
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Fair Division of Mixed Divisible and Indivisible Goods

Xiaohui Bei,1 Zihao Li,2 Jinyan Liu,3 Shengxin Liu,1∗ Xinhang Lu1

1School of Physical and Mathematical Sciences, Nanyang Technological University
2Institute for Interdisciplinary Information Sciences, Tsinghua University

3Department of Computer Science, The University of Hong Kong
{xhbei, sxliu}@ntu.edu.sg, xinhang001@e.ntu.edu.sg, zh-li16@mails.tsinghua.edu.cn, jyliu@cs.hku.hk

Abstract

We study the problem of fair division when the resources con-
tain both divisible and indivisible goods. Classic fairness no-
tions such as envy-freeness (EF) and envy-freeness up to one
good (EF1) cannot be directly applied to the mixed goods
setting. In this work, we propose a new fairness notion envy-
freeness for mixed goods (EFM), which is a direct general-
ization of both EF and EF1 to the mixed goods setting. We
prove that an EFM allocation always exists for any number
of agents. We also propose efficient algorithms to compute an
EFM allocation for two agents and for n agents with piece-
wise linear valuations over the divisible goods. Finally, we
relax the envy-free requirement, instead asking for ε-envy-
freeness for mixed goods (ε-EFM), and present an algorithm
that finds an ε-EFM allocation in time polynomial in the num-
ber of agents, the number of indivisible goods, and 1/ε.

1 Introduction

Fair division studies the allocation of scarce resources
among interested agents, with the objective of finding an
allocation that is fair to all participants involved. Initiated
by (Steinhaus 1948), the study of fair division has since been
attracting interests from various disciplines for decades, in-
cluding among others, mathematics, economics, and com-
puter science (Brams and Taylor 1996; Robertson and Webb
1998; Moulin 2003; Thomson 2016; Moulin 2019).

The literature of fair division can be divided into two
classes, categorized by the type of the resources to be al-
located. The first class assumes the resource to be heteroge-
neous and infinitely divisible. The corresponding problem is
commonly known as cake cutting. One of the most promi-
nent fairness notions in this setting is envy-freeness (EF). An
allocation is said to be envy-free if each agent prefers her
own bundle to any other bundle in the allocation. An envy-
free allocation with divisible resources always exists (Alon
1987; Su 1999) and can be found via a discrete and bounded
protocol (Aziz and Mackenzie 2016a).

The second class considers the fair allocation of indivis-
ible goods. Note that envy-freeness may fail to exist in the

∗corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

indivisible goods setting.1 To circumvent this problem, re-
laxations of envy-freeness have been studied. One of the
commonly considered relaxations is envy-freeness up to one
good (EF1) (Lipton et al. 2004; Budish 2011). An allocation
is said to satisfy EF1 if no agent prefers the bundle of an-
other agent following the removal of some good in the latter
bundle. An EF1 allocation with indivisible goods always ex-
ists and can be found in polynomial time (Lipton et al. 2004;
Caragiannis et al. 2019).

The vast majority of the fair division literature assumed
that the resources either are completely divisible, or consist
of only indivisible goods. However, this is not always the
case in many real-world scenarios. In heritage division, for
example, the inheritances to be divided among the heirs may
contain divisible goods such as land and money, as well as
indivisible goods such as houses, cars, and artworks. What
fairness notion should one adopt when dividing such mixed
type of resources? While EF and EF1 both work well in their
respective settings, neither of them can be directly applied to
this more general scenario.2 Another tempting solution is to
divide the divisible and indivisible resources using EF and
EF1 protocols separately and independently, and then com-
bine the two allocations together. This approach, however,
also has problems. Consider a simple example where two
agents need to divide a cake and an indivisible item. EF1 re-
quires to allocate the indivisible item to one of the agent, say
agent 1 for example. However, if we then divide the cake us-
ing an arbitrary EF allocation, the overall allocation might be
unfair to agent 2 who does not receive the indivisible item. In
fact, if the whole cake is valued less than the item, it would
make more sense to allocate the cake entirely to agent 2.
When the cake is valued more than the item, it is still a fairer
solution to allocate more cake to agent 2 in order to compen-
sate her disadvantage in the indivisible resource allocation.

1Consider the case where there are two agents but only a single
valuable good to be allocated.

2On the one hand, an EF allocation may not exist, when, for
example, all goods are indivisible. On the other hand, an EF1 al-
location may result in extreme unfairness when most resources are
divisible. Consider the example where there is only one divisible
good to be allocated. Giving the whole good to a single agent is
EF1 but is obviously very unfair.

1814

This demonstrates that it is not straightforward to general-
ize EF and EF1 to the mixed goods setting. Dividing mixed
types of resources calls for a new fairness notion that could
unify EF and EF1 together to the new setting in a natural and
nontrivial way.

1.1 Our Results

In this work, we initiate the study of fair division with mixed
types of resources. More specifically, we propose a new fair-
ness notion, denoted as envy-freeness for mixed goods (short
for EFM), that naturally combines EF and EF1 together and
works for the setting where the resource may contain both
divisible and indivisible goods. Intuitively, EFM requires
that for each agent, if her allocation consists of only indi-
visible items, then others will compare their bundles to hers
using EF1 criterion; but if this agent’s bundle contains any
positive amount of divisible resources, others will compare
their bundles to hers using the more strict EF condition. This
definition generalizes both EF and EF1 to the mixed goods
setting and strikes a natural balance between the two fairness
notions.

In Section 3, we first show that with mixed types of goods,
an EFM allocation always exists for any number of agents.
Our proof is also constructive and gives an algorithm for
computing such an EFM allocation. The algorithm requires
a perfect allocation for cake cutting oracle and can compute
an EFM allocation in polynomial number of steps. In ad-
dition, in Section 4, we present two algorithms that could
compute an EFM allocation for two special cases without
using the perfect allocation oracle: (1) two agents with gen-
eral valuations in the Robertson-Webb model, and (2) any
number of agents with piecewise linear valuation functions.

While it is still unclear to us whether in general an EFM
allocation can be computed in finite steps in the Robertson-
Webb model, in Section 5, we turn our attention to approx-
imations and define the notion of ε-EFM. We then give an
algorithm to compute an ε-EFM allocation in the Robertson-
Webb model with running time polynomial in the number
of agents n, the number of indivisible goods m, and 1/ε.
This is an appealing result in particular due to its polyno-
mial time complexity. Bounded exact EFM protocol, even
if exists, would require a large number of queries and cuts.
This is because in the special case when resources are all
divisible, EFM reduces to EF in cake cutting, for which the
best known protocol (Aziz and Mackenzie 2016a) has a very
high query complexity (a tower of exponents of n). This re-
sult shows that if one is willing to allow a small margin of
errors, such an allocation could be found much more effi-
ciently.

1.2 Related Work

As we mentioned, most previous works in fair division are
from two categories based on whether the resources to be
allocated are divisible or indivisible.

When the resources are divisible, the existence of an envy-
free allocation is guaranteed (Alon 1987), even with n − 1
cuts (Su 1999). Brams and Taylor (1995) gave the first fi-
nite (but unbounded) envy-free protocol for any number
of agents. Recently, Aziz and Mackenzie (2016b) gave the

first bounded protocol for computing an envy-free alloca-
tion with four agents and their follow-up work extended
the result to any number of agents (Aziz and Mackenzie
2016a). Besides envy-freeness, other classic fairness no-
tions include proportionality and equitability, both of which
have been studied extensively (Dubins and Spanier 1961;
Even and Paz 1984; Edmonds and Pruhs 2006; Cechlárová
and Pillárová 2012; Procaccia and Wang 2017).

When the resources are indivisible, none of the afore-
mentioned fairness notions guarantees to exist, thus relax-
ations are considered. Among other notions, these include
envy-freeness up to one good (EF1), envy-freeness up to any
good (EFX), maximin share (MMS), etc. (Lipton et al. 2004;
Budish 2011; Caragiannis et al. 2019). An EF1 allocation
always exists and can be efficiently computed (Lipton et al.
2004; Caragiannis et al. 2019). However, the existence for
EFX is still open (Caragiannis et al. 2019) except for special
cases (Plaut and Roughgarden 2018). As for MMS, there ex-
ist instances where no allocation satisfies MMS. However,
an approximation of MMS always exists and can be effi-
ciently computed (Kurokawa, Procaccia, and Wang 2018;
Amanatidis et al. 2017; Ghodsi et al. 2018; Garg and Taki
2019).

Several other works studied the allocation of both indi-
visible goods and money, with the goal of finding envy-free
allocations (Maskin 1987; Alkan, Demange, and Gale 1991;
Klijn 2000; Meertens, Potters, and Reijnierse 2002; Halpern
and Shah 2019). Money can be viewed as a homogeneous
divisible good which is valued the same across all agents.
In our work, we consider a more general setting with het-
erogeneous divisible goods. Moreover, these works focused
on finding envy-free allocations with the help of sufficient
amount of money, which is again different from our goal.

2 Preliminaries

We consider a resource allocation setting with both divisible
and indivisible goods (mixed goods for short). Denote by
N = {1, 2, . . . , n} the set of agents, M = {1, 2, . . . ,m}
the set of indivisible goods, and D = {D1, D2, . . . , D�} the
set of � heterogeneous divisible goods or cakes. Since the
fairness notion we propose below does not distinguish pieces
from different cakes, without loss of generality, we assume
each cake Di is represented by the interval [i−1

� , i
�],

3 and use
a single cake C = [0, 1] to represent the union of all cakes.4

Each agent i has a nonnegative utility ui(g) for each
indivisible good g ∈ M . Agents’ utilities for subsets of
indivisible goods are additive, meaning that ui(M

′) =∑
g∈M ′ ui(g) for each agent i and subset of goods M ′ ⊆

M . Each agent i also has a density function fi : [0, 1] �→
R

+ ∪ {0}, which captures how the agent values different
parts of the cake. The value of agent i over a subset of the
cake S ⊆ [0, 1] is defined as ui(S) =

∫
S
fi dx.

3We assume that agents’ valuation functions over the cakes are
nonatomic. Thus we can view two consecutive cakes as disjoint
even if they intersect at one boundary point.

4Sometimes we will use an arbitrary interval [a, b] to denote the
resource for simplicity; this can be easily normalized back to [0, 1].

1815

Denote by M = (M1,M2, . . . ,Mn) the partition of M
into bundles such that agent i receives bundle Mi. Denote
by C = (C1, C2, . . . , Cn) the division of cake C such that
Ci ∩ Cj = ∅ and agent i receives Ci, a union of finitely
many intervals. An allocation of the mixed goods is defined
asA = (A1, A2, . . . , An) where Ai = Mi∪Ci is the bundle
allocated to agent i. Agent i’s utility for the allocation is then
defined as ui(Ai) = ui(Mi) + ui(Ci). We assume without
loss of generality that agents’ utilities are normalized to 1,
i.e., ui(M ∪ C) = 1 for all i ∈ N .

Next, we define the fairness notions used in this paper.

Definition 2.1 (EF). An allocationA is said to satisfy envy-
freeness (EF) if for any agents i, j ∈ N , ui(Ai) ≥ ui(Aj).

Definition 2.2 (EF1). With indivisible goods, an allocation
A is said to satisfy envy-freeness up to one good (EF1), if for
any agents i, j ∈ N , there exists g ∈ Aj such that ui(Ai) ≥
ui(Aj \ {g}).

Neither EF nor EF1 alone is a suitable definition for mixed
goods. In this paper we introduce the following new fairness
notion.

Definition 2.3 (EFM). An allocation A is said to satisfy
envy-freeness for mixed goods (EFM), if for any agents
i, j ∈ N ,

• if agent j’s bundle consists of only the indivisible goods,
there exists g ∈ Aj such that ui(Ai) ≥ ui(Aj \ {g});

• otherwise, ui(Ai) ≥ ui(Aj).

The intuition behind EFM is that any envy that an agent i
has towards another agent j may be eliminated by removing
some resources from j’s bundle. It is easy to see that when
the goods are all divisible, EFM reduces to EF; when goods
are all indivisible, EFM reduces to EF1. Therefore EFM is
a natural generalization of both EF and EF1 to the mixed
goods setting.

Next, we define ε-EFM which is a relaxation of EFM.
Note that this definition only relaxes the EF condition for
the divisible goods; the EF1 condition is not relaxed.

Definition 2.4 (ε-EFM). An allocation A is said to satisfy
ε-envy-freeness for mixed goods (ε-EFM), if for any agents
i, j ∈ N ,

• if agent j’s bundle consists of only the indivisible goods,
there exists g ∈ Aj such that ui(Ai) ≥ ui(Aj \ {g});
• otherwise, ui(Ai) ≥ ui(Aj)− ε.

Finally, we describe the Robertson-Webb (RW) query
model (Robertson and Webb 1998), which is a standard
model in cake cutting. In this model, an algorithm is allowed
to interact with the agents via two types of queries:

• Evaluation: A valuation query of agent i on [x, y] returns
ui[x, y].

• Cut: A cut query of β for agent i from x that returns a
point y such that ui[x, y] = β.

In this paper, we assume each query in the RW model
takes unit time.

All omitted proofs can be found in the full version of this
paper (Bei et al. 2019).

3 EFM: Existence

Although EFM is a natural generalization of both EF and
EF1, it is not straightforward whether an EFM allocation
would always exist with mixed goods. In this section, we
prove through a constructive algorithm that with mixed
goods and any number of agents, an EFM allocation always
exists.

We first give some definitions which will be helpful for
our algorithm and proofs.

Perfect Allocation. Our algorithm will utilize the concept
of perfect allocation in cake cutting.

Definition 3.1 (Perfect allocation). A partition C =
(C1, C2, . . . , Ck) of cake C is said to be perfect if for all
i ∈ N, j ∈ [k], ui(Cj) = ui(C)/k.

Intuitively, a perfect allocation in cake cutting divides the
cake into k pieces, such that every agent values these k
pieces equally. It is known that a perfect allocation always
exists for any number of agents and any k (Alon 1987). In
the following, we will assume that our algorithm is equipped
with an oracle PERFECTALLOC(C, k) that could return us a
perfect allocation for any k and cake C.

Envy Graph and Addable Set. We also make use of the
envy graph to capture the envy relation among agents in an
allocation.

Definition 3.2 (Envy graph). Given an allocationA, its cor-
responding envy graph G = (N,Eenvy ∪ Eeq) is a directed
graph, where each vertex represents an agent, and Eenvy and
Eeq consist of the following two types of edges, respectively:

• Envy edge: i ENVY−−−→ j if ui(Ai) < ui(Aj);

• Equality edge: i EQ−−→ j if ui(Ai) = ui(Aj).

Moreover, a cycle in an envy graph is called an envy cycle
if it contains at least one envy edge. The concepts of envy
edge and equality edge were also used in (Klijn 2000).

Based on the envy graph, we define another useful con-
cept called addable set which corresponds to a specific
group of agents.

Definition 3.3 (Addable set). Given an envy graph, a set of
agents S ⊆ N forms an addable set if,

• there is no envy edge between any pair of agents in S;
• there exists neither envy edge nor equality edge from any

agent in N \ S to any agent in S.

Intuitively, agents in the addable set S can be allocated
some cake without creating new envy, since each agent in
N \ S strictly values her own bundle more than the bundles
of agents in S.

3.1 The Algorithm

The complete algorithm to compute an EFM allocation is
shown in Algorithm 1.

In general, our algorithm always maintains a partial al-
location that is EFM. We then repeatedly and carefully add
resources to the partial allocation, until all resources are al-
located. We start with an EF1 allocation of only indivisible

1816

Algorithm 1 EFM Algorithm
Require: Agents N , indivisible goods M and cake C.

1: Find an arbitrary EF1 allocation of M to n agents, de-
noted by (A1, A2, . . . , An).

2: Construct envy graph G = (N,Eenvy ∪ Eeq).
3: while C
= ∅ do
4: if there exists an addable set S then
5: // cake-adding phase
6: if S = N then
7: Find an EF allocation (C1, C2, . . . , Cn) of C.
8: C ← ∅
9: Add Ci to bundle Ai for all i ∈ N .

10: else
11: δi ← minj∈S ui(Ai)− ui(Aj) ∀i ∈ N \ S
12: if ui(C) < |S| · δi ∀i ∈ N \ S then
13: C ′ ← C,C ← ∅
14: else
15: Suppose C = [a, b]. Let xi be the point such

that ui([a, xi]) = |S| · δi for all i ∈ N \ S.
16: i∗ ← argmini∈N\S xi

17: C ′ ← [a, xi∗], C ← C \ C ′
18: end if
19: Let (C1, . . . , Ck) = PERFECTALLOC(C ′, k)

where k = |S|.
20: Add Ci to the bundle of the ith agent in S.
21: Update envy graph G accordingly.
22: end if
23: else
24: // envy-cycle-elimination phase
25: Let T be an envy cycle in the envy graph.
26: For each agent j ∈ T , give agent j’s whole bundle

to agent i who points to her in T .
27: Update envy graph G accordingly.
28: end if
29: end while
30: return (A1, A2, . . . , An)

goods to all agents in Step 1, and next construct a corre-
sponding envy graph in Step 2. Then, our algorithm executes
in rounds (Steps 3-29). In each round, we try to distribute
some cake to the partial allocation while ensuring the partial
allocation to be EFM. Such distribution needs to be done
carefully because once an agent is allocated with a positive
amount of cake, the fairness condition with regard to her
bundle changes from EF1 to EF, which is more demanding.
We repeat the process until the whole cake is allocated.

In each round of Algorithm 1, depending on whether there
is an addable set S that can be added some cake in Step 4,
we execute either the cake-adding phase (Steps 4-22) or the
envy-cycle-elimination phase (Steps 23-28).

• In the cake-adding phase, we have an addable set S. By
its definition, each agent in N \ S strictly values her own
bundle more than the bundles of agents in S. Thus there
is room to allocate some cake C ′ to agents in S. We care-
fully select C ′ to be allocated to S such that it does not
create new envy among the agents. More specifically, we
choose a piece of cake C ′ ⊆ C to be perfectly allocated

to S in Steps 11-18 so that no agent in N will envy agents
in S after distributing C ′ in Steps 19-20.

• In the envy-cycle-elimination phase, i.e., when there does
not exist any addable set, we show that in this case there
must exist an envy cycle T in the current envy graph. We
can then apply the envy-cycle-elimination technique to re-
duce some existing envy from the allocation by rearrang-
ing the bundles along T . More specifically, for each agent
j ∈ T , we give agent j’s bundle to agent i who points to
her in T (shown in Step 26).

We remark that when all goods are indivisible, our algo-
rithm performs Steps 1-2 and terminates with an EF1 alloca-
tion (which is also EFM). When the whole good is a divisible
cake, the algorithm goes directly to Step 7 and ends with an
EF allocation of the cake, which is again EFM.

In the following we prove the correctness of this algorithm
and analyze its running time.

3.2 Analysis

Our main result for the EFM allocation is as follows:

Theorem 3.4. An EFM allocation always exists for any
number of agents and can be found by Algorithm 1 with a
perfect allocation oracle in polynomial time.

To prove Theorem 3.4, we first show the following invari-
ants maintained by Algorithm 1 during its run.

Invariants:

• A1. In each round there is either an addable set for the
cake-adding phase or an envy cycle for the envy-cycle-
elimination phase.
• A2. The partial allocation is always EFM.

Correctness.

Lemma 3.5. Algorithm 1 always returns an EFM allocation
upon termination.

Proof. By Invariant A2, it suffices to prove that all goods
are allocated when Algorithm 1 terminates. All indivisible
goods are allocated in Step 1. Then the while loop (Steps 3-
29) terminates only when the cake is also fully allocated, as
desired.

Termination and Time Complexity. We use the number
of envy and equality edges in the envy graph as a potential
function to bound the running time of this algorithm.

Lemma 3.6. After the algorithm completes a cake-adding
phase, the number of envy edges never increases. If the piece
of cake to be allocated is not the whole remaining cake, the
number of equality edges strictly increases.

Proof. We first look at the case in Steps 6-9. By the defini-
tion of addable set, it is easy to see that when S = N , the
current envy graph does not contain any envy edge. This im-
plies that the current partial allocation is EF. Adding an EF
allocation of the cake on top of it (Step 9) will not introduce
any new envy edge in the envy graph.

1817

Next we consider the case S
= N (Steps 10-22). We start
with agents in S. Since only agents in S are allocated new re-
sources in this round, no envy edge will be introduced from
S to N \ S. Moreover, Algorithm 1 adds a perfect alloca-
tion of a piece of cake to S (Steps 19-20). Hence the utility
difference between the bundles of any pair of the agents in
S will not change, meaning that the set of (equality) edges
among agents in S stays the same.

For agents in N \ S, as their bundles remain the same,
the set of edges among agents in N \ S remain unchanged.
Finally we analyze the edges from agents in N \S to agents
in S. Because δi = minj∈S ui(Ai)− ui(Aj) represents the
minimum utility difference between any agent i ∈ N \S and
any agent j ∈ S (as in Step 11). According to our algorithm,
each agent j ∈ S is added to a piece of cake Cj that satisfies
ui(Cj) ≤ δi for all i ∈ N \ S. Hence there will be no new
envy edge introduced from N \ S to S.

In addition, when the piece of cake to be allocated to
agents in S is not the whole remaining cake (Steps 14-17).
Based on how we choose i∗ in Step 16, after we add the
cake, at least one equality edge will be generated in the envy
graph from agent i∗ to some agent j ∈ S. Thus Lemma 3.6
follows.

Lemma 3.7. After the algorithm completes an envy-cycle-
elimination phase, the number of envy edges strictly de-
creases.

Proof. In the envy-cycle-elimination phase, an envy cycle T
is eliminated by giving agent j’s bundle to agent i for each
edge i ENVY−−−→ j or i EQ−−→ j in the cycle. This process does not
affect the bundles of agents in N \ T , hence the set of envy
edges among them remains the same. In addition, since we
only swap bundles in this phase, no new envy edge will be
introduced between agents in N \T and agents in T . Finally,
every agent i ∈ T gets a weakly better bundle. Also because
T contains at least one envy edge, that envy edge will be
eliminated after the phase.

Lemma 3.8. Algorithm 1 terminates in polynomial time
with O(n4) calls to the perfect allocation oracle.

Proof. By Invariant A1, each round in Algorithm 1 is ei-
ther a cake-adding phase round or an envy-cycle-elimination
phase round. According to Lemmas 3.6 and 3.7, the number
of envy edges never increases, and strictly decreases in the
envy-cycle-elimination phase. Moreover, an envy graph with
n agents has O(n2) envy edges. Thus the total number of
envy-cycle-elimination phase rounds is bounded by O(n2).

We now upper bound the number of cake-adding phase
rounds between any two consecutive envy-cycle-elimination
phase rounds. If the whole remaining cake is allocated
(Step 7), Algorithm 1 terminates. We note that Step 7 can
be implemented by calling PERFECTALLOC(C, n) once. In
the case that a piece of remaining cake is allocated, by
Lemma 3.6, the number of equality edges strictly increases.
Because the total number of equality edges is also O(n2),
this means the number of cake-adding phases rounds be-
tween any two consecutive envy-cycle-elimination phase
rounds is again O(n2).

Finally, it follows that Algorithm 1 executes at most
O(n2) · O(n2) = O(n4) cake-adding phase rounds. Each
such round calls the perfect allocation oracle once. Thus the
total number of perfect allocation oracle calls is O(n4).
Polynomial running time. We first show that an addable
set S, if exists, can be found in time O(n3) via the follow-
ing method: for each envy edge i

ENVY−−−→ j, let Rj be the
collection of vertices (including j) that are reachable by j
and then let S = N \⋃j Rj .

Next, an envy cycle T , if exists, can be found by tracking
whether agent i can be reached from j for each envy edge
i

ENVY−−−→ j. It is easy to see that this step takes O(n3) time.
Then, the allocation of indivisible goods can be done in

O(m2) via the round-robin algorithm (Caragiannis et al.
2019). For an envy-graph, the construction and update re-
quire O(n2) time. In the cake-adding phase, Step 11 needs
O(n) RW queries and O(n2) time in total to determine the
allocated cake C ′ (Steps 12 and 15). The rest steps can be
finished in time O(n).

Adding all steps together, one can check that Algorithm 1
runs in time O(m2 + n7).

Finally the correctness of Theorem 3.4 is directly implied
by Lemma 3.5 and Lemma 3.8.

Bounded Protocol in the RW Model. Even though we
proved that Algorithm 1 can produce an EFM allocation, it is
not a bounded protocol in the RW model. This is because our
algorithm utilizes an oracle that can compute a perfect allo-
cation of any piece of cake. However, while always exists, it
is known that a perfect allocation cannot be computed with
a finite number of queries in the RW model, even if there are
only two agents (Robertson and Webb 1998). Whether there
exists a bounded protocol in the RW model to compute an
EFM allocation remains a very interesting open question.
In the next two sections, we present two bounded protocols
to compute an EFM allocation for two special cases, and
another bounded (polynomial time) protocol to compute an
ε-EFM allocation in the general case.

4 EFM Allocation in Special Case

In this section, we show two special cases where an EFM al-
location can be computed in polynomial time without using
the perfect allocation oracle. One is the 2-agent case while
the other deals with the n-agent case but each agent has a
structural density function for the cake.

4.1 Two Agents

We first show that with only two agents, an EFM alloca-
tion can be found using a simple cut-and-choose type of
algorithm: we begin with an EF1 allocation (M1,M2) of
all indivisible goods. Assume without loss of generality that
u1(M1) ≥ u1(M2). Next agent 1 adds the cake into M1 and
M2 so that the two bundles are as close to each other as pos-
sible. Note that if u1(M1) > u1(M2 ∪ C), agent 1 would
add all cake to M2. If u1(M1) ≤ u1(M2 ∪C), agent 1 has a
way to make the two bundles equal. We then give agent 2 her
preferred bundle and leave to agent 1 the remaining bundle.

1818

Algorithm 2 EFM Allocation for Two Agents
Require: Agents 1 and 2, indivisible goods M and cake C.

1: Find an EF1 allocation of M . Assume w.l.o.g that
u1(M1) ≥ u1(M2).

2: if u1(M1) ≤ u1(M2 ∪ C) then
3: Let agent 1 partition the cake into two pieces

(C1, C2), such that u1(M1 ∪ C1) = u1(M2 ∪ C2).
4: Let (A1, A2) = (M1 ∪ C1,M2 ∪ C2).
5: else
6: Let (A1, A2) = (M1,M2 ∪ C).
7: end if
8: Give agent 2 her preferred bundle among A1, A2. Give

agent 1 the remaining bundle.

Theorem 4.1. Algorithm 2 returns an EFM allocation in the
case of two agents in polynomial time.

A Stronger EFM Notion. With two agents, an envy-
freeness up to any good (EFX) allocation, in which no agent
prefers the bundle of another agent following the removal
of any good in the latter bundle, always exists (Plaut and
Roughgarden 2018). This result can be carried over to show
the existence of a stronger EFM notion in the mixed goods
setting, in which an agent is EFX towards any agent with
only indivisible goods, and EF towards the rest. Such allo-
cation can be derived by using an EFX allocation instead of
an EF1 allocation in Step 1 of Algorithm 2. Moreover, with
n agents, whenever an EFX allocation exists among the in-
divisible goods, we can start with such an EFX allocation in
Step 1 of Algorithm 1. The cake-adding phase maintains the
EFM condition and does not introduce new envy. Thus Al-
gorithm 1 will also produce an allocation with this stronger
notion of EFM.

4.2 Any Number of Agents with Piecewise Linear
Functions

In the second case, we consider an arbitrary number of
agents when agents’ valuation functions over the cake are
piecewise linear.

Definition 4.2. A valuation density function fi is piecewise
linear if the interval [0, 1] can be partitioned into a finite
number of intervals such that fi is linear on each interval.

Piecewise linear function is a generalization of both piece-
wise uniform function and piecewise constant function, each
of which has been considered in several previous fair divi-
sion works (Bei et al. 2012; Chen et al. 2013; Bei, Huzhang,
and Suksompong 2018). In this case, we do not use the RW
model, but rather assume that the valuation functions are
provided to us in full information.

The only obstacle in converting Algorithm 1 to a bounded
protocol is the implementation of the perfect allocation ora-
cle for cake cutting. While when agents have piecewise lin-
ear functions, (Chen et al. 2013) showed that a perfection
allocation can be computed efficiently in polynomial time.
This fact, combined with Theorem 3.4, directly implies the
following result.

Corollary 4.3. For any number of agents with piecewise lin-
ear density functions over the cake, an EFM allocation can
be computed in polynomial time.

5 ε-EFM: Algorithm

In this section, we focus on ε-EFM, a relaxation of the
EFM condition. Despite the computational issues with find-
ing bounded exact EFM protocols, we will show that there
is an efficient algorithm in the RW model that computes an
ε-EFM allocation for general density function with running
time polynomial in n,m and 1

ε .
Since the difficulty in finding a bounded EFM protocol

in the RW model lies in computing perfect allocations of
a cake (Section 3), one might be tempted to simply use a
bounded ε-Perfect Allocation protocol to replace the exact
procedure. However, although such bounded ε-perfect pro-
tocol exists in the RW model (Robertson and Webb 1998;
Brânzei and Nisan 2017), all known protocols run in time
that is exponential in 1/ε. It is still an open question to find
an ε-Perfect Allocation with time complexity polynomial in
1/ε. Therefore, to design an efficient ε-EFM protocol, extra
work needs to be done to circumvent this issue.

We first define the relaxed version of EF and envy graph.
Definition 5.1 (ε-EF). An allocation A is said to satisfy ε-
envy-freeness (ε-EF), if for all agents i, j ∈ N , ui(Ai) ≥
ui(Aj)− ε.
Definition 5.2 (ε-envy graph). Given an allocation A and
a parameter ε, the ε-envy graph is defined as G(ε) =
(N,Eε-envy ∪Eε-eq), where every vertex represents an agent,
and Eε-envy and Eε-eq consist of the following two types of
edges, respectively:

• ε-envy edge: i ε-ENVY−−−−→ j if ui(Ai) < ui(Aj)− ε;

• ε-equality edge: i ε-EQ−−−→ j if ui(Aj) − ε ≤ ui(Ai) ≤
ui(Aj).
Now, given an ε-envy graph, a cycle is said to be an ε-

envy cycle if it contains at least one ε-envy edge. We also
note that when ε = 0, the ε-envy graph degenerates into the
envy graph defined in Section 3.

5.1 The Algorithm

The complete algorithm to compute an ε-EFM allocation is
shown in Algorithm 3. Similar to Algorithm 1, our algorithm
tries to add resources to the partial allocation iteratively. We
always maintain the partial allocation to be ε̂-EFM where ε̂
is updated increasingly and would never exceed ε. This will
ensure that the final allocation is ε-EFM.

Same as Algorithm 1, we begin with an EF1 allocation
of only indivisible goods to all agents in Step 2 and the al-
gorithm then executes in rounds (Steps 4-31). Even though
each round still executes either the cake-adding phase or the
envy-cycle-elimination phase, the execution details are dif-
ferent.
• In the cake-adding phase, instead of allocating some cake

to an addable set S in a way that is perfect, we resort to an
allocation that is ε′-EF, where ε′ will be fixed later in Al-
gorithm 3. In the following, we will utilize an algorithm

1819

Algorithm 3 ε-EFM Algorithm
Require: Agents N , indivisible goods M , cake C, and pa-

rameter ε.
1: ε̂← ε

4 , ε
′ ← ε2

8n
2: Find an arbitrary EF1 allocation of M to n agents, de-

noted by (A1, A2, . . . , An).
3: Construct ε̂-envy graph G(ε̂) = (N,Eε-envy ∪ Eε-eq).
4: while C
= ∅ do
5: if There exists an addable set S then
6: // cake-adding phase
7: if S = N then
8: Let (C1, C2, . . . , Cn) =

ε
4 -EFALLOC(C, n).

9: C ← ∅
10: ε̂← ε̂+ ε/4
11: Add Ci to bundle Ai for all i ∈ N .
12: else
13: if maxi∈N\S ui(C) < ε̂ then

14: C ′ ← C,C ← ∅
15: else
16: Suppose C = [a, b]. Let xi be the point such

that ui([a, xi]) = ε̂ for all i ∈ N \ S.
17: i∗ ← argmini∈N\S xi

18: C ′ ← [a, xi∗], C ← C \ C ′
19: end if
20: Let (C1, C2, . . . , Ck) = ε′-EFALLOC(C ′, k)

where k = |S|.
21: Add Ci to the bundle of the ith agent in S.
22: ε̂← ε̂+ ε′
23: Update ε̂-envy graph G(ε̂) accordingly.
24: end if
25: else
26: // envy-cycle-elimination phase
27: Let T be an ε-envy cycle in the ε-envy graph.
28: For each agent j ∈ T , give agent j’s whole bundle

to agent i who points to her in T .
29: Update ε̂-envy graph G(ε̂) accordingly.
30: end if
31: end while
32: return (A1, A2, . . . , An)

ε′-EFALLOC(C, k) that could return us an ε′-EF alloca-
tion for any k and cake C (Procaccia 2016). We also up-
date ε̂ to a larger number, say ε̂ + ε′, in order to avoid
generating ε̂-envy edges due to the cake-adding.

• In the envy-cycle-elimination phase, we eliminate the ε̂-
envy cycle, instead of the envy cycle, by rearranging the
current partial allocation.

5.2 Analysis

Our main result for the ε-EFM allocation is as follows:

Theorem 5.3. An ε-EFM allocation can be found by Algo-
rithm 3 in time O(n5/ε5 +m2).

To prove Theorem 5.3, we first show that each round
(Steps 4-31 in Algorithm 3) maintains the following invari-
ants during the run of the algorithm.

Invariants:

• B1. In each round there is either an addable set for the
cake-adding phase or have an ε̂-envy cycle for the envy-
cycle-elimination phase.
• B2. The partial allocation is always ε̂-EFM with current ε̂

in the algorithm.

Correctness.

Lemma 5.4. In the cake-adding phase, if the piece of cake
to be allocated is not the whole remaining cake, the sum of
all agents’ valuation on the remaining cake decreases by at
least ε̂.
Lemma 5.5. Algorithm 3 always returns an ε-EFM alloca-
tion upon termination.

Termination and Time Complexity.

Lemma 5.6. In the envy-cycle-elimination phase, the social
welfare increases by at least ε̂.
Lemma 5.7. Algorithm 3 runs in O(n5/ε5 +m2).

Finally the correctness of Theorem 5.3 is directly implied
by Lemmas 5.5 and 5.7.

6 Discussion

This work is concerned with fair division of a mixture of
divisible and indivsible goods. To this end, we introduce
the envy-freeness for mixed goods (EFM) fairness notion,
which generalizes both EF and EF1 to the mixed setting. We
show that an EFM allocation always exists for any number
of agents. We also provide bounded protocols to compute an
EFM allocation in special cases, or an ε-EFM allocation in
general setting in time poly(n,m, 1/ε). It remains an impor-
tant open question of whether there exists a bounded proto-
col in the RW model that computes an EFM allocation in the
general setting for any number of players. With regard to ε-
EFM, although our algorithm runs in time poly(n,m, 1/ε),
it remains an open question to design an algorithm that runs
in time poly(n,m, log(1/ε)).

Besides envy-freeness, one could also generalize other
fairness notions to the mixed goods setting. For example,
Maximin Share (MMS) Fairness generalizes proportional-
ity fairness to the indivisible resource case. How well would
this notion behave with mixed goods in terms of its existence
and approximation? Overall, we believe that fair division in
the mixed goods setting encodes a rich structure and creates
a new research direction that deserves to be pursued for fu-
ture work.

Acknowledgments

This work is supported in part by an RGC grant (HKU
17203717E).

References

Alkan, A.; Demange, G.; and Gale, D. 1991. Fair allocation
of indivisible goods and criteria of justice. Econometrica
59(4):1023–1039.

1820

Alon, N. 1987. Splitting necklaces. Advances in Mathemat-
ics 63(3):247–253.
Amanatidis, G.; Markakis, E.; Nikzad, A.; and Saberi,
A. 2017. Approximation algorithms for computing max-
imin share allocations. ACM Transactions on Algorithms
13(4):52:1–52:28.
Aziz, H., and Mackenzie, S. 2016a. A discrete and bounded
envy-free cake cutting protocol for any number of agents. In
Proceedings of the 57th IEEE Annual Symposium on Foun-
dations of Computer Science (FOCS), 416–427.
Aziz, H., and Mackenzie, S. 2016b. A discrete and bounded
envy-free cake cutting protocol for four agents. In Proceed-
ings of the 48th Annual ACM Symposium on Theory of Com-
puting (STOC), 454–464.
Bei, X.; Chen, N.; Hua, X.; Tao, B.; and Yang, E. 2012.
Optimal proportional cake cutting with connected pieces. In
Proceedings of the 26th AAAI Conference on Artificial Intel-
ligence (AAAI), 1263–1269.
Bei, X.; Li, Z.; Liu, J.; Liu, S.; and Lu, X. 2019. Fair
division of mixed divisible and indivisible goods. CoRR
abs/1911.07048.
Bei, X.; Huzhang, G.; and Suksompong, W. 2018. Truth-
ful fair division without free disposal. In Proceedings of
the 27th International Joint Conference on Artificial Intelli-
gence (IJCAI), 63–69.
Brams, S. J., and Taylor, A. D. 1995. An envy-free cake
division protocol. The American Mathematical Monthly
102(1):9–18.
Brams, S. J., and Taylor, A. D. 1996. Fair division: From
cake-cutting to dispute resolution. Cambridge University
Press.
Brânzei, S., and Nisan, N. 2017. The query complexity of
cake cutting. CoRR abs/1705.02946.
Budish, E. 2011. The combinatorial assignment problem:
Approximate competitive equilibrium from equal incomes.
Journal of Political Economy 119(6):1061–1103.
Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A. D.;
Shah, N.; and Wang, J. 2019. The unreasonable fairness of
maximum nash welfare. ACM Transactions on Economics
and Computation 7(3):12:1–12:32.
Cechlárová, K., and Pillárová, E. 2012. On the computabil-
ity of equitable divisions. Discrete Optimization 9(4):249–
257.
Chen, Y.; Lai, J. K.; Parkes, D. C.; and Procaccia, A. D.
2013. Truth, justice, and cake cutting. Games and Economic
Behavior 77(1):284–297.
Dubins, L. E., and Spanier, E. H. 1961. How to cut a cake
fairly. The American Mathematical Monthly 68(1):1–17.
Edmonds, J., and Pruhs, K. 2006. Balanced allocations of
cake. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 623–634.
Even, S., and Paz, A. 1984. A note on cake cutting. Discrete
Applied Mathematics 7(3):285–296.
Garg, J., and Taki, S. 2019. An improved approximation
algorithm for maximin shares. CoRR abs/1903.00029.

Ghodsi, M.; Hajiaghayi, M.; Seddighin, M.; Seddighin, S.;
and Yami, H. 2018. Fair allocation of indivisible goods: Im-
provements and generalizations. In Proceedings of the 19th
ACM Conference on Economics and Computation (EC),
539–556.
Halpern, D., and Shah, N. 2019. Fair division with sub-
sidy. In Proceedings of the 12th International Symposium
on Algorithmic Game Theory (SAGT), 374–389.
Klijn, F. 2000. An algorithm for envy-free allocations in an
economy with indivisible objects and money. Social Choice
and Welfare 17(2):201–215.
Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2018. Fair
enough: Guaranteeing approximate maximin shares. Jour-
nal of the ACM 65(2):8:1–8:27.
Lipton, R. J.; Markakis, E.; Mossel, E.; and Saberi, A. 2004.
On approximately fair allocations of indivisible goods. In
Proceedings of the 5th ACM Conference on Electronic Com-
merce (EC), 125–131.
Maskin, E. S. 1987. On the fair allocation of indivisible
goods. In Feiwel, G. R., ed., Arrow and the Foundations
of the Theory of Economic Policy. Palgrave Macmillan UK.
chapter 11, 341–349.
Meertens, M.; Potters, J.; and Reijnierse, H. 2002. Envy-free
and pareto efficient allocations in economies with indivisible
goods and money. Mathematical Social Sciences 44(3):223–
233.
Moulin, H. 2003. Fair Division and Collective Welfare. MIT
Press.
Moulin, H. 2019. Fair division in the internet age. Annual
Review of Economics 11(1):407–441.
Plaut, B., and Roughgarden, T. 2018. Almost envy-freeness
with general valuations. In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
2584–2603.
Procaccia, A. D., and Wang, J. 2017. A lower bound for eq-
uitable cake cutting. In Proceedings of the 18th ACM Con-
ference on Economics and Computation (EC), 479–495.
Procaccia, A. D. 2016. Cake cutting algorithms. In
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds., Handbook of Computational Social Choice.
Cambridge University Press. chapter 13, 311–329.
Robertson, J., and Webb, W. 1998. Cake-Cutting Algorithm:
Be Fair If You Can. A K Peters/CRC Press.
Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16(1):101–104.
Su, F. E. 1999. Rental harmony: Sperner’s lemma in fair
division. The American mathematical monthly 106(10):930–
942.
Thomson, W. 2016. Introduction to the theory of fair allo-
cation. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and
Procaccia, A. D., eds., Handbook of Computational Social
Choice. Cambridge University Press. chapter 11, 261–283.

1821

