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Abstract

We consider a class of coalition formation games that can be
succinctly represented by means of hypergraphs and properly
generalizes symmetric additively separable hedonic games.
More precisely, an instance of hypegraph hedonic game con-
sists of a weighted hypergraph, in which each agent is asso-
ciated to a distinct node and her utility for being in a given
coalition is equal to the sum of the weights of all the hyper-
edges included in the coalition. We study the performance
of stable outcomes in such games, investigating the degrada-
tion of their social welfare under two different metrics, the
k-Nash price of anarchy and k-core price of anarchy, where
k is the maximum size of a deviating coalition. Such prices
are defined as the worst-case ratio between the optimal so-
cial welfare and the social welfare obtained when the agents
reach an outcome satisfying the respective stability criteria.
We provide asymptotically tight upper and lower bounds on
the values of these metrics for several classes of hypergraph
hedonic games, parametrized according to the integer k, the
hypergraph arity r and the number of agents n. Furthermore,
we show that the problem of computing the exact value of
such prices for a given instance is computationally hard, even
in case of non-negative hyperedge weights.

Introduction

In several real-life scenarios arising from economics, pol-
itics, and sociology, we assist to phenomena of coalition
formation, in which each person, denoted as agent, forms
coalitions with other agents to get some benefit, experienc-
ing a utility that depends on the particular set of agents
she joins to. A simple and efficient model that formally de-
scribes such phenomena is that of hedonic games (Drèze
and Greenberg 1980; Banerjee, Konishi, and Sönmez 2001;
Bogomolnaia and Jackson 2002), which constitute an inter-
esting class of general coalition formation games, in which
agents mind only their coalitions, regardless of how the oth-
ers aggregate. In hedonic games, we have a finite set of
agents, each in turn having a preference order on all the pos-
sible coalitions containing her.

A very interesting class of hedonic games is that of sym-
metric additively separable hedonic games (SASHGs), in
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which each couple of agents is associated to a weight de-
termining their level of appreciation for being together, and
the overall utility of each agent is simply the sum of the
individual values she assigns to the members of her own
coalition. Such games can be suitably described by undi-
rected weighted graphs, in which nodes represent agents,
and weighted edges represent couples of agents with their
appreciation. Besides their nice property of being succinctly
representable, SASHGs attracted research attention because
they are able to capture several realistic coalition formation
scenarios. However, they cannot handle other real life situ-
ations in which coalitions are worth if they reach some crit-
ical mass, as in the formation of political parties. Indeed,
several politicians may be mutually incompatible, but form-
ing coalitions with more than two people can increase the
success of each member; thus, we need subsets of more than
two people with positive weight together with edges having
negative weights (which model the level of incompatibility
of each couple of politicians). Another example comes from
team formation, where one has to form groups of workers
that have the set of abilities required to perform some tasks,
without which the group is unsuccessful. In this case we
need to associate a positive weight to each group of workers
able to perform a task when working together, and a weight
to each edge modelling the level of compatibility of each
couple of workers.

In light of the above examples (and many others), the
graph structure of SASHGs may be not sufficient to describe
several real-life phenomena of coalition formation. To cope
with this issue, we consider a superclass of SASHGs that,
while maintaining a succinct representation, can capture the
above more general scenarios. Namely, we focus on the class
of r-hypergraph hedonic games (r-HHGs or simply HHGs),
in which each subset of at most r ≥ 1 agents is associated to
a weight determining the level of liking for being a group in-
cluded in the same coalition, and the utility of each agent is
the sum of the values she assigns to the groups in her coali-
tion. Such games can be completely described by weighted
hypergraphs, in which again nodes represent agents, while
weighted hyperedges represent groups of agents with their
valuation. As already observed, r-HHGs are a generaliza-
tion of SASHGs, and a proper subclass of synchronization
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games on hypergraphs (Simon and Wojtczak 2017).
Depending on the characteristics of the agents (e.g., their

willingness to cooperate with each other), the selfish be-
haviour can lead to stable coalitions, in which no agent can
improve her utility according to some deviation criteria. The
stability concepts we consider are the k-Nash stability and
the k-core stability. In a k-Nash stable outcome, no subset of
at most k agents can move into other existing or new coali-
tions in such a way that each agent of the considered subset
improves her utility. Similarly, in a k-core stable outcome,
no subset of at most k agents can create a new coalition,
in such a way that each deviating agent improves. These
stability criteria are strictly connected with the known con-
cepts of core stability and Nash equilibrium (Osborne 2004;
Chalkiadakis, Elkind, and Wooldridge 2011), widely con-
sidered in artificial intelligence in the context of cooperative
and non-cooperative games, and also investigated in hedonic
games (Aziz, Brandt, and Seedig 2013; Gairing and Savani
2010).

Besides stability, one desirable property in coalition for-
mation is guaranteeing a general level of appreciation or so-
cial welfare, reasonably defined as the sum of all the agents’
utilities. However, if there is no central authority (such as a
Governmental Entity) deciding how to form the coalitions,
the selfish behaviour of the agents may lead to stable out-
comes that are suboptimal, i.e., with a low social welfare.
To measure this inefficiency, several metrics have been pro-
posed. A widely used one in game theory is the price of an-
archy (Koutsoupias and Papadimitriou 1999), defined as the
highest ratio between the social welfare of an optimal out-
come, and the one of a Nash stable outcome. This and simi-
lar metrics have been recently considered to measure the in-
efficiency also of some classes of hedonic games under dif-
ferent stability criteria (Elkind, Fanelli, and Flammini 2016;
Kaklamanis, Kanellopoulos, and Papaioannou 2016; Bilò et
al. 2018; Monaco, Moscardelli, and Velaj 2019).

Our contribution

In this work, we analyse the performance of stable outcomes
in r-HHGs by resorting to the following metrics: (i) the k-
Nash price of anarchy (NPoAk), defined as the highest ratio
between the social welfare of an optimal outcome and the
one of a k-Nash stable outcome, and (ii) the k-core price
of anarchy (CPoAk), analogously defined with respect to k-
core stable outcomes. We give an almost complete picture of
the performance of such games in all the possible cases. In
particular, we have obtained the following results:

• We provide almost tight bounds on the CPoAk of stan-
dard r-HHGs with k ≥ r (Theorem 1, 2, and 3), where
“standard” means that the hypergraph’s weights satisfy
some mild assumptions, allowing even the case of neg-
ative weights (unlike several works on the inefficiency
of stable outcomes). Such bounds are parametric in k, r,
the number of agents n, and are asymptotically tight in
ρ := n/k if r is constant.

• For all the cases of which we have not provided a finite
upper bound, we show that the CPoAk may be unbounded
(Theorem 4 and 5).

• Some of the previous bounds hold even for the NPoAk

(Theorem 3 and Corollary 2). When dealing with non-
negative weights, we get a slightly better upper bound,
holding also for k = r − 1 (Theorem 6).

• For most of the cases for which we have not provided an
upper bound, we show that the NPoAk may be unbounded
(Theorem 7 and 8).

See Table 1 and 2 for further details.

Standard Non-Standard
k ≥ r Θ(ρr−1) ∞
k < r ∞ ∞

Table 1: CPoAk of r-HHGs with n agents w.r.t. ρ := n/k.

Weights ≥ 0 Stand. Non-Stand.
k ≥ r Θ(ρr−1) Θ(ρr−1) ∞

k = r − 1 Θ(ρr−1) ? ∞
k < r − 1 ∞ ∞ ∞

Table 2: NPoAk of r-HHGs with n agents w.r.t. ρ := n/k.

Finally, regarding the time complexity of measuring the
inefficiency of HHGs, we have shown that the problems of
computing the k-core price of anarchy and the k-Nash price
of anarchy of an r-HHG are NP-hard (Theorem 9 and 10).

To the best of our knowledge, this is the first work in
which the inefficiency of coalition formation games suc-
cinctly representable by hypergraphs has been studied.

Due to lack of space, some proofs are sketched or omitted.

Related work

HHGs are related to many other well-known classes of
games. In particular, they are a proper subclass of syn-
chronization games, whose properties concerning the exis-
tence and computability of pure and strong Nash equilib-
ria are studied in (Simon and Wojtczak 2017), without con-
sidering their inefficiency in terms of social welfare. Most
of their results can be applied to show analogue ones in
HHGs. Synchronization games extend polymatrix coordina-
tion games (Yanovskaya 1968; Cai and Daskalakis 2011),
in which the agents utilities are pairwise separable, to hy-
pergraphs. (Yanovskaya 1968; Cai and Daskalakis 2011;
Rahn and Schäfer 2015; Apt et al. 2017) investigate the
existence and computation of k-strong equilibria in these
games and related variants, while (Rahn and Schäfer 2015;
Apt et al. 2017; Feldman and Friedler 2015) consider the
problem of measuring their inefficiency. Some of these inef-
ficiency results can be applied to SASHGs with non negative
weights, and are generalized in our work to the setting of hy-
pergraphs with possibly negative weights.

Additively separable hedonic games (ASHGs) can be
seen as a proper subclass of polymatrix coordination games,
and their symmetric version (i.e., SASHGs), as already ob-
served, is a proper sub-class of the games of HHGs. Due
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to their graph succinct representation, they are also con-
nected with the graph games introduced by (Deng and Pa-
padimitriou 1994). Properties guaranteeing the existence of
core allocations (a core is a coalition structure in which no
group of agents has an incentive to form a different coali-
tion) are studied by (Banerjee, Konishi, and Sönmez 2001),
while (Bogomolnaia and Jackson 2002), besides the core,
consider other forms of stability, such as Nash and indi-
vidual stability. (Olsen 2009) shows that deciding whether
a Nash stable outcome of a ASHG exists is NP-complete,
as well as deciding the existence of a non-trivial (different
from the grand coalition) Nash stable outcome in SASHGs
with non-negative weights. (Gairing and Savani 2010) prove
that computing a Nash stable outcome in SASHGs is PLS-
complete, while (Sung and Dimitrov 2010) show that in
ASHGs determining the existence of a core stable, strict
core stable, Nash stable, or individually stable outcome is
NP-hard. (Aziz, Brandt, and Seedig 2013) show that com-
puting a core or a strict core stable outcome is NP-hard
even for symmetric and strict preferences. Furthermore, they
show that the problem of computing optimal outcomes is
NP-hard. As SASHGs are a subclass of HHGs, the results
obtained in (Aziz, Brandt, and Seedig 2013) imply that the
problem of computing a core stable outcome or an optimal
outcome in HHGs is NP-hard, too. Furthermore, as strongly
Nash stable outcomes are a subset of core stable outcomes,
we also get that strongly Nash stable outcomes may not ex-
ist in HHGs. The problem of computing an outcome ver-
ifying particular optimality or stability criteria in ASHGs
has been considered in (Aziz, Brandt, and Seedig 2011;
Peters and Elkind 2015).

Another relevant class of hedonic games is that of frac-
tional hedonic games, studied in (Aziz et al. 2019; Pe-
ters and Elkind 2015; Olsen 2012; Monaco, Moscardelli,
and Velaj 2018; Carosi, Monaco, and Moscardelli 2019;
Bilò et al. 2018; Flammini et al. 2018; Monaco, Moscardelli,
and Velaj 2019). The inefficiency of these and other related
classes of hedonic games under different stability and opti-
mality notions has been considered in (Elkind, Fanelli, and
Flammini 2016; Balliu et al. 2019; Balliu, Flammini, and
Olivetti 2017; Flammini, Monaco, and Zhang 2017).

Finally, we remark that other games related to HHGs
are the group activity selection games, studied in (Dar-
mann et al. 2018; Igarashi, Bredereck, and Elkind 2017;
Igarashi, Peters, and Elkind 2017; Bilò et al. 2019)), and
max-cut games, studied in (Gourvès and Monnot 2009;
Gourvès and Monnot 2010; Feldman and Friedler 2015;
Carosi et al. 2019).

Preliminaries

Given two integers r ≥ 1 and n ≥ 1, let [n] = {1, 2, . . . , n}
and (n)r := n · (n− 1) · . . . · (n− r+ 1) be the falling fac-
torial. Moreover, given a set A, let χA denote the indicator
function, i.e., χA(x) = 1 if x ∈ A, χA(x) = 0 otherwise.

r-hypergraph hedonic games. A weighted hypergraph is
a triple H = (V,E,w) consisting of a finite set V = [n]
of nodes, a collection E ⊆ 2V of hyperedges, and a weight

w : E → R associating a real value w(e) with each hy-
peredge e ∈ E. For simplicity, when referring to weighted
hypergraphs, we omit the term weighted.

The arity of a hyperedge e is its size |e|. An r-hypergraph
is a hypergraph such that the arity of each hyperedge is at
most r, where 2 ≤ r ≤ n. A complete r-hypergraph is a hy-
pergraph (V,E,w) such that E := {U ⊆ V : |U | ≤ r}. A
uniform r-hypergraph (resp. weakly uniform r-hypergraph)
is a hypergraph such that the arity of each hyperedge is r
(resp. either r, or 1). An undirected graph is a uniform 2-
hypergraph.

An r-hypergraph hedonic game G(H) (r-HHG, or HHG
when r is not specified), is a strategic game based on an r-
hypergraph H, defined as follows:

Agents: The set of agents is V = [n], i.e., each node corre-
sponds to an agent. We reasonably assume that n ≥ 2.

Strategy profiles: An outcome or coalition structure is a par-
tition C = {C1, C2, . . . , Ch} of V . Each set Cl is a coali-
tion of C, and h is the size of C.

Utility functions: Given a coalition structure C and an agent
i ∈ V , let C(i) be the coalition of C such that i ∈ C(i).
Given U ⊆ V , let E(U) := {e ∈ E : e ⊆ U}. Given
an agent i ∈ V , the utility ui(C) of i in C is the sum of
the weights of all the hyperedges e containing i such that
e ⊆ C(i), i.e., ui(C) :=

∑
e∈E(C(i)):i∈e w(e).

The grand coalition structure is the coalition structure de-
fined as C = {V }, that is obtained when all agents belong
to the same coalition. The singleton coalition structure is
the coalition structure C = {{1}, {2}, . . . , {n}}, that is ob-
tained when each coalition contains exactly one agent.

A complete r-hypergraph (resp. uniform r-hypergraph ,
resp. weakly uniform r-hypergraph, resp. graph) hedonic
game is an r-HHG such that the underlying r-hypergraph
is complete (resp. uniform, resp. weakly uniform, resp. a
uniform 2-hypergraph). A standard r-hypergraph hedonic
game is an r-HHG such that, for any U ⊆ V with |U | ≥ 2,
we have that either (i)

∑
e∈E(U):|e|=s w(e) ≥ 0 for any

s ∈ [r] \ {1}, or (ii)
∑

e∈E(U):|e|=s w(e) ≤ 0 for any
s ∈ [r] \ {1}.
Remark 1. The class of standard HHGs is well-motivated
by real-life scenarios. Indeed, if we consider that a positive
(resp. negative) weight of a hyperedge e models the fact that
all the agents belonging to e are happy (resp. unhappy) to
stay together in the same coalition, a HHG is standard if,
given an arbitrary subset U of agents, either they are happy
on the average with respect to all the hyperedges of U with
arity s > 1 (independently from s), or they are unhappy on
the average with respect to such hyperedges.

Observe that weakly uniform r-HHGs and r-HHGs with
non-negative weights are standard. In Figure 1, we ex-
hibit a non-uniform game with both positive and nega-
tive weights that is standard. The social welfare SW(C)
of a coalition structure C is defined as the sum of all the
agents’ utilities in C, i.e., SW(C) :=

∑
i∈V ui(C) =∑h

l=1

∑r
t=1 t

∑
e⊆Cl:|e|=t w(e).
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Figure 1: A hypergraph H with V = [4] and
E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 2, 3}, {2, 3, 4}},
w({1, 2, 3}) = w({2, 3, 4}) = 3, w({1, 2}) =
w({1, 4}) = −1, and w({2, 3}) = w({3, 4}) = 2.
G(H) is a standard 3-HHG. Indeed, if U ∈
{{1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {2, 3}, {3, 4}}
we have that

∑
e∈E(U):|e|=s w(e) ≥ 0 for any s ∈ [r] \ {1},

and if U ∈ {{1, 2, 4}, {1, 2}, {1, 4}} we have that∑
e∈E(U):|e|=s w(e) ≤ 0 for any s ∈ [r] \ {1}.

k-Nash stability. Given a coalition structure C =
{C1, C2, . . . , Ch} and a subset of nodes Z ⊆ V , a function
ϕ : Z → C ∪ [n] is called deviation function of Z from C,
and associates each agent of Z with a coalition of C, or with
an integer of [n] that will be used to define a new coalition.
Given l ∈ [h] and t ∈ [n], let Z ′

l := ϕ−1[Cl] (i.e., the set
of agents associated with coalition Cl by function ϕ), and
let Ẑt := ϕ−1[t] (i.e., the set of agents associated with some
new coalition by function ϕ). Given a deviation function ϕ
of Z from C, let (C|ϕ) := {{C1 \ Z} ∪ Z ′

1, {C2 \ Z} ∪
Z ′
2, . . . , {Ch \Z}∪Z ′

h, Ẑ1, Ẑ2, . . . , Ẑn}\{∅}. Observe that
(C|ϕ) defines a new coalition structure. A generic coalition
structure (C|ϕ) is called deviation coalition structure of Z
from C, and it is equivalently defined as a coalition struc-
ture in which each agent i of Z moves from coalition C(i)
to coalition ϕ(i) if ϕ(i) ∈ C, and moves into a new coali-
tion Ẑϕ(i) if ϕ(i) ∈ [n], where Ẑϕ(i) is the coalition made
of all the agents associated by ϕ to the same integer ϕ(i).

Given an integer k ≤ n, a coalition structure C is k-Nash
stable if and only if, for any Z ⊆ V with |Z| ≤ k, and any
deviation function ϕ of Z from C, there exists at least one
agent i ∈ Z such that ui(C) ≥ ui(C|ϕ). According to the
definitions often adopted in several existing works on hedo-
nic games, a 1-Nash stable coalition structure is equivalently
called Nash stable, while an n-Nash stable coalition struc-
ture is called strongly Nash stable. For a game G(H), let
NSk(G(H)) be the set of k-Nash stable coalition structures
of G(H).

k-core stability. A deviation coalition structure (C|ϕ) of
Z from C is called core deviation coalition structure of Z
from C if ϕ(i) = ∅ for any i ∈ Z, and we equivalently
denote it as (C|Z). Informally, a core deviation coalition
structure is obtained when all the agents of set Z move into
the empty coalition, i.e., they form a new coalition made of
all the agents of Z, only.

Given k ≤ n, a coalition structure C is k-core stable if
and only if, for any Z ⊆ V with |Z| ≤ k, there exists at least
one agent i ∈ Z such that ui(C) ≥ ui(C|Z). According to
the definitions often adopted in several existing works on
hedonic games, an n-core stable coalition structure is equiv-
alently called core stable.

For a game G(H), let CSk(G(H)) be the set of k-
core stable coalition structures of G(H). Observe that
NSk(G(H)) ⊆ CSk(G(H)).
Remark 2. If w(e) ≥ 0 for any e ∈ E such that |e| = 1,
then each agent gets a non-negative utility in any k-core sta-
ble coalition structure (and thus, in any k-Nash stable coali-
tion structure), otherwise she would deviate in a singleton
coalition. Furthermore, the social optimum is guaranteed to
be non-negative, as it achieves at least the social welfare of
the singleton coalition structure.

In light of the previous remark and as commonly assumed
in hedonic games, it is reasonable to suppose that for any
agent is better staying alone than into a coalition in which
she is unhappy; thus we do the following assumption:
Assumption 1. w(e) ≥ 0 for any e ∈ E such that |e| = 1.

Quality of stable coalitions. For a game G(H), an opti-
mal coalition structure C∗, also called social optimum, is an
outcome maximizing the social welfare. The k-Nash price of
anarchy of G(H) (denoted NPoAk(G(H))) is the worst-case
ratio between the social welfare of a social optimum C∗, and
the social welfare of a k-Nash stable coalition structure, that
is, NPoAk(G(H)) := maxC∈NSk(G(H))

SW(C∗)
SW(C) ≥ 1, with

the convention that ∞ := c/0 for any c > 0, 1 := 0/0, and
NPoAk(G(H)) := 1 if G(H) does not admit k-Nash stable
coalition structures.1 Analogously, the k-core price of an-
archy of G(H) (denoted as CPoAk(G(H))) is the worst-case
ratio between the social welfare of a social optimum C∗, and
the social welfare of a k-core stable coalition structure, that
is, CPoAk(G(H)) := maxC∈CSk(G(H))

SW(C∗)
SW(C) , and again

we adopt the convention that CPoAk(G(H)) := 1 if G(H)
does not admit k-core stable coalition structures.

If NPoAk(G(H)) = ∞ (resp. CPoAk(G(H)) = ∞), we
say that the k-Nash (resp. k-core) price of anarchy of G(H)
is unbounded. Since NSk(G(H)) ⊆ CSk(G(H)), we have
that NPoAk(G(H)) ≤ CPoAk(G(H)). Furthermore, given
two integers h and k with 1 ≤ h ≤ k, since each k-Nash
stable (resp. k-core stable) coalition structure is also h-Nash
stable (resp. h-core stable), we have that NPoAk(G(H)) ≤
NPoAh(G(H)) (resp. CPoAk(G(H)) ≤ CPoAh(G(H))).

The k-core price of anarchy

In this section, we show upper and lower bounds on the k-
core price of anarchy of any standard r-HHG with k ≥ r,
which are asymptotically tight in the variable ρ := n/k.

1We set the price of anarchy equal to 1 (that is the lowest possi-
ble value), in such a way that instances not admitting stable coali-
tion structures are implicitly discarded when computing the price
of anarchy of an arbitrary HHG.

1769



Furthermore, we show that, if either the considered r-
hypergraph is not standard, or k < r, there exists an r-HHG
with unbounded k-core price of anarchy.
Theorem 1 (Upper Bound). For any standard r-HHG G(H)
with n agents, and for any integer k ≥ r, we have that

CPoAk(G(H)) ≤ r(n− 1)r−1

(k − 1)r−1
.

Proof. Let G(H) be a standard r-HHG, C =
{C1, C2, . . . , Ch} be a k-core stable coalition struc-
ture of G(H) minimizing the social welfare, and
C∗ = {C∗

1 , C
∗
2 , . . . , C

∗
h∗} be a social optimum of

G(H). We assume w.l.o.g. that the considered r-hypergraph
H is complete. Indeed, if it is not the case, it suffices to
add dummy hyperedges with null weights to obtain an
equivalent strategic game based on a complete hypergraph.

By definition of k-core stable coalition structure, given
Z ⊆ V with |Z| = k, there exists at least one agent
iZ1 ∈ Z such that uiZ1

(C) ≥ uiZ1
(C|Z ∩ C∗(iZ1 )). This

fact holds since, given a coalition C∗
l of the social optimum

such that C∗
l ∩ Z �= ∅, we have that |C∗

l ∩ Z| ≤ k, and
thus, by definition of k-core stable coalition structure, there
exists an agent iZ1 ∈ C∗

l ∩ Z ⊆ Z such that uiZ1
(C) ≥

uiZ1
(C|Z∩C∗

l ) = uiZ1
(C|Z∩C∗(iZ1 )), that is, agent iZ1 does

not improve her utility after forming a new coalition with all
the agents of Z ∩ C∗

l . We denote agent iZ1 as 1-leader of Z.
Let Z2 := Z1 \ {iZ1 }. Again by definition of k-core stable
coalition structure, there exists at least one agent iZ2 ∈ Z2

such that uiZ2
(C) ≥ uiZ2

(C|Z2 ∩ C∗(iZ2 )), that is, agent
iZ2 does not improve her utility after forming a new coalition
with all the other agents of Z2∩C∗(iZ2 ). We denote agent iZ2
as 2-leader of Z. By proceeding iteratively, we get that, for
any j ∈ [k], there exists an agent iZj ∈ Zj , called j-leader
of Z, such that uiZj

(C) ≥ uiZj
(C|Zj ∩ C∗(iZj )), where

Z1 := Z, and Zj := Zj−1\{iZj−1} = Z\{iZ1 , iZ2 , . . . , iZj−1}
if j ≥ 2. Thus, by summing the previous inequalities over
all j ∈ [k] and Z ⊆ V such that |Z| = k, we get

∑
Z⊆V :|Z|=k

k∑
j=1

uiZj
(C) ≥

∑
Z⊆V :|Z|=k

k∑
j=1

uiZj
(C|Zj∩C∗(iZj ))

(1)
We exploit the following two lemmas.

Lemma 1.
∑

Z⊆V :|Z|=k

∑k
j=1 uiZj

(C) =(
n−1
k−1

)∑r
s=1

(
s
∑h

l=1

∑
e∈E(Cl):|e|=s w(e)

)
.

Proof of Lemma 1. We have that
k∑

j=1

uiZj
(C) =

k∑
j=1

∑
e∈E(C(iZj )):iZj ∈e

w(e) (2)

=
h∑

l=1

∑
e∈E(Cl)

|e ∩ Z|w(e), (3)

where (3) holds since, given a coalition Cl and a hyperedge
e ⊆ Cl, we have that each hyperedge e appearing in (2) is

counted as many times as the number of leaders contained in
e, that is |e ∩ Z|. Now, by summing (3) over all the possible
subsets Z ⊆ V of k agents, we get

∑
Z⊆V :|Z|=k

k∑
j=1

uiZj
(C) =

∑
Z⊆V :|Z|=k

h∑
l=1

∑
e∈E(Cl)

|e ∩ Z|w(e)

=

h∑
l=1

∑
e∈E(Cl)

w(e)

⎛
⎝ ∑

Z⊆V :|Z|=k

|e ∩ Z|
⎞
⎠

=

h∑
l=1

∑
e∈E(Cl)

w(e)

⎛
⎝ ∑

Z⊆V :|Z|=k

∑
i∈e∩Z

1

⎞
⎠

=

h∑
l=1

∑
e∈E(Cl)

w(e)

⎛
⎝∑

i∈e

∑
Z⊆V :|Z|=k,i∈Z

1

⎞
⎠

=

h∑
l=1

∑
e∈E(Cl)

w(e)

(∑
i∈e

|{Z′ ⊆ V \ {i} : |Z′| = k − 1}|
)

=

h∑
l=1

∑
e∈E(Cl)

w(e)

(∑
i∈e

(n− 1

k − 1

))

=

r∑
s=1

⎛
⎝ h∑

l=1

∑
e∈E(Cl):|e|=s

w(e)

(∑
i∈e

(n− 1

k − 1

))⎞⎠

=

r∑
s=1

⎛
⎝ h∑

l=1

∑
e∈E(Cl):|e|=s

w(e)
(n− 1

k − 1

)
s

⎞
⎠ ,

and this shows the claim.

Lemma 2.
∑

Z⊆V :|Z|=k

∑k
j=1 uiZj

(C|Zj ∩ C∗(iZj )) =∑r
s=1

1
s

(
n−s
k−s

) (
s
∑h∗

l=1

∑
e∈E(C∗

l ):|e|=s w(e)
)

.

Proof of Lemma 2. We get
k∑

j=1

uiZj
(C|Zj ∩ C∗(iZj )) =

k∑
j=1

∑
e∈E(Zj∩C∗(iZj )):iZj ∈e

w(e) (4)

=

h∗∑
l=1

∑
e∈E(Z∩C∗

l )

w(e), (5)

where (5) holds since, in (4), the unique hyperedges that are
counted are those belonging to E(Z∩C∗

l ) for some l ∈ [h∗],
and each of these hyperedges is counted exactly once. By
summing (5) over all the subsets Z ⊆ V of k agents, we get∑

Z⊆V :|Z|=k

k∑
j=1

uiZj
(C|Zj ∩ C∗(iZj ))

=
∑

Z⊆V :|Z|=k

h∗∑
l=1

∑
e∈E(Z∩C∗

l )

w(e)

=

h∗∑
l=1

∑
Z⊆V :|Z|=k

∑
e∈E(Z∩C∗

l )

w(e) (6)

=
h∗∑
l=1

∑
e∈E(C∗

l )

w(e) · |{Z ⊆ V : |Z| = k, e ⊆ Z}|. (7)
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Given a coalition C∗
l and a hyperedge e ∈ E(C∗

l ), we have
that |{Z ⊆ V : |Z| = k, e ⊆ Z}| is equal to the number
of ways to select k − |e| elements within set V \ e, that is(
n−|e|
k−|e|

)
. Thus, by continuing from (7), we get

h∗∑
l=1

∑
e∈E(C∗

l )

w(e) · |{Z ⊆ V : |Z| = k, e ⊆ Z}|

=

h∗∑
l=1

∑
e∈E(C∗

l )

w(e)

(
n− |e|
k − |e|

)

=
r∑

s=1

⎛
⎜⎜⎝s

h∗∑
l=1

∑
e∈E(C∗

l ):
|e|=s

w(e)

⎞
⎟⎟⎠ 1

s

(
n− s

k − s

)
,

and the claim follows.

By (1), Lemma 1, and Lemma 2, we get

r∑
s=1

λ︷ ︸︸ ︷(
n− 1

k − 1

) xs︷ ︸︸ ︷⎛
⎝s

h∑
l=1

∑
e∈E(Cl):|e|=s

w(e)

⎞
⎠ (8)

=
∑
Z⊆V :
|Z|=k

k∑
j=1

uiZj
(C) ≥

∑
Z⊆V :
|Z|=k

k∑
j=1

uiZj
(C|Zj ∩ C∗(iZj ))

=

r∑
s=1

μs︷ ︸︸ ︷
1

s

(
n− s

k − s

) ys︷ ︸︸ ︷⎛
⎝s

h∗∑
l=1

∑
e∈E(C∗

l ):|e|=s

w(e)

⎞
⎠ . (9)

Now, we have the following lemmas. The proof of Lemma
3 uses the hypothesis that the considered game is standard.

Lemma 3. ys ≥ 0 for any s ∈ [r].

Lemma 4. mins∈[r] μs = μr.

By (9), we get λ · SW(C) = λ
∑

s∈[r] xs =∑
s∈[r] λxs ≥ ∑

s∈[r] μsys ≥ (
mins∈[r] μs

)∑
s∈[r] ys =(

mins∈[r] μs

)
SW(C∗), where the second last inequality

holds because of Lemma 3 and 4. Thus, we get SW(C∗)
SW(C) =

∑r
s=1 ys∑r
s=1 xs

≤ λ
mins∈[r] μs

= λ
μr

=
(n−1
k−1)

1
r (

n−r
k−r)

= r(n−1)r−1

(k−1)r−1
, and

this concludes the proof.

The following corollary holds.
Corollary 1. The upper bound shown in Theorem 1 holds
for any weakly uniform r-HHG and for any r-HHG with
non-negative weights.

We now show an almost tight lower bound, holding even
for non-negative weights.
Theorem 2. For any integers r ≥ 2, k ≥ r, and n ≥ k,
there exists an r-HHG G(H) with non-negative weights such

that CPoAk(G(H)) ≥ n(n−1)r−1

k�n/k�(k−1)r−1+k′(k′−1)r−1
, where

k′ := n− k�n/k, and (k′ − 1)r−1 := 0 if k′ < r.

Proof sketch. Consider an r-HHG G(H), where H is a com-
plete and uniform r-hypergraph with n nodes, and each hy-
peredge has unitary weight. Let C be the coalition structure
in which one coalition C ′ has k′ = n− k�n/k agents, and
�n/k coalitions have each k agents, and let C∗ be the grand
coalition structure. One can easily observe that C is k-core
stable. Finally, we show that CPoAk(G(H)) ≥ SW(C∗)

SW(C) =
n(n−1)r−1

k�n/k�(k−1)r−1+k′(k′−1)r−1
.

The following theorem provides a better lower bound
when k is close to n, holding even for the k-Nash price of
anarchy and if k ≥ r − 1.

Theorem 3. For any integers r ≥ 2, k ≥ r − 1, and n ≥
max{k, r}, there exists an r-HHG G(H) with non-negative
weights such that CPoAk(G(H)) ≥ NPoAk(G(H)) ≥ 1 +

(�n/2�−1)r−1

2(min{k,�n/2�−1})r−1
.

Remark 3. If r is constant w.r.t. the input instance, the upper
bound of Theorem 1 and the lower bounds of Theorem 2
and 3 are asymptotically tight in variable ρ := n/k, and
their value increase as Θ(ρr−1).

In the following theorems we show that, without the as-
sumptions done in the Theorem 1, there always exists a
HHG with unbounded k-core price of anarchy.

Theorem 4. For any integers r ≥ 2, k < r, and n ≥ r,
there exists an r-HHG G(H) with non-negative weights and
n agents such that CPoAk(G(H)) = ∞.

Proof sketch. We consider an r-HHG G(H) made of a
unique hyperedge of weight 1 and arity r. We show that
the singleton coalition structure C is k-core stable and
SW(C∗) = 0, and the grand coalition structure C∗ verifies
SW(C∗) = n, thus CPoAk(G(H)) ≥ SW(C∗)

SW(C) = ∞.

Theorem 5. For any integers r ≥ 3, k ≥ r, and n ≥ k,
there exists a (non-standard) r-HHG G(H) with n agents
such that NPoAk(G(H)) = CPoAk(G(H)) = ∞.2

Proof sketch. Let H be a weighted hypergraph with k nodes,
containing only all the hyperedges of arity r and 2 that con-
tain both nodes 1 and 2. Each hyperedge with arity r has
weight wr = 1, and the unique hyperedge with arity 2 has
weight w2 = −k−2

r−2 . We show that the singleton coalition
structure C is k-Nash stable and SW(C) = 0, and that the
grand coalition structure C∗ verifies SW(C∗) > 0. Thus,
CPoAk(G(H)) ≥ NPoAk(G(H)) ≥ SW(C∗)

SW(C) = ∞.

The k-Nash price of anarchy

We now show upper and lower bounds on the k-Nash price
of anarchy. As NPoAk(G(H)) ≤ CPoAk(G(H)) for any
game G(H), we get the following corollary of Theorem 1.

Corollary 2. The upper bound shown in Theorem 1 holds
also for the k-Nash price of anarchy.

2We do not consider the case r = 2, since all graph hedonic
games are standard.
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If weights are non-negative, we have the following
slightly better upper bound, holding also for k = r − 1.

Theorem 6. For any r-HHG G(H) with non-negative
weights and n agents, and for any integer k such that n−1 ≥
k ≥ r − 1, we have that3

NPoAk(G(H)) ≤
(n−1)!
(k−1)!

χ[k](r)n(n−r−1)!

r(k−r)! + (n−r)!
(k+1−r)!

.

Proof sketch. Let G(H) be a standard r-HHG, and let C =
{C1, C2, . . . , Ch} be a k-Nash stable coalition structure of
G(H) having minimum social welfare. Observe that, as the
weights are non-negative, the grand coalition C∗ is a so-
cial optimum. We assume w.l.o.g. that the considered r-
hypergraph H is complete. Furthermore, we assume w.l.o.g.
that all the hyperedges of arity 1 have null-weights (indeed,
by removing them, the set of stable outcomes is not af-
fected and the k-Nash price of anarchy does not decrease).
By definition of k-Nash stable coalition structure, we have
that, given Z ⊆ V with |Z| = k + 1 and v ∈ Z,
there exists at least one agent iZ,v

1 ∈ Z \ {v} such that
uiZ,v

1
(C) ≥ uiZ1

(C|ϕZ,v), where ϕZ,v is the deviation func-
tion such that all the agents of Z \ {v} move to coali-
tion C(v). As all the weights are non-negative, we get
uiZ,v

1
(C) ≥ uiZ1

(C|ϕZ,v) ≥ uiZ1
(C|Z). As in the proof

of Theorem 1, one can show that, for any j ∈ [k], there ex-
ists an agent iZ,v

j ∈ Zv
j \ {v}, called j-leader of (Z, v),

such that uiZj
(C) ≥ uiZj

(C|Zv
j ), where Zv

1 := Z, and

Zv
j := Zv

j−1 \ {iZ,v
j−1} = Z \ {iZ,v

1 , iZ,v
2 , . . . , iZ,v

j−1} if j ≥ 2.
By considering a slightly more complicated proof than that
of Theorem 1, we show that

r∑
s=2

λ︷ ︸︸ ︷(
n− 2

k − 1

)
(n− 1)

xs︷ ︸︸ ︷
s

h∑
l=1

∑
e∈E(Cl):|e|=s

w(e)

=
∑

(Z,v):Z⊆V,
|Z|=k+1,

v∈Z

k∑
j=1

uiZ,v
j

(C) ≥
∑

(Z,v):Z⊆V,
|Z|=k+1,

v∈Z

k∑
j=1

uiZ,v
j

(C|Zv
j )

=

r∑
s=2

μs︷ ︸︸ ︷(
χ[k](s)n

(
n−s−1
k−s

)
s

+

(
n− s

k + 1− s

)) ys︷ ︸︸ ︷
s
∑
e∈E:
|e|=s

w(e),

implying that SW(C∗)
SW(C) =

∑r
s=2 ys∑r
s=2 xs

≤ λ
mins∈[r]\{1} μs

= λ
μr

,
and then showing the claim.

Remark 4. If we consider r as a constant, the upper bounds
shown in Corollary 2, Theorem 3, and the lower bound
shown in Theorem 3, are asymptotically tight in ρ := n/k,
and their value increase as Θ(ρr−1).

3We consider the case k ≤ n−1 only, since for k = n we have
that NPoAn−1(G(H)) is an upper bound for NPoAk(G(H)).

Because of Theorem 5 and the following results, we have
that, without the assumptions done in Corollary 2 and The-
orem 6, in most of the cases there exists a HHG with
NPoAk = ∞. We do not consider the case of standard r-
HHG with k = r − 1 only, that is left as open problem.
Theorem 7. For any integers r ≥ 3, k < r − 1, and n ≥ r,
there exists an r-HHG G(H) with non-negative weights and
n agents such that NPoAk(G(H)) = ∞.
Theorem 8. For any integers r ≥ 3 and n ≥ r, if k = r−1,
there exists a non-standard r-HHG G(H) with n agents such
that NPoAk(G(H)) = ∞.

Computational issues

In this section, we consider the computational complexity of
evaluating the inefficiency of a given r-HHG. In particular,
we consider the problems r-Core-PoA and r-Nash-PoA,
defined as follows: given an integer k ≥ 2, an r-HHG G(H),
and a rational number M ≥ 1, r-Core-PoA (resp. r-Nash-
PoA) asks to check whether the k-core (resp. k-Nash) price
of anarchy of G(H) is lower than M . We show that such
problems are computationally hard.
Theorem 9. r-Core-PoA is NP-hard, even when consider-
ing instances with non-negative weights.

Proof sketch. Polynomial-time reduction to the minimum
maximal matching problem (MMS) (Yannakakis and Gavril
1980). We transform the input unweighed graph H of MMS
into the corresponding graph hedonic game G(H), and we
show that there always exists a worst-case 2-core stable out-
come of G(H) having the structure of a maximal matching
with minimum cardinality.

Theorem 10. r-Nash-PoA is NP-hard, even when consid-
ering instances with non-negative weights.

Proof sketch. Polynomial-time reduction to the max clique
problem (Karp 1972).

Future works

Our work leaves several research directions. First of all, de-
spite the fact that our lower and upper bounds are asymptot-
ically tight, it would be nice to reduce their constant multi-
plicative gap. Furthermore, it remains to analyse the k-Nash
price of anarchy of standard r-HHGs with k = r − 1. It
would be interesting to study hypergraph variants of other
coalition formation games (such as fractional hedonic games
and max-cut games), and the inefficiency under different sta-
bility criteria (e.g., contractual Nash stability, Pareto opti-
mality, etc.). It would be also nice to investigate how much
some restrictions on the hypergraph topology affect the per-
formance. Finally, we believe that the computational prob-
lems studied in this paper are Σp

2-complete, and we leave this
conjecture as another worth investigating open question.
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