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Abstract

We focus on the scenario in which messages pro and/or
against one or multiple candidates are spread through a social
network in order to affect the votes of the receivers. Several
results are known in the literature when the manipulator can
make seeding by buying influencers. In this paper, instead,
we assume the set of influencers and their messages to be
given, and we ask whether a manipulator (e.g., the platform)
can alter the outcome of the election by adding or removing
edges in the social network. We study a wide range of cases
distinguishing for the number of candidates or for the kind
of messages spread over the network. We provide a positive
result, showing that, except for trivial cases, manipulation is
not affordable, the optimization problem being hard even if
the manipulator has an unlimited budget (i.e., he can add or
remove as many edges as desired). Furthermore, we prove
that our hardness results still hold in a reoptimization variant,
where the manipulator already knows an optimal solution to
the problem and needs to compute a new solution once a local
modification occurs (e.g., in bandit scenarios where estima-
tions related to random variables change over time).

Introduction

Nowadays, social network media are the most used, if not
the unique, sources of information. This indisputable fact
turned out to influence most of our daily actions, and also
to have severe effects on the political life of our countries.
Indeed, in many of the recent political elections around the
world, there has been evidence of the impact that false or in-
complete news spread through these media influenced the
electoral outcome. For example, in the recent US presi-
dential election, Allcott and Gentzkow (2017) and Guess,
Nyhan, and Reifler (2018) show that, on average, 92% of
Americans remembered pro-Trump false news, while 23%
of them remembered the pro-Clinton fake news. As another
example, Ferrara (2017) shows that automated accounts in
Twitter spread a considerable amount of political news in or-
der to alter the outcome of 2017 French elections. Further-
more, Alaphilippe et al. (2018) and Giglietto et al. (2018)
show that the fake news spread over the major social media
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during the 2018 political campaign in Italy is linked with the
content of the populist parties that won the elections.

In this scenario, a natural question is to understand at
which extent the spread of (mis)information on social net-
work media may alter the result of a political election. This
topic has recently received large interest in the community:
e.g., Auletta et al. (2015; 2017a; 2017b) show that, in the
case of two only candidates, a manipulator may be able to
lead the minority to become a majority by influencing the
order in which voters change their mind. Moreover, Auletta,
Ferraioli, and Greco (2018) show that, in the same previous
setting, a manipulator can lead a bare majority to consensus.
However, as showed by Auletta et al. (2019), these results
do not extend to the case with more than two candidates.

Arguably, the form of manipulation most studied in the
literature is seeding, where the manipulator has to find a set
of seed nodes from which the information (either positive
towards the desired candidate or negative towards the oppo-
nents) spreads over the network. This form of manipulation
has been largely studied in the setting with only two candi-
dates, according to various diffusion models (Kempe, Klein-
berg, and Tardos 2003; Bredereck and Elkind 2017). Only
recently, the setting with multiple candidates has been inves-
tigated. In particular, Wilder and Vorobeychik (2018) study
the manipulation of a plurality voting based election when
the information spread in the network according to an Inde-
pendent Cascade model; Corò et al. (2019) extend this result
to a linear threshold diffusion model and arbitrary scoring
rules; and Aboueimehrizi et al. (2019) allow a manipula-
tor to have imperfect information on the network. However,
all of these works still assume the manipulator only sends
messages in favour or against a single candidate. This as-
sumption is very restrictive and unrealistic when there are
multiple candidates: for a manipulator, it may be advanta-
geous to send messages not only in favour of her desired
candidate, but also in favour of a third weaker candidate to
make that the latter “steals” votes from the stronger oppo-
nents. However, Castiglioni et al. (2019) show that, when
messages about multiple candidates are allowed, then the
optimal seeding is usually hard even to approximate.

In all the above results, the network is given and the ma-
nipulator has no chance to alter the social relationships be-
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tween voters. The question we pose in this paper is “what
happens if the manipulator is the owner of the social net-
work media?”. She may indefinitely conceal a message ex-
changed among two “friend” voters, or she may reveal in-
formation spread by unknown sources (e.g., as sponsored
content or through mechanisms as friend suggestions). That
is, such a manipulator can remove or add edges in the net-
work in order to push or obstruct the diffusion of informa-
tion. Manipulations of this form have been already consid-
ered in literature: e.g., Bredereck and Elkind (2017) look at
the case of two candidates and simple information diffusion
dynamics, while Sina et al. (2015) and Auletta, Ferraioli,
and Savarese (2019) study the effect of this form of manip-
ulation in a setting where no information spread, but voters
update their votes in an iterative voting process by effect of
selfish voting.

Original Contributions. We focus on a manipulator able
to add and/or remove edges in the social network when the
information spread according to (a generalization of) the In-
dependent Cascade model, arguably the most studied diffu-
sion dynamics in the literature. We study both the case with
only two candidates and the one with multiple candidates,
and, in the latter case, we study both the simpler subcase in
which the information on the network is all about a single
candidate, and the more realistic subcase in which messages
about multiple candidates can be spread. Basically, we show
that, in any of these cases, the problem of deciding whether
a set of edges to add and/or remove in the network exists so
to make the desired candidate to win is hard. Surprisingly,
these results hold even if the manipulator has an unlimited
budget of edges to add or remove, except for the trivial set-
ting of two candidates and a single message spreading over
the network, in which the optimal solution with unlimited
budget is to remove all edges, if the message is against the
desired candidate, or to add all possible edges, otherwise.
Actually, our results are even stronger. Indeed, we prove that
it is hard to find a set of edges to add or remove that cause
an increment in the margin of victory of the desired candi-
date that is a constant (and, in some case, even polynomial)
approximation of the best possible increment that would be
achieved by adding or removing edges. 1 Tables 1 and 2,
reported in the following sections, summarize our results.
Importantly, we remark that all our results still hold if one
restricts the network to be acyclic.

Incidentally, in order to establish these results, we also
provide new results for the basic Influence Optimization
problem, that consists in maximizing or minimizing the
number of nodes that receive the information spread over the
network. We, indeed, originally prove that the minimization
(maximization, respectively) variant of the problem cannot
be approximated within any constant factor by removing

1The proof of the hardness that the problem of deciding whether
there is a strategy s.t. the probability that the desired candidate wins
the election is larger than a given threshold follows from our inap-
proximability results. Indeed, we can pad each reduction with an
opportune number of isolated nodes sending messages against the
desired candidate, in order to make the latter to win the election
only if a constant approximation exists before the padding.

(adding, respectively) a limited number of edges.
The hardness results presented in this work are a starting

point for shaping the landscape of manipulability of election
through social networks. This task is fundamental to under-
stand when and how one must design interventions to reduce
the severe effects of the spread of misinformation. Although
our results are positive, showing that manipulation is not
affordable in the worst case, we believe that the border of
manipulability can be further sharpened. We here present a
first study along this direction, looking at manipulators that
face a repotimization problem (Ausiello et al. 2012, Chap.
4) and thus answering the question “is manipulation easier
if a solution to the problem for a given instance is already
available and a local modification occurs?”. Note that this
is very common in the real world, in which the social re-
lationships among voters remain essentially stable between
an election and the next one or when one is using bandit al-
gorithms to learn the influence probabilities and estimations
slightly change during time. Surprisingly, we show that all
our hardness results are robust to the knowledge of solutions
in similar settings, since they still hold in this reoptimization
setting.

Model

Election Model. We study an election scenario modeled as
follows. We have a set of candidates C = {c0, c1, . . . , c�}
and a network of voters, represented as a weighted directed
graph G = (V,E, p), where V is the set of voters, E is
the set of direct edges, and p : V × V → [0, 1] denotes the
strength of the potential influence among voters. In partic-
ular, for each edge (u, v) where u, v ∈ V , p(u, v) returns
the strength of the influence of u on v (more details on the
influence model are discussed below). Each voter v assigns
a score, by function πv : C → N, to every candidate ci. We
assume function πv to be injective, thus returning a different
score to every candidate, formally, πv(i) �= πv(j) ∀ci, cj ∈
C. The score πv(i) models how much voter v likes candi-
date ci and induces, for voter v, a strict preference order-
ing over the candidates. Thus, πv(i) > πv(j) models that
voter v (strictly) prefers ci to cj . The election is based on
plurality voting, where every voter casts a single vote for a
single candidate, and the candidate that received the largest
number of votes wins the election. We assume voters to be
myopic, thus casting a vote for the candidate with highest
score in their preference ordering. For each candidate c ∈ C,
we denote with Vc the set of voters that rank c as first, for-
mally, Vc =

{
v ∈ V | c = argmaxci∈C πv(i)

}
. Let S ⊆ V

be a subset of voters said seeds. Every seed s sends, for
the sake of simplicity, at most one message per candidate
(our proofs can be extended to the general case). We denote
with ms = (q0, ..., q�) the message profile of s ∈ S, where
qi ∈ {+, ·,−}, with qi = + (qi = −, respectively) repre-
senting that s sends a positive (negative, respectively) mes-
sage on ci, and qi = · representing that s does not send any
message on ci. A positive message on ci increases the scores
that voters assign to it, while a negative message does the re-
verse. Let ms(i) ∈ {+, ·,−} denote the message sent by s
on ci and M = ∪s∈S ms denote the set of all the messages.
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Diffusion Model. Given a pair seeds/messages (S,M),
messages are supposed to spread over the network accord-
ing to a Multi-Issue Independent Cascade (MI-IC) model
(Bharathi, Kempe, and Salek 2007). 2 Roughly speaking, in
this model, each seed s propagates all messages in ms to
her neighbors. Then, a voter v with v �∈ S, receiving mes-
sages from s, accepts the information that these messages
carry with probability p(s, v). If voter v accepts the mes-
sages, we say that v is activated by s. In her turn, each just
activated voter v sends the received messages to her neigh-
bors u, that will be activated with probability p(v, u) if not
activated in the past. After that, voter v becomes inactive.
The process continues as long as there is some active voter
and it is repeated for every different ms independently. For-
mally, given graph G = (V,E, p), we define the live-graph
H = (V,E′), where each edge (u, v) ∈ E is included in
H with probability p(u, v). Moreover, for every s ∈ S, we
introduce a set At

ms
⊆ V composed of the active voters

at time t due to message ms. Every set At
ms

is initialized
with the seed sending the corresponding message for t = 0,
i.e., A0

ms
= {s}, and the empty set for t > 0. At every

time t ≥ 1, set At
ms

is defined as follows: for every edge
(u, v) ∈ E′, we consider the setM(u, v) ⊆M of messages
ms such that u ∈ At−1

ms
—and thus u has just been activated

by ms—and v /∈ ⋃
i<t A

i
ms

—and thus v has never been ac-
tivated by ms; then for each (u, v) such thatM(u, v) is not
empty, we add v to At

ms
for every ms ∈ M(u, v). The dif-

fusion process of message ms terminates at time Tms
when

A
Tms
ms = ∅. Finally, the cascade terminates when the diffu-

sion of every message ms terminates. A voter that activates
at some t is said influenced.

Preference Revision. When a voter v accepts the mes-
sages received by a neighbor, her preferences can change.
Denote with R ⊆ M a set of received messages. A ranking
revision function φ associates each pair (π,R) with a new
ranking π′ obtained by revising ranking π according to the
set of received messages R. We use a score-based ranking
revision function in which a positive (negative) message on
a candidate c increases (decreases) her score by σ(c) ≥ 0.
Formally, each voter updates every candidate’s score as fol-
lows: 3

πv(i)← πv(i) + σ(i) ·
(∣∣∣{ms ∈ R | ms(i) = +}

∣∣∣−
∣∣∣{ms ∈ R | ms(i) = −}

∣∣∣
)
.

2Actually, the model by Bharathi, Kempe, and Salek (2007)
focuses on a slightly different setting, namely viral marketing, in
which alternative products, in place of messages, diffuse compet-
itively over the network. Hence, our model differs from the one
by Bharathi, Kempe, and Salek (2007) since a node can send mul-
tiple messages. Apart from that, we keep all the main features of
the model by Bharathi, Kempe, and Salek (2007): it is based on in-
dependent cascade, and once a node is activated it ceases to receive
messages in next rounds.

3It is easy to see that every hardness result related to this model
keeps to hold even when we allow the same message to cause a dif-
ferent score increment (decrement) if received by different voters,
or if forwarded by different neighbors, or if sent by different seeds.

According to our assumption on πv , we require that, at the
end of the diffusion process, no pair of candidates ci, cj has
the same value of πv . This can be obtained, e.g., by breaking
ties according to some rule and slightly tilting scores so that
they satisfy the tie-break outcome. In the rest of the paper,
we assume, for simplicity, that σ(i) = 1 and we break ties in
favor of the candidate ranked last before the diffusion pro-
cess. This is equivalent to slightly perturbate the initial score
with a multiplicative factor (1− ε), where ε is a sufficiently
small positive constant, e.g., ε = 1

1+maxv,i πv(i)
, and then

apply the update rule. That is,

πv(i)← (1− ε)πv(i) +
(∣∣∣{ms ∈ R | ms(i) = +}

∣∣∣−
∣∣∣{ms ∈ R | ms(i) = −}

∣∣∣
)
.

Given a seed set S, a set M of messages, a set E of
edges, and a live graph H , we denote as π∗

v(i, S,M,E,H),
for every voter v ∈ V , the score of candidate ci at the
end of the MI-IC diffusion (i.e., after the preference re-
vision). Moreover, for each candidate c ∈ C, we de-
note with V ∗

c the set of voters for which c is ranked as
first after the preference revision, i.e., V ∗

c (S,M,E,H) ={
v | argmaxci π

∗
v(i, S,M,E,H) = c

}
. Finally, we sup-

pose that the manipulator wants c0 to win and we define the
margin of victory of (S,M,H) as

MoV(S,M,E,H) =
∣∣∣V ∗

c0(S,M,E,H)
∣∣∣−

max
c �=c0

∣∣∣V ∗
c (S,M,E,H)

∣∣∣.

Election Control Problems. We study the problem of
maximizing the increase of MoV when the manipulator can
either remove or add edges. It is not hard to see that our
hardness results extend also to the case where the manipula-
tor can both remove and add edges. 4

We next formally state the problems.
Definition 1 (ELECTION-CONTROL-BY-EDGE-REMOVAL
(ECER)). Given an election scenario (C,G, {πv}, S,M)
and budget B ∈ N ∪ {∞}, the goal is finding E′ ⊆ E
with |E′| ≤ B to remove from graph G to maximize
EH [Δ−

MoV(E
′, H)], where Δ−

MoV(E
′, H) = MoV(S,M,E \

E′, H) − MoV(S,M,E,H) is the increase of MoV due to
the removal of edges E′.
Definition 2 (ELECTION-CONTROL-BY-EDGE-ADDITION
(ECEA)). Given an election scenario (C,G, {πv}, S,M)
and budget B ∈ N ∪ {∞}, the goal is finding E′ with
E′ ∩ E = ∅ and |E′| ≤ B to add to graph G to maximize
EH [Δ+

MoV(E
′, H)], where Δ+

MoV(E
′, H) = MoV(S,M,E∪

E′, H) − MoV(S,M,E,H) is the increase of MoV due to
the addition of edges E′.

In the following, when we refer to the single-message
case, we are considering the setting in which there is a
ci ∈ C and a qi ∈ {+,−} such that ms(j) �= · implies

4It reduces to the case where the manipulator can only remove
edges setting p(·) = 0 for all the added edges.
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j = i and ms(i) = qi, i.e., all the messages are refereed to
the same candidate and are either all positive or all negative.
We use the term multi-message case, otherwise.

Influence Optimization. Incidentally, our analysis allows
us to provide results also on the (more general) influence
maximization/minimization problems when the manipulator
can either remove or add edges. To formally describe these
problems, we need to define function χ : S×E×H → R+

returning the number of influenced nodes with seeds S,
edges E and live graph H . With abuse of notation, we also
define χ(S,E) = EH [χ(S,E,H)]. Then we have the fol-
lowing two problems.
Definition 3 (INFLUENCE-MINIMIZATION-BY-EDGE-RE-
MOVAL (IMER)). Given a setting (G,S,M) and budget
B ∈ N ∪ {∞}, the goal is finding a set E′ ⊆ E with
|E′| ≤ B to remove from graph G to maximize ΔI−(E′) =
χ(S,E)− χ(S,E \ E′) .
Definition 4 (INFLUENCE-MAXIMIZATION-BY-EDGE-
ADDITION (IMEA)). Given a setting (G,S,M) and budget
B ∈ N ∪ {∞}, the goal is finding a set E′ with E′ ∩E = ∅
and |E′| ≤ B to add to graph G to maximize ΔI+(E′) =
χ(S,E ∪ E′)− χ(S,E).
Example. Let us introduce a simple example to make the
reader familiar with the above problems. Consider Figure 1,
depicting the connections among five voters.

p=1

p= 1

2

p=1 p=1

( ⋅ , + , ⋅ )

( + , ⋅ , ⋅ )

( + , ⋅ , ⋅ )C D

A

B

E

⟨0,2,1⟩

⟨2,0,1⟩

⟨1,0,5⟩ ⟨0,1,2⟩ ⟨2,0,1⟩

Figure 1: Example of an election with three candidates
(c0, c1, c2). Black nodes represent seeds: node A sends a
positive message on c1, while nodes B and E send a posi-
tive message on c0. The tuples 〈πv(0), πv(1), πv(2)〉 above
the nodes are the voters’ preferences.

Two different live-graphs H1 and H2 are possible depend-
ing on whether or not B influences C. This happens with
probability 1

2 .
In H1, B does not influence C and C receives only a pos-

itive message on c1, thus increasing the score of c1 by 1.
However, C has a very high evaluation of candidate c2 and
keeps to prefer c2 over c0 and c1. Instead, D updates her
score to 〈1, 2 − ε, 2 − 2ε〉 and will vote for c1. Thus, if B
does not diffuse the message, at election time c0 has 2 votes
(B and E), c1 has 2 votes (A and D) and c2 has one votes
(C). Hence, MoV(S,M,E,H1) = 2−max{2, 1} = 0.

In H2, B influences C and C receives a positive message
on c0 and a positive message on c1. However, C keeps to
prefer c2 over c0 and c1. Voter D receives a positive message
on c1 and two positive messages on c0, thus updating the
scores to 〈2, 2 − ε, 2 − 2ε〉 and then voting for c0. Hence,
MoV(S,M,E,H2) = 3−max{1, 1} = 2.

Results with Edge Removal

We study, in this section, the ECER and IMER problems.
Our results on the ECER problem are summarized in Ta-
ble 1 and show that, except for the trivial case with two can-
didates, unlimited budget, and a single message, the prob-
lem is hard even to approximate unless P = NP. In all our
reductions, the edges have probability 1, unless we specify
differently.

single message multiple messages,
two candidates three candidates two or more candidates

limited budget /∈ APX (Cor 1) /∈ APX (Thm 2) /∈ Exp-APX (Thm 3)
unlimited budget P (Obs 1) /∈ APX (Thm 2) /∈ Exp-APX (Thm 3)

Table 1: Complexity of election control by edge removal.

Initially, we focus on the IMER problem when one can
only remove edges, as its characterization is useful for the
characterization of the ECER problem with two candi-
dates and limited budget. We show that the IMER problem
is hard. Our proof reduces from the MAXIMUM-SUBSET-
INTERSECTION problem that does not admit any constant-
factor approximation polynomial-time algorithm unless P=
NP, as showed by Shieh, Tsai, and Yang (2012).
Definition 5 (MAXIMUM-SUBSET-INTERSECTION (MSI)).
Given a finite set N = {z1, . . . , zn} of elements, a collec-
tion X = {x1, . . . , xm} of sets with xi ⊂ N , and a positive
integer h, the goal is to find exactly h subsets xj1 , . . . , xjh
whose intersection size |xj1 ∩ . . . ∩ xjh | is maximum.
Theorem 1. For any constant ρ > 0, there is no polynomial-
time algorithm returning a ρ-approximation to IMER prob-
lem when the budget B is finite, unless P = NP.

Proof. We reduce from MSI, showing that a constant-factor
approximation algorithm for IMER implies the existence of
a constant-factor approximation for MSI, thus having a con-
tradiction unless P=NP. Given an instance (X,N) of MSI,
we build an instance of IMER as follows. For each element
zi, we add n2 m2 nodes vzi,j with j ∈ {1, . . . , n2m2}.
For each set xi ∈ X , we add two nodes vxi,1, vxi,2 and
an edge from vxi,1 to vxi,2. All vxi,1 are seeds, while each
vxi,2 has an edge to each node vzi,j , zi ∈ N \ xi with
j ∈ {1, . . . , n2m2}, i.e., all the nodes of all the elements not
in the set xi. Figure 2 depicts an example of network built
with the above mapping. The budget is set equal to m− h.

vx1,1

vx2,1

vx3,1

vx4,1

vx5,1

vx1,2

vx2,2

vx3,2

vx4,2

vx5,2

vz1,1

vz1,n2m2

vz2,n2m2

vz2,1

Figure 2: Graph used in the reduction of Theorem 1.
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Notice that, in the optimal solution, only edges from
nodes vxi,1 to vxi,2 are removed. Thus, the problem re-
duces to choose m − h sets xi ∈ X and remove the edges
from vxi,1 to vxi,2, such that as least as possible nodes vzi,j
are influenced. The optimal value is obtained by choosing
X∗ ⊂ X of cardinality h that is solution of MSI and then
removing the edges from vxi,1 to vxi,2 for all x ∈ X \X∗.
Call this set of edges E∗. If we remove edges E∗, all the
nodes vzi,j , zi ∈ ∩xi∈X∗xi are not influenced, since there
are no edges from vxi,2, x ∈ X∗ to vzi,j , as they all exist in
the complement of the bipartite graph.

The relationship between the optimal solution of IMER
and that one of MSI is ΔI−(E∗) = m− h+OPT n2 m2,
where OPT is the optimal solution to MSI. Assume by
contradiction there exists an ρ-approximation algorithm A
for IMER, where ρ ∈ (0, 1). This implies that there ex-
ists an edge set E′ such that ΔI−(E′) = m − h +
APX n2 m2, where APX is an approximation of MSI.
Since ΔI−(E′) ≥ ρΔI−(E∗), then m−h+APX n2 m2 ≥
(m−h+OPT n2 m2)ρ, and APX ≥ (m−h)(ρ−1)

n2 m2 +ρOPT .
Hence, there exists a ρ′ such that APX ≥ ρ′OPT and an
algorithm A′ for MSI with a ρ′-approximation factor.

We can state the following corollary, whose proof directly
follows from the proof of the above theorem.
Corollary 1. For any constant ρ > 0, there is not any poly-
nomial time algorithm returning a ρ-approximation to the
ECER problem when budget B is finite even with a single
message and two candidates, unless P = NP.
Proof sketch. We can build an instance of ECER with the
same graph of Theorem 1, two candidates, all nodes with
scores 〈1, 0〉 and seeds with message (−, ·). It is easy to see
that ΔMoV = 2ΔI−. Since approximating ΔI− is hard, it
follows that approximating Δ−

MoV is hard too. �
Due to the hardness of the basic case with a single mes-

sage and two candidates when the budget is finite, we fo-
cus on those problems in which the budget is unlimited
(B = ∞). Notice that, while a finite budget corresponds to
the case in which a manipulator pays a platform, in the case
in which the manipulator is the platform itself, the budget is
actually unlimited. In networks with a single message and
only two candidates, the optimal solution can be found eas-
ily. Intuitively, the problem becomes easy because we can
easily solve IMER. If we have unlimited budget, the opti-
mal solution to IMER removes all the edges. It is then easy
to extend this solution to solve the ECEA with a single mes-
sage and only two candidates: if the message is negative for
c0, e.g., q0 = − or q1 = +, we remove all edges from the
network, clearly minimizing the negative effects of the dif-
fusion of the message; if the message is positive for c0, e.g.,
q0 = + or q1 = −, since we cannot increase the diffusion
by removing edges, we do not modify the network. From the
previous arguments, we can directly state the following.
Observation 1. There exists a polynomial-time algorithm
for the ECER problem with unlimited budget, two candi-
dates, and a single message.

Now we show that extending the setting to three or more
candidates elections or to the diffusion of multiple messages

makes the problem hard. We introduce the INDEPENDENT-
SET problem, that Zuckerman (2007) proves not to be ap-
proximable to any constant factor, to prove the hardness of
the ECER with three candidates and a single message.
Definition 6 (INDEPENDENT-SET). Given a graph G =
(X,N), with |X| = m vertexes and |N | = n edges, find
the largest set of vertexes X∗ such that there is no edge con-
necting two vertexes in X∗.
Theorem 2. For any constant ρ > 0, there is no polynomial
time algorithm returning a ρ-approximation to the ECER
even with three candidates, a single message, and unlimited
budget, unless P = NP.

Proof. Given an instance of INDEPENDENT-SET, we build
an instance of election control as follows. We add a line L1

of nm−m nodes with preference 〈2, 0, 1〉 and we seed the
first node of the line with a message with q0 = q1 = ·
and q2 = +. We add a node vxi

for each node xi ∈ X
with preferences 〈2, 0, 1〉 and an edge from the last ele-
ment of the line L1 to vxi . For each element zi ∈ N ,
we add a line Lzi of m nodes with preferences 〈0, 2, 1〉
and an edge from each xj � zi to the first node of Lzi .
Moreover, we add n2 m2 isolated nodes with preferences
〈2, 1, 0〉 and n2 m2 isolated nodes with preferences 〈1, 2, 0〉.
Figure 3 depicts an example of network produced with the
above mapping. Note that, if no edge is removed, all non-
isolated voters change their preferences and vote c2, imply-
ing MoV(S,M,E,H) = 0. We prove that a constant-factor
approximation for ECER would lead to a constant-factor ap-
proximation for INDEPENDENT-SET.

⟨2,0,1⟩ ⟨2,0,1⟩

( ⋅ , ⋅ , + )

vxi

⟨2,0,1⟩

⟨0,2,1⟩ ⟨0,2,1⟩
m

mn − m

Lzi

m
⟨0,2,1⟩ ⟨0,2,1⟩

Figure 3: Graph used in the reduction of Theorem 2.

Suppose that there exists a set of edges E′, such that
Δ−

MoV(E
′) > 0. This implies that c1 looses all her votes

in non-isolated nodes, otherwise Vc0(S,M,E′, H)∗ ≤
n2 m2 − mn + m and V ∗

c1 ≥ n2 m2 − (n − 1)m. This
suggests that the optimal solution is given by the greatest in-
dependent set X∗ ⊆ X . In particular, E∗ is given by all the
edges from the last node of L1 to all vxi

with xi ∈ X∗.
Notice that the set of active nodes vxi

, xi ∈ X \ X∗ is
the complement of a maximum independent set and hence
a minimum vertex cover. Thus, removing all edges in E∗,
we obtain Δ−

MoV(E
∗) = |X∗|.

Suppose there exists a ρ-approximation algorithm A for
the ECER problem that removes edges E′. This implies that
Δ−

MoV(E
′) ≥ ρΔ−

MoV(E
∗), where E′ is the set of the edges

removed by algorithm A. Since Δ−
MoV(E

′) > 0, A removes
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only edges from L1 to vxi since, if it removes edges between
nodes in L1, we would have Δ−

MoV(E
′) ≤ 0. Moreover, all

lines Lzi must be active. Hence, the active vertexes vxi
are

a vertex cover and the inactive vertexes in vxi
are an inde-

pendent set. We remark that the value of Δ−
MoV(E

′) is ex-
actly the number of inactive vertexes, i.e., the vertexes in the
independent set. Thus, if there exists a ρ-approximation al-
gorithm for ECER, there exists a ρ approximation algorithm
for INDEPENDENT-SET, leading to a contradiction.

We now focus on the case in which there are multiple mes-
sages spreading in the network and only two candidates. We
introduce the SET-COVER problem, that is well known to be
hard, to prove the hardness of the ECER problem even with
two candidates and multiple messages.
Definition 7 (SET-COVER). Given a set N = {z1, . . . , zn}
of n elements, a collection X = x1, . . . , xm of sets with
xi ⊂ N , and a positive integer h, the objective is to select a
collection X∗ ⊂ X , |X∗| ≤ h with ∪xi∈X∗xi = N .
Theorem 3. For any ρ > 0, there is no polynomial time
algorithm returning a ρ-approximation to the ECER even
with two candidates and unlimited budget, unless P = NP.

Proof. Consider an instance of SET-COVER. We suppose,
w.l.o.g., n > m and build a graph as follows. We add a node
v1 with preferences 〈1, 0〉 and seeded with messages q0 = +
and q1 = −, a node v2 with preferences 〈1, 0〉 and seeded
with message q0 = −, and an edge between v1 and v2. We
add a line L1 of n2−h−1 nodes with preferences 〈1, 0〉 and
an edge of probability 1

2 from v1 to the first node of the line
and an edge from v2 to the first node of the line. Moreover
we seed the first node of the line with message q1 = +. We
add a node vxi for each set xi ∈ X with preferences 〈1, 0〉
and an edge from the last element of the line L1 to vxi

. For
each element zi ∈ N , we add a line Lzi of n nodes with
preference 〈0, 1〉 and an edge from each xj ∈ zi to the first
node of Lzi . Moreover, we add m−h+1 isolated nodes with
preferences 〈0, 1〉. Figure 4 depicts an example of network
produced with the above mapping. Note that, if no edge is
removed, all the voters do not change their preferences and
MoV = 0. We prove that Δ−

MoV is larger than 0 if and only
if SET-COVER is satisfiable.

⟨1,0⟩

⟨1,0⟩

( + , − )

vxi

⟨1,0⟩

⟨0,1⟩

⟨1,0⟩
n2 − h − 1

Lzi

nv1

( − , ⋅ )
v2

⟨1,0⟩

1

2

( ⋅ , + ) L1

⟨0,1⟩

⟨0,1⟩
n

⟨0,1⟩

Figure 4: Graph used in the reduction of Theorem 3.

If. Define the set of removed edges E∗ as composed by
the edge between v2 and L1 and the incoming edge of each
vxi

with xi ∈ X \X∗. We have two possible live graphs: H1

if the edge between v1 and L1 is active, H2 otherwise. Thus,

Δ−
MoV(E

∗, H1) = 2n2 and Δ−
MoV(E

∗, H2) = 2(−n2 + h+

1− h) = −2n2 + 2. Hence, Δ−
MoV(E

∗) = 1.
Only if. Suppose we do not remove neither the edge from

v1 towards v2 nor the edge from v2 towards L1. In this case,
no voter changes her vote from c1 to c0 since all the nodes
that votes for c1 receive messages q0 = +, q0 = −, q1 = +,
and q1 = −. Thus, one of the two aforementioned edges
should be removed. It easy to see that removing the edge
from v2 to L1 is the best choice. Since c0 must take some
of the votes of c1, the message in v1 must reach at least
some lines in Lz and no edges must be removed in L1. We
have two possible live graphs: H1 if the edge between v1
and L1 is active, H2 otherwise. Assume by contradiction
that in H1 not all lines Lz vote for c0. This implies that
Δ−

MoV(E
∗) ≤ 2(n(n−1))−2(n2+h+1)

2 < 0, where E∗ is the
set of removed edges. Hence, in H1, all line Lz must be ac-
tive and Δ−

MoV(E
∗, H1) = 2n2. In H2, Δ−

MoV(E
∗) must be

larger than −2n2 + 1 and at most h nodes vzi can be active.
Thus, there exists a set cover of size h.

Results with Edge Addition

We study, in this section, the ECEA and IMEA problems.
Our results on the ECEA problem are summarized in Ta-
ble 2. Basically, the complexity of the ECEA problem is the
same as for ECER. Some proofs in this section are omitted.
We refer the interested reader to the supplementary material.

single message multiple messages
two candidates three candidates two or more candidates

limited budget /∈ APX (Cor 2) /∈ Exp-APX (Thm 5) /∈ Exp-APX (Thm 6)
unlimited budget P (Obs 2) /∈ Exp-APX (Thm 5) /∈ Exp-APX (Thm 6)

Table 2: Complexity of election control by edge addition.

Initially, we study the complexity of IMEA problem with
a finite budget. First, we notice that the APX-hardness of the
IMEA problem directly follows from the APX-hardness of
the influence maximization problem by seeding. In fact, the
seeding problem with network G(V,E, p) and budget B is
equivalent to the add-addition problem with the same graph,
except for an additional isolated node v1, that is the only
seed, in which we can add at most B edges and the proba-
bilities p of the new (added) edges are all zero except for the
edges connecting v1 to the nodes of V , whose probabilities
p are one. We improve this result, showing that the IMEA
problem is harder to approximate than influence maximiza-
tion by seeding. Indeed, IMEA cannot be approximated to
any constant factor, unless P = NP, while influence maxi-
mization by seeding can be. In our proof, we reduce from the
maximization version of SET-COVER, called MAX-COVER.
Definition 8 (MAX-COVER). Given a finite set N =
{z1, . . . , zn} of elements, a collection X = {x1, . . . , xm}
of sets with xi ⊂ N , and h ∈ N

+, the objective is to select
X∗ ⊂ X , with |X∗| ≤ h, that maximizes |∪xi∈X∗xi|.

Feige (1998) proves that deciding whether in an instance
of MAX-COVER all the elements can be covered or at most
a (1− 1

e + ε) fraction of them is NP-hard for any ε > 0.
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Theorem 4. For any constant ρ > 0, there is no polynomial
time algorithm returning a ρ-approximation to the IMEA
problem when B is finite, unless P = NP.

Proof. Consider an instance of MAX-COVER. We assume,
w.l.o.g., m < n and we build an instance of IMEA as
follows: for each i in {1, . . . , n8}, we add a node vi, a
node vi,xj for each xj ∈ X and a node vi,zt for each
zt ∈ N . Moreover, we add an edge from each vi,xj to each
vi,zt , zt ∈ xj with probability 1 and an edge from vi,zt to
vi+1 with probability 1 − 1

n
8
n

. We add a node vn8+1 and

an edge with probability 1 towards n10 nodes. Call the sub-
graph composed by these nodes G′. The resulting graph is
depicted in Figure 5. The only seed is v1, and the only edges
that can be added are the edges between vi and vi,xj

, xj ∈ X

with probability one. The budget is hn8. If MAX-COVER is
satisfiable, i.e., there exists a set X∗ that covers all the el-
ements, there exists a solution E∗ to IMEA in which for
each i ∈ {1, . . . , n8} we add the edges from vi to h vi,xj

such that if vi is active then all vi,zt are active. In this case,
ΔI+(E∗) is larger than the expected influence on the sub-
graph G′, i.e., ΔI+ > [1−( 1

n
8
n
)n]n

8

n10 ≥ [1− 1
n8 ]

n8

n10 >

( 1e − ε)n10 for all ε > 0 and n large enough. Suppose
each cover of size at most h cover at most 3

4 . It implies that
at least n8

h+1 nodes vi have at most h outwards edges and
thus they leave at least 1

4 vertexes vi,zt without incoming
edges. Thus the probability of activating G′ is smaller than

[1−( 1

n
8
n
)n]

hn8

h+1 [1−( 1

n
8
n
)

3n
4 ]

n8

h+1 ≤ 1

e
h

h+1

1

e
n2
h+1

= 1

e
h+n2

h+1

≤
e−n. and ΔI+(E′) ≤ n8(n+m+1)+1+e−nn10. Clearly
ΔI+(E′)
ΔI+(E∗) < ρ, for each ρ > 0 and n sufficiently large.
Hence, a ρ-approximation algorithm for IMEA implies that
we can distinguish between satisfiable instances of MAX-
COVER and instances in which at most 3

4 of the elements are
covered, leading to a contradiction.

v1,xi

v1

v1,zi

v2 vn8

vn8,xi

vn8,zi

vn8+1

n10

1
− 1
n 8n

1
−

1

n
8 n

Figure 5: Graph used in the reduction of Theorem 4.

Now we can state the following result, whose proof is di-
rect from the proof of the above theorem.
Corollary 2. For any constant ρ > 0, there is not any poly-
nomial time algorithm returning a ρ-approximation to the
ECEA when B is finite even with a single message and two
candidates unless P = NP.

Thus, we focus on the case with unlimited budget. Since
the maximum influence is reached when the network is fully

connected, the optimal solution to IMEA with unlimited
budget adds all the non-existing edges to the network and
thus can be computed in polynomial time. An argument sim-
ilar to the one used for edge removal shows that ECEA with
unlimited budget, two candidates, and a single message is
easy. In particular, if the message is positive for c0, i.e.,
q0 = + or q1 = −, we aim at maximizing the diffusion
of the message and we add all the edges. If the message is
negative for c0, i.e., q0 = − or q1 = +, we aim at minimiz-
ing the diffusion and we do not remove any edge. From the
previous arguments, we can directly state the following.
Observation 2. There exists a polynomial-time algorithm
for the ECEA problem with unlimited budget, two candi-
dates, and a single message.

Next, we prove that increasing the number of candidates
or allowing multiple messages makes the problem hard5.
Theorem 5. For any ρ > 0, there is not any polynomial
time algorithm returning a ρ-approximation to the ECEA
even with three candidates, a single message, and unlimited
budget, unless P = NP.

Theorem 6. For any ρ > 0, there is not any polynomial time
algorithm returning a ρ-approximation to the ECEA even
with two candidates and unlimited budget, unless P = NP.

Hardness of Reoptimization

We show that our hardness results are robust to a manipula-
tor that knows a solution to a similar problem. Specifically,
we consider the following reoptimization setting.
Definition 9. An election control reoptimization problem
ReOpt(I, E∗, e, o) is defined as follows.
• INPUT: (I, E∗, e, o), where I is an instance of election

control, E∗ is an optimal solution to I , e ∈ V×V is an
edge and o ∈ [0, 1] is a probability.

• OUTPUT: the optimal solution to I1, where I1 is obtained
changing the probability of edge e to o in the instance I .
The following theorem shows a general result, that ex-

tends the hardness of the optimization problem to its reopti-
mization variant whenever a simple condition is satisfied.
Theorem 7. For the set of election control problems I with
maxv{maxci πv(i)−minci πv(i)} = O(poly(size(I))), re-
optimization is as hard as optimization.

Proof. Consider an instance I of election control with
G = (V,E, p). By assumption d = maxv[maxci πv(i) −
minci πv(i)] = O(poly(size(I))), i.e., d is polynomially
upper bounded in the instance size. We build a graph G1

with d + 1 nodes {vi}, i ∈ {0, . . . , d} with seeds q0 = +.
We add a node v∗1 with an edge from each node in vi to v∗1 .
We add a node v∗2 with an edge from v∗1 to v∗2 . Moreover, we
add an edge from v∗2 to any node of G. In edge addition in-
stances, we set p = 0 for all (non-existing) edges among vi
and G. Finally, we set the preferences of v0 and vi s.t. they
will vote for c0, i.e., π(0) > π(i) holds for every ci �= c0.

5The proof of the results are in (Castiglioni, Ferraioli, and Gatti
2019)
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Notice that, since all nodes in G receive d + 1 posi-
tive messages on c0 and c0 is loosing by at most d in
each preferences, all nodes will vote for c0. Thus the opti-
mal solution removes/adds no edges. Consider the problem
ReOpt(I, ∅, (v∗1 , v∗2), 0), its optimal solution is the optimal
solution of the optimization problem over I .

In the reductions used in the proofs of all the theorems
provided in the previous sections, maxv{maxci πv(i) −
minci πv(i)} is constant. Hence, as a corollary of Theo-
rem 7, we have that all our hardness results on optimization
problems extend to their reoptimization variants.
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