand at timeslot i. Also, let
Pt = {pt+1, pt+2, . . . , pt+24} denote the amount of en-
ergy already procured by past energy contracts, where
pi denotes the energy procured for timeslot i. Thus,
the remaining energy to be procured is given by Et =
{et+1, et+2, . . . , et+24}, where ei = di − pi is the net en-
ergy left to be procured for timeslot i. The bidding strategy,
MDPLCPBS, to procure the aforementioned energy require-
ments, comprises of three major submodules - (i) Limit Price
Predictor, (ii) Quantity Predictor, and (iii) Last Cleared Price
Predictor.

Limit Price Predictor (LPP)

At any given timeslot t, the predictor computes 24
limit-prices for 24 simultaneous PDAs in the PowerTAC
wholesale market. Motivated by (Tesauro and Bredin 2002)
and (Urieli and Stone 2014), the Limit Price Predictor uses
the following MDP to place optimal limit-prices for bids:

1. States: s ∈ S = {0, 1, . . . , 24, success}, s0 := 24

2. Actions: limit-price ∈ R

3. Transition: The same state transition from (Urieli and
Stone 2014) is used. A state s ∈ {1, . . . , 24} transitions
to one of two states. If a bid is partially or fully cleared,
it transitions to the terminal state success. Otherwise, a
state s transitions to state s− 1. The clearing (i.e. transi-
tion) probability pcleared(s, limit-price) is initially un-
known and is determined by Equation (10).

4. Reward: At any state s ∈ {1, . . . , 24}, the reward is 0.
At terminal state s = 0, the reward is the negative of the
balancing price per unit energy. At terminal state s =
success, the reward is the negative of the limit-price of
the cleared bid. Since we take the price to be positive for

bids and negative for asks, maximizing reward results in
minimizing costs.

5. Terminal States: {0, success}
We solve the above MDP using a sequential bidding strat-

egy, that computes the optimal bid limit-price that mini-
mizes the expected procurement cost per unit energy. It uses
the balancing-price as the expected price at state s = 0, and
recursively minimizes the expected cost by using the proba-
bility of clearance, pcleared(s, limit-price). This solution is
summarized as a value function, stated as follows:

V (s) =

⎧⎪⎨
⎪⎩
balancing-price, if s = 0

min
limit-price

{pcleared × limit-price

+(1− pcleared)× V (s− 1)}, if s ∈ [1, 24]

(9)

Given that the balancing-price and the pcleared values are
different for bids and asks, we maintain two separate in-
stances of the MDP, and solve them independently.

The value function in Equation (9) is solved recur-
sively using dynamic programming. However, before do-
ing so, the balancing-price and the transition function
pcleared(s, limit-price) need to be estimated, as they
are both initially unknown. The balancing-price is es-
timated by averaging the balancing-prices across past
timeslots. On the other hand, the clearing probability,
pcleared(s, limit-price), is computed using past auction
statistics as:

pcleared =

∑
ac∈auction[s],ac.LCP<limit-price ac.cleared-amount∑

ac∈auction[s] ac.cleared-amount
(10)

where auction[s] is the set of all past auctions in the state s,
and LCP is the Last Clearing Price, which is estimated by
the Last Cleared Price Predictor. The auction statistics for
each state s are re-used in the future for estimating pcleared,
as we iterate over the same sequence of states S during the
bidding process.

Quantity Predictor (QP)

The Quantity Predictor is primarily responsible for dis-
tributing the demand for a target timeslot across all the 24
auctions, in order to further reduce overall energy cost. The
idea is to buy more and sell less at cheaper prices, and vice-
versa. It essentially breaks down the demand for a target
timeslot t+24, across auctions in timeslots {t, t+1, . . . , t+
23}.

For each auction state s ∈ {1, . . . , 24} at timeslot t, it
takes the corresponding energy requirement et+s and uses
the 24 limit-prices from the Limit Price Predictor to dis-
tribute the required energy. The energy quantity to bid/ask,
for each state s at timeslot t, is given by:

q(s) =

⎧⎪⎪⎨
⎪⎪⎩

et+s
∑24

j=s
limit-price[j]
limit-price[s]

, if et+s > 0

et+s
∑24

j=s
limit-price[s]
limit-price[j]

, if et+s < 0

0, if et+s = 0

(11)

where s ∈ {1, . . . , 24}, limit-price[s] is the limit-price for
state s determined by the Limit Price Predictor. The first
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case in Equation (11) refers to the situation where energy
needs to sold, so the bid quantity is directly proportional to
the predicted limit-price of that auction - essentially selling
more energy at higher price. On the other hand, the second
case occurs when the energy needs to be procured. So, the
bid quantity is set to be inversely proportional to the pre-
dicted limit-price i.e. buying more energy at cheaper price.
Thus, the final bid is of the form (q(s), limit-price[s]).

Last Cleared Price Predictor (LCPP)

First, one has to note that, in any auction, the LCP is greater
than or equal to CP. Mostly, LCP > CP , as P (LCP =
CP ) = 0, i.e. LCP equal to CP is a probability zero event. In
PowerTAC, the LCP is not known to any broker. In essence,
one can place better bids if the LCP for each auction is
known, as they can bid higher than a predicted LCP to be-
come the last bid, and achieve best response according to
Proposition 1. The Last Cleared Price Predictor essentially
tries to determine the LCP for bids and asks for all executed
auctions. It does so by probing the auctions with a set of
dummy orders, which have the minimum tradeable energy
as quantity (0.01 MwH), and limit-prices equally spaced in
the range [β × limit-price, balancing-price]. After execu-
tion, the LCP for bids for an auction in state s is determined
by:

LCP (s) = min(dummy-bidscleared, limit-price[s]cleared) (12)
where dummy-bidscleared is the set of bid prices of
all dummy bids which got cleared in the state s, and
limit-price[s]cleared is the limit-price for the cleared final
bid made in state s (taken to be infinity if final bid did not
clear or does not exist). Similarly, the LCP for asks is given
as:

LCP (s) = max(dummy-askscleared, limit-price[s]cleared)
(13)

where dummy-askscleared is the set of ask prices of
all dummy asks which got cleared in the state s, and
limit-price[s]cleared is the limit-price for the cleared final
ask made in state s (taken to be infinity if final ask did not
clear or does not exist). These LCP values are then used to
update the clearing probability pcleared in Equation (10). Al-
gorithm 1 summarizes MDPLCPBS, which is executed ev-
ery timeslot. It takes the energy requirement for the 24 auc-
tions as input. First it collects the market statistics, which
includes the LCP estimate and clearing amount from previ-
ous timeslots, and the balancing price (line 2). If the number
of data points is suitable enough (taken to be 24 in our im-
plementation), it proceeds to solve the MDP and generates
a set of prices to bid (line 4). Using these set of prices, and
the energy requirements, it generates a set of quantities to
bid (line 5). If data points are not enough, the bidding policy
given in the PowerTAC sample-broker is used to determine
the bid prices (line 7), and the bid quantities are set as the
full energy requirements (line 8). Using the determined bid
prices and quantities, we place the actual bids (line 10), and
a set of dummy bids in the market (line 11). The time com-
plexity of Algorithm 1 comes out to be in the order of the
number of past market data points.

Algorithm 1 MDPLCPBS

1: procedure MDPLCPBS(energyReq[1..24])
2: marketData[0..24]← getMarketStatistics()
3: if EnoughDataPoints(marketData) then
4: bidPrices[1..24] ←

SolveMDP (marketData)
5: bidQty[1..24] ←

SpreadQty(energyReq, bidPrices)
6: else
7: bidPrices[1..24]← SampleBiddingPolicy()
8: bidQty[1..24]← energyReq[1..24]
9: end if

10: sendBids(bidPrices, bidQty)
11: sendDummyBids(bidPrices,marketData)
12: end procedure

Experimental Analysis

We first analyze if our proposed bidding strategy, MD-
PLCPBS, follows the Nash Equilibrium derived above, and
then benchmark it against the baseline and competing state-
of-the-art strategies.

Validation Experiments

We take the Power TAC simulator and isolate the wholesale
market, and remove all market simulator participants (Gen-
Cos, internal buyers) from the market. We test the one buyer
one seller (OBOS) scenario by deploying only two agents in
the isolated wholesale market - a buyer and a seller. These
agents have a fixed energy demand that they need to buy
(sell) from the market. In these experiments, we set the en-
ergy demand to be the previous slot’s tariff market net de-
mand, which both the buyer and seller are notified about.
We draw θB ∼ U [40, 80] and θS ∼ U [40, 80], and compute
the theoretical scale factors using Equation (4) and Equa-
tion (5). We run two batches of experiments, with 30 games
in each set of the batch, for 5 sets per batch. During each
batch, one of the agents has a fixed scaling based bidding
strategy, while the other uses MDPLCPBS.

In the first (second) batch, we draw the seller’s (buyer’s)
valuation θS ∼ U [40, 80] (θB ∼ U [40, 80]), and apply a
fixed scale factor within ±0.1 of the theoretical value. The
buyer (seller) generates its valuation θB ∼ U [40, 80] (θB ∼
U [40, 80]), and uses this valuation as the balancing-price
in MDPLCPBS to generate bids.

The experimental average scale factor and standard devi-
ation, for cleared bids, for the buyer and the seller in the two
batches of experiments are documented in Table 1. The table
demonstrates that in a one buyer and one seller setting, MD-
PLCPBS approaches the Nash Equilibrium characterized for
a single unit OBOS double auction. The values demonstrate
that as the fixed scale factor for the seller is increased, the
buyer’s scale factor increases slowly. On the contrary, when
the fixed scale factor for the buyer is increased, the seller’s
scale factor increases rapidly.
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(a) (b) (c) (d)

Figure 1: Net cost comparison of strategies across games with different energy requirements

Fixed seller’s scale factor and corresponding buyer’s scale factor Fixed buyer’s scale factor and corresponding seller’s scale factor
Scaling Factor 0.948689

(-0.1)
0.998689

(-0.05)
1.048689

(Theoretical Value)
1.098689
(+0.05)

1.148689
(+0.1)

0.791386
(-0.1)

0.841386
(-0.05)

0.891386
(Theoretical Value)

0.941386
(+0.05)

0.991386
(+0.1)Statistic

Average 0.772435 0.804782 0.838087 0.863553 0.907389 0.989438 1.057427 1.113121 1.226423 1.616557
Std. Dev. 0.033287 0.037697 0.025127 0.020749 0.036637 0.033287 0.037697 0.025127 0.020749 0.036637

Table 1: OBOS - Experimental scale factors values for buyer and seller using MDPLCPBS

Benchmarks

We isolate the PowerTAC wholesale market from the full
PowerTAC simulator while keeping the market simulator
participants (GenCos, internal buyers) and weather simula-
tor, and benchmark the performance of MDPLCPBS. The
following agents/brokers are used in these benchmarks:

• Zero Intelligence (ZI): The ZI agent (Gode and Sunder
1993) uses a randomized bid strategy and ignores the mar-
ket state. It generates random order prices, ignoring the
state of the market. In our experiments, we derive its bids
from a uniform distribution with mean μ and a standard
deviation of $10. The mean μ taken from the limit price
predicted by the MDP in TacTex (Urieli and Stone 2014).
The broker places one bid per auction, and the remain-
ing required energy as the bid quantity. It continues to do
the same for all the 24 bidding opportunities, or until the
required energy is procured.

• Zero Intelligence Plus (ZIP): The ZIP agent (Tesauro and
Das 2001) maintains a scalar variable m denoting its de-
sired profit margin, and it combines this with a unit’s limit
price to compute a bid price p. For each failed trade, the
price is adjusted by small increments to beat the failed bid
price p. In our experiments, the initial limit price value μ
is determined from the limit price predicted by the MDP
in TacTex. The profit margin m is set to 1% of μ, resulting
in the initial bid price to be p = μ× 1.01. If the bid fails,
the next bid price is incremented by 10% of μ. Then, the

% of Market
Demand Statistic State

24 23 22 21 20

100
Wt. Avg. Relative Error (%) 9.35 10.4 7.59 6.66 8.34

Std. Dev. of % Error 13.47 26.76 21.00 21.38 44.71
Avg. Cleared Quantity 885.76 34.87 23.08 17.17 14.36

50
Wt. Avg. Relative Error (%) 15.18 24.03 10.28 10.96 16.36

Std. Dev. of % Error 20.79 46.31 33.35 32.82 53.51
Avg. Cleared Quantity 836.82 22.19 13.54 8.89 6.92

Table 2: Weighted relative error rate for LCP prediction

new bid price is given by p = μ× 1.11.
• TacTex: The TacTex (Urieli and Stone 2014) agent uses

an MDP based model and dynamic programming to de-
termine limit-prices for bids. The algorithm described in
the paper was implemented and used in our experiments.
• MCTS: The MCTS (Chowdhury et al. 2018) agent uses a

Monte Carlo Tree Search (MCTS) coupled with heuristics
on top of the limit price derived from a REPTree based
limit price predictor, to determine the optimal bid price. In
our experiments, we used the MCTS-dyn-C2 version with
10000 iterations, which is shown to be the best performing
variation of the MCTS bidding strategy.
For a timeslot t+ 24 in the future, having 24 bidding op-

portunities in timeslots {t, t+ 1, . . . , t+ 23}, the energy to
be procured is set to be same across all the brokers. This en-
ergy amount for t+24 is determined as some fraction of the
net demand in timeslot t in the PowerTAC simulation tar-
iff market. Four sets of 10 games each are simulated, with
each set having a different fraction of the net demand to be
procured. The fraction set is given by {0.25, 0.5, 0.75, 1}.

Figure 1 shows the net cost of all the agents across the
four sets of games. In each case, MDPLCPBS outperforms
ZI, ZIP and TacTex on a consistent basis, while losing out to
MCTS. While ZIP may seem to perform reasonably well in
some cases, it can be countered easily in strategic settings,
like in single-shot single-unit auction setting, whereas MD-
PLCPBS follows the equilibrium. It is also to be noted that,
while MCTS uses tailored heuristics, MDPLCPBS is de-
rived from the game theoretic analysis of single shot double
auction (Proposition 1). We leave the game theoretic analy-
sis of MCTS for future work.

Table 2 summarizes the weighted relative error rates
(weighed by cleared quantity) in predicting the LCP. 82%
of the total cleared energy for a future timeslot is cleared in
the first auction itself, with 91% of the total being cleared in
the first five. Since the cleared energy of the other states is
extremely low, their corresponding predicted LCPs have less
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impact on the pcleared calculation. Thus, we focus on the er-
ror rates of the states corresponding to the first five auctions
for a target timeslot. We see that MDPLCPBS has a 10% and
15% error rate in the LCP prediction for the first auction of a
timeslot (state 24), for 100% and 50% of the market demand
as requirement. Moreover, the corresponding weighted aver-
age relative error across all states, comes out to be 12% and
18% respectively. The error rates increase as requirement de-
crease, as there are more low quantity bids by brokers and
Miso buyer’s low bids often set the LCP. Thus, MDPLCPBS
predicts the LCP with minimal error, during auctions where
most of the energy gets traded.

Conclusion
In this paper, we first analytically characterized Nash Equi-
librium strategies for a single unit double auction with the
clearing price and payment rule as ACPR, for OBOS, and
TBOS with scale based bidding strategies. We also pro-
posed the best response in a complete information setting
in a multi-unit double auction with ACPR. Based on these
formulations, we presented MDPLCPBS, a bidding strat-
egy for PDAs. Furthermore, we experimentally validated
that MDPLCPBS achieves the Nash Equilibrium derived
for single unit double auction with ACPR for OBOS. Fi-
nally, we benchmarked MDPLCPBS against the baseline
and competing state-of-the-art strategies, and showed that it
outperforms most of them consistently. Simultaneously, we
showed that it predicts the LCP with minimal error.
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