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Abstract

Coarse correlation models strategic interactions of rational
agents complemented by a correlation device which is a me-
diator that can recommend behavior but not enforce it. De-
spite being a classical concept in the theory of normal-form
games since 1978, not much is known about the merits of
coarse correlation in extensive-form settings. In this paper,
we consider two instantiations of the idea of coarse correla-
tion in extensive-form games: normal-form coarse-correlated
equilibrium (NFCCE), already defined in the literature, and
extensive-form coarse-correlated equilibrium (EFCCE), a
new solution concept that we introduce. We show that EFC-
CEs are a subset of NFCCEs and a superset of the related
extensive-form correlated equilibria. We also show that, in
n-player extensive-form games, social-welfare-maximizing
EFCCEs and NFCCEs are bilinear saddle points, and give
new efficient algorithms for the special case of two-player
games with no chance moves. Experimentally, our proposed
algorithm for NFCCE is two to four orders of magnitude
faster than the prior state of the art.

Introduction

As a generic term, correlated equilibrium denotes a fam-
ily of solution concepts whereby a mediator that can rec-
ommend behavior, but not enforce it, complements the in-
teraction of rational agents. Before the game starts, the
mediator—also called a correlation device—samples a tu-
ple of normal-form plans (one for each player) from a pub-
licly known correlated distribution. The mediator then pro-
ceeds to privately ask each player whether they would like
to commit to playing according to the plan that was sampled
for them. Being part of an equilibrium, the correlated dis-
tribution must be such that no player can benefit from not
following the recommendations, assuming all other players
follow. Example games where a correlation device is natu-
ral include traffic, congestion control, load balancing (Ash-
lagi, Monderer, and Tennenholtz 2008), and carbon abate-
ment (Moulin, Ray, and Gupta 2014).

In the context of extensive-form (that is, tree-form)
games, two different instantiations of the idea of cor-
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related equilibrium are known in the literature: normal-
form correlated equilibrium (NFCE) (Aumann 1974; Gilboa
and Zemel 1989) and extensive-form correlated equilib-
rium (EFCE) (von Stengel and Forges 2008). The two so-
lution concepts differ in what the mediator reveals to the
players. In an NFCE, the mediator privately reveals to each
player, just before the game starts, the (whole) normal-form
plan that was sampled for the player. Players are then free to
either play according to the plan, or play any other strategy
that they desire. In an EFCE, the mediator does not reveal
the whole plan to the players before the game starts. Instead,
the mediator incrementally reveals the plan by recommend-
ing individual moves. Each recommended move is only re-
vealed when the player reaches the decision point for which
the recommendation is relevant. Each player is free to play
a move different than the recommended one, but doing so
comes at the cost of future recommendations, as the medi-
ator will immediately stop issuing recommendations to any
player who did not follow all the recommendations so far.
Because of this deterrent, and because players have to decide
whether to follow recommendations knowing less about the
sampled normal-form plan than in NFCE, a social-welfare-
maximizing EFCE always achieves social welfare equal or
higher than any NFCE.

Coarse correlated equilibrium differs from correlated
equilibrium in that players must decide whether or not to
commit to playing according to the recommendations of the
mediator before observing such recommendations. Normal-
form coarse-correlated equilibrium (NFCCE) (Moulin and
Vial 1978) is the coarse equivalent of NFCE. Before the
game starts, players decide whether to commit to playing
according to the normal-form plan that was sampled by the
mediator (from some correlated distribution known to all
players), without observing such a plan first. Players who
decide to commit will privately receive the plan that was
sampled for them; players that decide to not commit will
not receive any recommended plan, and are free to play ac-
cording to any strategy they desire. Since players know less
at the time of commitment than either in NFCE or EFCE,
a social-welfare-maximizing NFCCE is always guaranteed
to achieve equal or higher social welfare than any NFCE or
EFCE. No coarse equivalent of EFCE is known in the liter-
ature.

In this paper, we introduce the coarse equivalent of EFCE,
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Figure 1:Correlated and coarse-correlated solution concepts.

which we coin extensive-form coarse-correlated equilibrium
(EFCCE). It is an intermediate solution concept between
EFCE and NFCCE. Specifically, EFCCE is akin to EFCE
in that each recommended move is only revealed when the
players reach the decision point for which the recommen-
dation is relevant. However, unlike EFCE, the acting player
must choose whether or not to commit to the recommended
move before the move is revealed to them, instead of after.
Figure 1 shows how EFCCE fits within the family of corre-
lated and coarse-correlated solution concepts.

We prove that EFCCEs are a subset of NFCCEs and a su-
perset of EFCEs, and give an example of a game in which the
three solution concepts lead to distinct solution sets. So—
because a social-welfare-maximizing EFCCE guarantees a
higher social welfare than any EFCE—our EFCCE solution
concept is more appealing than EFCE in applications where
the mediator has enough contractual power to enforce that
agents that commit to follow the recommended move actu-
ally do play the recommended move. This can be the case,
for example, if players are able to enter into binding con-
tracts with the mediator or the mediator has enough extrane-
ous power over the players.

We also show that the problem of computing a social-
welfare-maximizing EFCCE can be represented as a bilinear
saddle-point problem, which can be solved in polynomial
time in two-player extensive-form games with no chance
moves but not in games with more than two players or
two-player games with chance moves. Finally, we note that
in two-player games with no chance moves, EFCCE leads
to a linear program whose size is smaller than EFCE; be-
cause of this, EFCCE can also be used as a computation-
ally lighter relaxation of EFCE (for example, as a routine
in the algorithm by Čermák et al.; Bosanský et al. (2016;
2017) for computing a strong Stackelberg equilibrium).

Finally, we show that the problem of computing a social-
welfare-maximizing NFCCE can be expressed as a bilinear
saddle-point problem, which can be solved in polynomial
time in two-player extensive-form games with no chance
moves (the problem is known to be NP-hard in games with
more than two players and/or chance moves (von Stengel
and Forges 2008)). This formulation is significant, as it en-
ables several new classes of algorithms to be employed to
find a social-welfare-maximizing NFCCE. In particular, we
show that it enables a linear programming formulation that
in our experiments is two to four orders of magnitude faster
than the prior state of the art.

Preliminaries
Extensive-form games are played on a game tree, and can
capture both sequential and simultaneous moves, as well as
private information. Each node v in the game tree belongs to
exactly one player i ∈ {1, . . . , n} ∪ {c} whose turn it is to
move. Player c is a special player called the chance player;
it is used to denote random events that happen in the game,
such as drawing a card from a deck or tossing a coin. The
edges leaving v represent actions that the player can take at
that node; we denote the set of actions available at v by Av .
In order to capture private information, the set of nodes that
belong to each player i ∈ {1, . . . , n} are partitioned into a
collection Ii of nonempty sets. Each I ∈ Ii is called an in-
formation set of Player i, and is a set of nodes that Player
i cannot distinguish among, given what the player has ob-
served so far. In this paper, we assume perfect recall, that is,
no player forgets what he or she knew earlier. Necessarily,
for any I ∈ Ii and u, v ∈ I, it must be Au = Av , or otherwise
Player i would be able to distinguish between u and v. For
this reason, we will often write AI to mean the set of avail-
able actions at any node in I. Finally, two information sets
Ii, Ij for Player i and j, respectively, are connected, denoted
by Ii � Ij , if there exist u ∈ Ii, v ∈ Ij such that the path
from the root to u passes through v or vice versa.

Any node v for which Av is empty is called a leaf, and
denotes an end state of the game. We denote the set of leaves
of the game by Z. Each z ∈ Z is associated with a tuple of
n payoffs (one for each non-chance player); we denote by
ui(z) the payoff for Player i ∈ {1, . . . , n} in leaf z.

Sequences (Σ)

The set of sequences of Player i, denoted by Σi, is defined
as the set Σi := {(I, a) : I ∈ Ii, a ∈ AI} ∪ {∅i}, where the
special sequence ∅i is called the empty sequence of Player i.
Given a node v that belongs to Player i, the parent sequence
of v, denoted by σi(v), is the last sequence (I, a) ∈ Σi en-
countered on the path from the root of the game tree to v; if
no such sequence exists (i.e., Player i never acts before v),
we let σi(v) = ∅i. The parent sequence σ(I) of an informa-
tion set I ∈ Ii is defined as σ(I) := σ(v) where v is any node
in I (all choices produce the same parent sequence, since the
game is assumed to have perfect recall).

A pair of sequences is relevant if their information sets
are on the same branch. Formally, given two sequences σi
and σj for two distinct Players i and j, respectively, we say
that the pair (σi, σj) is relevant if either one sequence is the
empty sequence, or σi = (Ii, ai), σj = (Ij , aj) and Ii � Ij .

Reduced-Normal-Form Plans (Π)

A normal-form plan for Player i defines a choice of action
aI ∈ AI for every information set I ∈ Ii of the player.
However, this representation contains irrelevant informa-
tion, as some information sets may become unreachable af-
ter the player makes certain decisions higher up the tree. A
reduced-normal-form plan π is a normal-form plans where
this irrelevant information is removed: it defines a choice of
action for every information set I ∈ Ii that is still reachable
as a result of the other choices in π itself. We denote the set
of reduced-normal-form plans of Player i by Πi.
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Figure 2: (Left) Sample game tree. Black round nodes be-
long to Player 1, white round nodes belong to Player 2, and
white square nodes are leaves. Rounded, gray lines denote
information sets. (Center) Set Π1 of reduced-normal-form
plans for Player 1. Each plan identifies an action at each in-
formation set; information sets that are not reachable given
the actions that were chosen higher up in the tree are denoted
by ‘–’. (Right) Examples of certain subsets of Π1 defined in
the Preliminaries section.

We now define certain subsets of Πi. The reader is en-
couraged to refer to Figure 2 while reading the definitions
to see what these subsets are in a small example. Given an
information set I of Player i, we denote by Πi(I) the sub-
set of reduced-normal-form plans π where Player i plays so
as to reach I whenever possible (the possibility depends on
the opponent’s actions up to that point), and can play any
other actions at points of the game where reaching I is not
possible anymore. Given a sequence σ = (I, a) ∈ Σi, Πi(σ)
further curtails the set Πi(I) by requiring that at I, Player i
plays action a. We let Πi(∅i) := Πi. We will also make fre-
quent use of the shorthand Πi(z) := Πi(σi(z)) to denote the
set of reduced-normal-form plans in which Player i tries to
reach leaf by z ∈ Z. Finally, a reduced-normal-form strategy
for Player i is a probability distribution over Πi.

Polytope of Sequence-Form Strategies (Q)

The sequence-form representation is a more compact way of
representing normal-form strategies of a player in a perfect-
recall extensive-form game (Romanovskii 1962; Koller,
Megiddo, and von Stengel 1996; von Stengel 1996). For-
mally, fix a player i ∈ {1, . . . , n}, and let μ be a probability
distribution over Πi. The sequence-form strategy induced by
μ is the real vector y, indexed over σ ∈ Σi, defined as

y(σ) :=
∑

π∈Πi(σ)

μ(π). (1)

The set of sequence-form strategies that can be induced as
μ varies over the set of all possible probability distributions
over Πi is denoted by Qi. Koller, Megiddo, and von Sten-
gel (1996) prove that it is a convex polytope (called the
sequence-form polytope) Qi = {y ∈ R|Σi| : Fiy = fi, y ≥
0}, where Fi is a sparse |Ii| × |Σi| matrix with entries in
{0, 1,−1}, and fi is a vector with entries in {0, 1}.

Polytope of Extensive-Form Correlation Plans (Ξ)

Given any probability distribution μ over ×n
i=1 Πi in an

extensive-form game, the correlation plan ξ induced by μ is
defined as the real vector, indexed over tuples (σ1, . . . , σn) ∈

×n
i=1 Σi of pairwise-relevant sequences, where each entry is

ξ(σ1, . . . , σn) :=
∑

π1∈Π1(σ1)···
πn∈Πn(σn)

μ(π1, . . . , πn). (2)

The set of correlation plans ξ that can be induced as μ
varies over the set of all possible probability distributions
is denoted by Ξ and called the polytope of extensive-form
correlation plans. It is always a polytope in a space of
dimension polynomial in the input game description. Fur-
thermore, in two-player games without chance moves, Ξ
can be described as the intersection of a polynomial num-
ber (in the size of the game tree) linear constraints, as
shown by von Stengel and Forges (2008). They also proved
that this property does not always hold if the game has
chance moves or more than two players. Finally, for any
i ∈ {1, . . . , n}, σ ∈ Σi, and z ∈ Z, we introduce the
following notation that we will use frequently: ξi(σ; z) :=
ξ(σ1(z), . . . , σi−1(z), σ, σi+1(z), . . . , σn(z)).

Saddle-Point Formulation of NFCCE

In this section, we show that the problem of finding an
NFCCE in an n-player extensive-form game with perfect re-
call can be expressed as a bilinear saddle-point problem, that
is, an optimization problem of the form

argmin
x∈X

max
w∈W

x�Aw,

where X and W are convex and compact sets. In our specific
case, X and W will be convex polytopes in low-dimensional
spaces (in particular, X = Ξ). As we will show later, this for-
mulation immediately implies that in two-player games with
no chance moves, a social-welfare-maximizing NFCCE can
be computed in polynomial time as the solution of a linear
program.

We now go through the steps that enable us to formulate
the problem of finding an NFCCE as a bilinear saddle-point
problem. The general structure of the argument is similar to
that of Farina et al. (2019) in the context of EFCE, and we
will use it again later when dealing with EFCCE.

By definition, a correlated distribution μ over×n
i=1 Πi is

an NFCCE if no player has an incentive to unilaterally devi-
ate from the recommended plan assuming that nobody else
does. More formally, let i be any player, and let μ̂i be any
probability distribution over Πi, independent of μ. Playing
according to μ̂i must give Player i expected utility ûi at most
equal to the expected utility ui of committing to the medi-
ator’s recommendation. In order to express ûi and ui as a
function of μ and μ̂i, it is necessary to quantify the proba-
bility of the game ending in any leaf z ∈ Z. When Player i
deviates and plays according to μ̂i, the probability that the
game ends in z is equal to the probability that the mediator
samples from μ plans πj ∈ Πj(z) for any Player j other than
i, and that Player i samples from μ̂i a plan π̂i ∈ Πi(z). Cor-
respondingly, using the independence of μ and μ̂i, we can
write
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ûi=
∑
z∈Z

[
ui(z)

( ∑
πi∈Πi

πj∈Πj(z) ∀j �=i

μ(π1, . . . , πn)

)⎛⎝ ∑
π̂i∈Πi(z)

μ̂i(π̂i)

⎞
⎠].

On the other hand, the probability that leaf z is reached
when all players commit to the mediator’s recommendation
is equal to the probability that the mediator samples from μ
plans πj ∈ Πj(z) for all players j ∈ {1, . . . , n}:

ui =
∑
z∈Z

⎡
⎣ui(z)

⎛
⎝ ∑

πj∈Πj(z) ∀j
μ(π1, . . . , πn)

⎞
⎠
⎤
⎦. (3)

Using the definition of extensive-form correlation plan (2)
and sequence-form strategy (1) we can convert the require-
ment that ûi ≤ ui for all choices of i and μ̂i into the follow-
ing equivalent condition:

Proposition 1. An extensive-form correlation plan ξ ∈ Ξ is
an NFCCE if and only if, for any player i ∈ {1, . . . , n} and
sequence-form strategy yi ∈ Qi,∑

z∈Z

ui(z)ξi(∅i; z)yi(σi(z)) ≤
∑
z∈Z

ui(z)ξi(σi(z); z). (4)

Inequality (4) is of the form ξ�Aiyi − b�iξ ≤ 0, where Ai

and bi are suitable sparse matrices/vectors that only depend
on i. With this new notation, we can rewrite the condition
in Proposition 1 as a single maximization problme by intro-
ducing an auxiliary variable vector λ = (λ1, . . . , λn) ∈ Δn,
where Δn denotes the n-dimensional simplex

Δn :=

{
(λ1, . . . , λn) ∈ R

n
+ :

n∑
i=1

λi = 1

}
.

With that, we can write that ξ ∈ Ξ is an NFCCE if and only
if

max
i∈{1,...,n}

max
yi∈Qi

{
ξ�Aiyi − b�iξ

}
≤ 0

⇐⇒ max
λ∈Δn

yi∈Qi ∀i

{
n∑

i=1

λi

(
ξ�Aiyi − b�iξ

)}
≤ 0

⇐⇒ max
λ∈Δn

ỹi∈λiQi ∀i

{
n∑

i=1

ξ�Aiỹi − λib
�
iξ

}
≤ 0, (5)

where in the last transformation we operated a change of
variable ỹi := λiyi; it is a simple exercise to prove that this
change of variable is legitimate and that the domain of the
maximization is a convex polytope. An NFCCE always ex-
ists. In particular, any

ξ ∈ argmin
ξ∈Ξ

max
λ∈Δn

ỹi∈λiQi ∀i

{
n∑

i=1

ξ�Aiỹi − λib
�
iξ

}
(6)

is an NFCCE because it satisfies (5). Since the domains of
the minimization and maximization problems are both con-
vex polytopes, and the objective function is bilinear, the op-
timization problem in (6) is a bilinear saddle-point problem.

Enforcing a Lower Bound on Social Welfare

Given an NFCCE μ, social welfare is defined as SW :=∑n
i=1 ui, where ui is as in Equation (3). Hence, social wel-

fare is a linear function of the correlation plan ξ, which can

be expressed as SW : Ξ 	 ξ 
→ c�ξ where c :=
∑n

i=1 bi.
Consequently, an NFCCE that guarantees a given lower
bound τ on the social welfare can be expressed as in (6)
where the domain of the minimization is changed from
ξ ∈ Ξ to ξ ∈ Ξ ∩ {ξ : c�ξ ≥ τ}. This preserves the poly-
hedral nature of the optimization domain. Finally, the same
construction can be used verbatim if social welfare is re-
placed with any linear function of ξ.

Connection to Linear Programming

The saddle-point formulation in (6) can be mechanically
translated into a linear program (LP) by taking the dual of
the internal maximization problem, that is, of (5). Specifi-
cally, the dual problem is the linear program

(7) :

⎧⎪⎪⎨
⎪⎪⎩

min u

s.t. u− v�ifi + b�iξ ≥ 0 ∀ i ∈ {1, . . . , n}
F�
i vi −A�

iξ ≥ 0 ∀ i ∈ {1, . . . , n}
u ∈ R,vi ∈ R|Ii| ∀ i ∈ {1, . . . , n}.

(See the Preliminaries section for the meaning of Fi and fi).
By strong duality, the value of (7) is the same as the value of
the primal problem, that is, the maximum ‘deviation benefit’
ûi − ui across all players i ∈ {1, . . . , n} and probability dis-
tributions μ̂i over Πi. Hence, we can find an NFCCE ξ that
maximizes any given objective c�ξ by adding the constraint
u ≤ 0 and solving the modified LP

(8) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max c�ξ
s.t. u− v�ifi + b�iξ ≥ 0 ∀ i ∈ {1, . . . , n}

F�
i vi −A�

iξ ≥ 0 ∀ i ∈ {1, . . . , n}
ξ ∈ Ξ

u ≤ 0,vi ∈ R|Ii| ∀ i ∈ {1, . . . , n}.
The LP above always has a polynomial number of variables,
but potentially an exponential number of constraints because
of the condition ξ ∈ Ξ. However, in two-player extensive-
form games with no chance moves, (8) is guaranteed to
have a polynomial number of constraints as Ξ can be de-
scribed compactly (von Stengel and Forges 2008). Hence,
in those games a social-welfare-maximizing NFCCE can be
computed in polynomial time.

EFCCE: An Intermediate Solution Concept

In this section, we introduce a new solution concept
which we coin extensive-form coarse-correlated equilib-
rium (EFCCE). It combines the idea of coarse correlation—
that is, players must decide whether they want to commit
to following the recommendations issued by the correla-
tion device before observing such recommendations—with
the idea of extensive-form correlation—that is, recommen-
dations are revealed incrementally as the players progress
down the game tree. EFCCE is akin to EFCE in that each
recommended move is only revealed when the players reach
the decision point for which the recommendation is rele-
vant. However, unlike EFCE, the acting player must choose
whether or not to commit to the recommended move before
such a move is revealed to them, instead of after. Each choice
is binding only with respect to the decision point for which
the choice is made, and players can make different choices
at different decision points. Just like EFCE, defections (that
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is, deciding to not commit to following the correlation de-
vice’s recommended move) come at the cost of future rec-
ommendations, as the correlation device will stop issuing
recommendations to the defecting player. As with all corre-
lated equilibria, the correlated distribution from which the
recommendations are sampled must be such no player has
incentives to unilaterally defect when no other player does.

Saddle-Point Formulation

In this section, we show that also an EFCCE can be ex-
pressed as the solution to a bilinear saddle-point problem.
To do so, we use the idea of trigger agents (Gordon, Green-
wald, and Marks 2008; Dudik and Gordon 2009):

Definition 1. Let i ∈ {1, . . . , n} be a player, let Î ∈ Ii be
an information set for Player i, and let μ̂i be a probability
distribution over Πi(Î). An (Î , μ̂i)-trigger agent for Player i
is a player that commits to and follows all recommendations
issued by the mediator until they reach a node v ∈ Î (if any).
When any node v ∈ Î is reached, the player ‘gets triggered’,
stops committing to the recommendations and instead plays
according to a reduced-normal-form plan sampled from μ̂i

until the game ends.

By definition, a correlated distribution μ over ×n
i=1 Πi

is an EFCCE when, for all i ∈ {1, . . . , n}, the value ui
that Player i obtains by following the recommendations is
at least as large as the expected utility û

Î
attained by any

(Î , μ̂i)-trigger agent for that player (assuming nobody else
deviates). The expected utility for Player i when everybody
commits to following the mediator’s recommendations is as
in Equation (3). In order to express the expected utility of
the (Î , μ̂i)-trigger agent, we start by computing the proba-
bility of the game ending in each possible leaf z ∈ Z. Let
(π1, . . . , πn) be the tuple of reduced-normal-form plans that
was sampled by the mediator. Two cases must be distin-
guished:
• The path from the root of the game tree to z passes

through a node v ∈ Î. We denote the set of such leaves
by Z

Î
. In this case, the trigger agent commits to following

all recommendations until just before Î, and then plays
according to a plan π̂i ∈ Πi(Î) sampled from the distri-
bution μ̂i from Î onwards. The following conditions are
necessary and sufficient for the game to terminate at z:
πj ∈ Πj(z) for all j ∈ {1, . . . , n} \ {i}, πi ∈ Πi(Î), and
π̂i ∈ Πi(z). Hence, the probability that the game ends at
z ∈ Z

Î
is

pz :=

⎛
⎜⎜⎝ ∑

πi∈Πi(Î)
πj∈Πj(z) ∀j �=i

μ(π1, . . . , πn)

⎞
⎟⎟⎠
⎛
⎝ ∑

π̂i∈Πi(z)

μ̂i(π̂i)

⎞
⎠.
(9)

• Otherwise, the trigger agent never gets triggered, and in-
stead commits to following all recommended moves until
the end of the game. The probability that the game ends
at z ∈ Z \ Z

Î
is therefore

qz :=
∑

πj∈Πj(z) ∀j
μ(π1, . . . , πn). (10)

With this information, the expected utility of the (Î , μ̂i)-
trigger agent is û

Î
=
∑

z∈ZÎ
ui(z) pz +

∑
z∈Z\ZÎ

ui(z) qz .

Using to the definition of extensive-form correlation
plan (2) and sequence-form strategy (1), we can rewrite the
condition ui ≥ û

Î
(which must hold for all choices of i,

Î ∈ Ii, and probability distribution μ̂i over Πi(Î)) com-
pactly. In particular, denoting by y

i,Î
the sequence-form

strategy for the (Î , μ̂i)-trigger agent, we can rewrite (9) as
pz = ξi(σi(Î); z)yi,Î(σi(z)) and (10) as qz = ξi(σi(z); z).
Furthermore, the fact that μ̂i has support Πi(Î) translates
into the constraints y

i,Î
(σ(Î)) = 1. For this reason, it makes

sense to introduce the symbol
Q

i,Î
:= Qi ∩ {y

i,Î
: y

i,Î
(σ(Î)) = 1}.

Correspondingly, we let F
i,Î

and f
i,Î

be the constraint ma-
trix and vector such that Q

i,Î
= {y

i,Î
≥ 0 : F

i,Î
y
i,Î

= f
i,Î

}.
Putting everything together, we have the following:
Proposition 2. An extensive-form correlation plan ξ ∈ Ξ is
an EFCCE iff, for any player i ∈ {1, . . . , n}, information set
Î ∈ Ii, and sequence-form strategy y

i,Î
∈ Q

i,Î
,∑

z∈ZÎ

ui(z)ξi(σi(Î); z)yi,Î(σi(z))≤
∑
z∈ZÎ

ui(z)ξi(σi(z); z). (11)

Inequality (11) is in the form ξ�A
i,Î

y
i,Î

−b�
i,Î

ξ ≤ 0 where
A

i,Î
and b

i,Î
are suitable matrices/vectors that only depend

on the trigger information set Î of Player i. From here, one
can follow the same steps that we already took in the case of
NFCCE and obtain a bilinear saddle-point formulation and
an LP for EFCCE. For space reasons, we only state the LP,
which we also implemented (see Experiments section):

(12) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max c�ξ
s.t. u− v�

i,Î
f
i,Î

+ b�
i,Î

ξ ≥ 0 ∀i, Î ∈ Ii
F�
i,Î

v
i,Î

−A�
i,Î

ξ ≥ 0 ∀i, Î ∈ Ii
ξ ∈ Ξ

u ≤ 0,v
i,Î

∈ R|Ii| ∀i, Î ∈ Ii.
The LP (12) has a polynomial number of variables, and in

two-player games with no chance moves it also has a poly-
nomial number of constraints due to the polynomial descrip-
tion of Ξ (von Stengel and Forges 2008). In particular, in
two-player games with no chance moves, a social-welfare-
maximizing EFCCE can be computed in polynomial time by
setting the objective function c�ξ to be the social welfare

c�ξ :=
∑
z∈Z

[(
n∑

i=1

ui(z)

)
ξ(σ1(z), . . . , σn(z))

]
.

Finally, the EFCCE linear program (12) has more con-
straints and variables than that for NFCCE (see (8)), but
fewer than that for EFCE (see Supplemental Material). Em-
pirically, this results in intermediate run times compared to
NFCCE and EFCE, as confirmed by our experiments pre-
sented later.

Complexity Results

As we have already pointed out, in the case of two-player
games without chance moves, the LP (12) has a polyno-
mial number of constraints and variables, and can therefore
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Figure 3: Space of payoff vectors that can be induced by EFCE, EFCCE, and NFCCE in an instance of the Sheriff game
(left) and of 3-card Goofspiel (right). The ‘SW-optimal’ symbols indicate payoffs corresponding to social-welfare-maximizing
equilibria.

be solved in polynomial time using standard LP technol-
ogy. As in NFCCE and EFCE, the same does not hold for
two-players games with chance moves nor for games with
three players or more players, with or without chance moves.
In particular, the following results can be easily obtained
by using the same reduction employed by von Stengel and
Forges (2008) (all proofs are in the Supplemental Material):

Definition 2 (SWEFCCE(κ)). Given an extensive-form game
Γ and a real number κ, SWEFCCE(κ) denotes the problem
of deciding whether or not Γ admits an EFCCE with social
welfare at least κ.

Proposition 3. SWEFCCE(κ) is NP-Hard in two-player
games with chance moves, as well as in three-player games,
with or without chance moves.

Relationships among Solution Concepts

In this section, we analyze the relationship between EFCE,
EFCCE, and NFCCE. We start with an inclusion lemma,
which shows that the solution concept that we just intro-
duced, EFCCE, is a superset of EFCE and a subset of
NFCCE (all proofs are available in the Supplemental Ma-
terial):

Proposition 4. Let Γ be a perfect-recall extensive-form
game. Then we have the following inclusion of equilibria

EFCE ⊆ EFCCE ⊆ NFCCE.

Proposition 4 applies to games with more than two play-
ers and/or chance moves as well. Let UEFCE, UEFCCE, UNFCCE
denote the set of expected payoff vectors that can be induced
by EFCE, EFCCE, and NFCCE, respectively. Then, Propo-
sition 4 is an important ingredient for our next proposition:

Proposition 5. The sets UEFCE, UEFCCE, UNFCCE are convex
polytopes. Furthermore, UEFCE ⊆ UEFCCE ⊆ UNFCCE.

Proposition 4 also implies the following relationship be-
tween the maximum social welfare that can be obtained by
EFCE, EFCCE, and NFCCE:
Corollary 1. Let SW∗

EFCE, SW∗
EFCCE, SW∗

NFCCE denote the
maximum social welfare that can be reached by EFCE,
EFCCE, and NFCCE. Then, SW∗

EFCE≤SW∗
EFCCE≤SW∗

NFCCE.

Figure 3 shows the set of payoff vectors that can be in-
duced by EFCE, EFCCE, and NFCCE in an instance of the
Sheriff game (Farina et al. 2019) (left) and an instance of
a 3-card Goofspiel game (Ross 1971) (right).1 In the Sher-
iff game instance, we have that both inclusions in Proposi-
tion 5 are strict, while in the Goofspiel game the inclusion
UEFCE � UEFCCE is strict and UEFCCE = UNFCCE. The ap-
pendix contains an instance of a Battleship game (Farina et
al. 2019) in which the inclusion UEFCCE � UNFCCE is strict
while UEFCE = UEFCCE.

Experiments

We experimentally compared NFCCE, EFCCE, and EFCE
in terms of maximum social welfare and run time. In our
experiments, we used instances from three different two-
player games with no chance moves: Sheriff (Farina et al.
2019), Battleship (Farina et al. 2019), and Goofspiel (Ross
1971). Sheriff is a bargaining game, in which two players—
the Smuggler and the Sheriff—must settle on an appropriate
bribe so as to avoid the Sheriff inspecting the Smuggler’s
cargo, which might or might not contain illegal items. The
correlation device recommends to the Smuggler how many
illegal items to include in the cargo and what size bribes
to offer in the bargaining rounds, and to the Sheriff what
feedback to give in the bargaining rounds and whether to
inspect the cargo. Battleship is a parametric version of the

1The polytopes of reachable payoff vectors were computed
using Polymake, a tool for computational polyhedral geome-
try (Gawrilow and Joswig 2000; Assarf et al. 2017).
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Grid
Rounds

Seq. Pairs Rel. Seq.

Size |Σ1| × |Σ2| Pairs

(2, 2) 2 6.795× 105 3.524× 104

(3, 2) 2 3.571× 106 2.645× 105

(3, 2) 3 7.209× 108 3.893× 106

(3, 2) 4 4.438× 1010 2.644× 107

NFCCE EFCCE EFCE

LP CG-LP CG-MILP LP LP

358ms 30m 08s 24.78s 512ms 692ms
6.68s > 24h 3h 17m 2.67s 3.18s
1m 55s > 24h > 24h 3m 53s 12m 43s
25m 49s oom oom 1h 03m 2h 57m

NFCCE EFCCE EFCE

0 −2.100 −2.100
0 −1.270 −1.270
0 −1.500 −1.500
0 −1.955 −1.955

nmax bmax r
Seq. Pairs Rel. Seq.

|Σ1| × |Σ2| Pairs

10 2 2 1.045× 104 3.717× 103

10 2 3 3.706× 105 3.363× 104

10 3 3 1.886× 106 9.577× 104

20 5 4 5.373× 109 1.326× 107

20 6 4 1.797× 1010 2.774× 107

20 7 4 5.131× 1010 5.277× 107

(a) Instance parameters and dimensions

NFCCE EFCCE EFCE

LP CG-LP CG-MILP LP LP

105ms 6m 17s 42.63s 250ms 311ms
1.03s 12h 52m > 24h 1.38s 2.14s
2.07s > 24h > 24h 2.44s 9.62s

13m 20s oom oom 1h 34m 6h 26m
2h 16m oom oom 5h 06m 21h 40m
6h 32m oom oom 11h 59m oom

(b) Run times of algorithms

NFCCE EFCCE EFCE

13.64 9.565 9.078
13.64 10 10
18.18 15 15
28.57 25 25
33.33 30 30
38.10 35 —

(c) Maximum social welfare
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Table 1: Experimental results on instances of the Battleship game (top) and Sheriff game (bottom). ‘oom’: Out of memory.

classic board game, where two competing fleets take turns at
shooting at each other. The correlation device recommends
to each player where to place the ship and where to shoot in
every round. Finally, Goofspiel is a card game in which two
players repeatedly bid to win a common public card, which
will be discarded in case of bidding ties. The correlation de-
vice recommends the bids. The three games were chosen so
as to illustrate three different applications in which an in-
termediate form of centralized control (the correlation de-
vice) is beneficial: bargaining in Sheriff, conflict resolution
in Battleship, and bidding in Goofspiel. See the Supplemen-
tal Material for a detailed description of the games.

We used Gurobi 8.1.1 (Gurobi Optimization 2019) to
solve the linear programs for NFCCE (8), EFCCE (12),
and EFCE (Equation 16 in the Supplemental Material).2 We
used the barrier algorithm without crossover, and we let
Gurobi automatically determine the recommended number
of threads for execution. All experiments were run on a 64-
core machine with 512 GB of RAM.

Our experimental results are in Table 1 (top) for Battle-
ship, Table 1 (bottom) for Sheriff, and Table 2 in the Sup-
plemental Material for Goofspiel. Each table is split into
three parts. Part (a) contains information about the param-
eters that were used to generate the game instances (see
the Supplemental Material for a description of their ef-
fects). It also shows the size of the instances in terms of
number of sequences pairs, defined as the product |Σ1| ×
|Σ2| of the number of sequences of the players, and num-
ber of relevant pairs of sequences (see Preliminaries sec-
tion). Part (b) compares the run times of our algorithm
(column ‘LP’). In the case of NFCCE, we also compare
against the only known prior polynomial-time algorithms to
compute social-welfare-maximizing NFCCE in extensive-
form games, which are both based on the column genera-
tion technique, and were introduced by Celli, Coniglio, and

2This third LP, and its derivation, are given in the Supplemental
Material. This third LP was already known (Farina et al. 2019), but
we present it following the notation and structural derivation that
we use above for the two new LPs.

Gatti (2019). We implemented both algorithms proposed
by Celli, Coniglio, and Gatti (2019): ‘CG-LP‘, based on
a linear programming oracle, and ‘CG-MILP’, based on a
mixed integer linear programming oracle. CG-LP is guar-
anteed to compute a social-welfare-maximizing NFCCE in
polynomial time, whereas CG-MILP requires exponential
time in the worst case but was faster in practice in that prior
paper. These algorithms were implemented in AMPL and
rely on the Gurobi backend. Finally, Part (c) reports the
value of the maximum social welfare that can be attained
by NFCCE, EFCCE, and EFCE.

Comparison of Run Time

As expected, increasing the coarseness of the equilibrium
from EFCE to EFCCE to NFCCE reduces the linear pro-
gram size and results in a shorter run time. Empirically, the
NFCCE LP is up to four times faster than the EFCCE LP,
and the EFCCE LP is in turn between two to four times
faster than the EFCE LP. Furthermore, our results indicate
that the NFCCE LP that we developed (8) is two to four
orders of magnitude faster than CG-LP and CG-MILP, and
that it is able to scale to game instances up to five orders
of magnitude larger than CG-LP and CG-MILP can in 24
hours. This difference in performance is likely due, at least
in part, to the fact that the algorithms by Celli, Coniglio, and
Gatti (2019) have a number of constraints that scales with
the total number |Σ1| × |Σ2| of sequence pairs in the game,
whereas our LP formulation has a number of constraints and
variables that grows with the number of relevant sequence
pairs, which is a tiny fraction of the total number of sequence
pairs in practice.

Comparison of Maximum Social Welfare

Our results experimentally confirm Corollary 1: as the
coarseness of the equilibrium increases from EFCE to
EFCCE to NFCCE, so does the value of the maximum social
welfare that the mediator can induce. The maximum social
welfare attained by NFCCE is strictly larger than EFCCE
and EFCE in Battleship and Sheriff (Table 1), while it is the
same in Goofspiel (Table 2 in the Supplemental Material).
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Experimentally, the maximum social welfare that can be
obtained through EFCCE is often equal to the maximum so-
cial welfare that can be obtained through EFCE. While this
does not imply that the set of reachable payoffs is the same
(see Figure 3), it is an indication that EFCCE is a fairly tight
relaxation of EFCE. That, combined with the fact that it can
be solved up to four times faster than EFCE in practice, sug-
gest that this new solution concept is worthwhile.

Conclusions

In this paper we studied two instantiations of the idea of
coarse correlation in extensive-form games: normal-form
coarse-correlated equilibrium and extensive-form coarse-
correlated equilibrium. For both solution concepts, we gave
saddle-point problem formulations and linear programs.

We proved that EFCCE, which we introduced for the first
time, is an intermediate solution concept between NFCCE
and the extensive-form correlated equilibrium introduced
by von Stengel and Forges (2008). In particular, the set of
payoffs that can be reached by EFCCE is always a super-
set of those that can be reached by EFCE, and a subset of
those that can be reached by NFCCE. Empirically, EFCCE
is a fairly tight relaxation of EFCE, and a social-welfare-
maximizing EFCCE can be computed up to four times faster.
This suggests that EFCCE is a worthy solution concept.
Also, it can be a suitable and faster alternative in algorithms
that rely on EFCE as a subroutine, such as the algorithm
by Černỳ, Boỳanskỳ, and Kiekintveld (2018) for computing
a strong Stackelberg equilibrium.

Finally, we compared the run time of our algorithm
for computing a social-welfare-maximizing NFCCE, and
showed that it is two to four orders of magnitude faster than
the only previously known algorithms for that problem. Our
algorithm can also scale to game instances up to five or-
ders of magnitude larger than the prior state of the art, thus
enabling the computation of coarse-correlated solution con-
cepts in reasonably-sized extensive-form games for the first
time.
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Gilboa, I., and Zemel, E. 1989. Nash and correlated equilibria:
Some complexity considerations. Games and Economic Behavior
1:80–93.
Gordon, G. J.; Greenwald, A.; and Marks, C. 2008. No-regret
learning in convex games. In Proceedings of the 25th international
conference on Machine learning, 360–367. ACM.
Gurobi Optimization, L. 2019. Gurobi optimizer reference manual.
Koller, D.; Megiddo, N.; and von Stengel, B. 1996. Efficient com-
putation of equilibria for extensive two-person games. Games and
Economic Behavior 14(2).
Moulin, H., and Vial, J.-P. 1978. Strategically zero-sum games:
The class of games whose completely mixed equilibria cannot be
improved upon. International Journal of Game Theory 7(3-4):201–
221.
Moulin, H.; Ray, I.; and Gupta, S. S. 2014. Coarse correlated equi-
libria in an abatement game. Technical report, Cardiff Economics
Working Papers.
Romanovskii, I. 1962. Reduction of a game with complete memory
to a matrix game. Soviet Mathematics 3.
Ross, S. M. 1971. Goofspiel–the game of pure strategy. Journal of
Applied Probability 8(3):621–625.
von Stengel, B., and Forges, F. 2008. Extensive-form correlated
equilibrium: Definition and computational complexity. Mathemat-
ics of Operations Research 33(4):1002–1022.
von Stengel, B. 1996. Efficient computation of behavior strategies.
Games and Economic Behavior 14(2):220–246.

1941


