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Abstract

We propose a simple uncertainty modification for the agent
model in normal-form games; at any given strategy profile,
the agent can access only a set of “possible profiles” that
are within a certain distance from the actual action profile.
We investigate the various instantiations in which the agent
chooses her strategy using well-known rationales e.g., con-
sidering the worst case, or trying to minimize the regret, to
cope with such uncertainty. Any such modification in the be-
havioral model naturally induces a corresponding notion of
equilibrium; a distance-based equilibrium. We characterize
the relationships between the various equilibria, and also their
connections to well-known existing solution concepts such
as Trembling-hand perfection. Furthermore, we deliver exis-
tence results, and show that for some class of games, such
solution concepts can actually lead to better outcomes.

Introduction

Decision making under uncertainty is a key issue both in
game theory and in artificial intelligence. Whereas models
of strict uncertainty, or absence of unique priors are common
at the outset of those fields (Gilboa and Schmeidler 1989;
Dow and Werlang 1994; Halpern 2017; Gilboa, Postlewaite,
and Schmeidler 2008; Potyka et al. 2016), probabilistic
and Bayesian models still have become dominant, albeit
due to different reasons. In AI, the use of probabilities of-
ten leads to better performance in a wide variety of tasks
(e.g. Bayesian networks for debugging and information re-
trieval (Heckerman, Mamdani, and Wellman 1995), Monte-
Carlo methods for robot localization (Thrun et al. 2001), and
many more). In game theory, probabilities are used first and
foremost because they allow for clean modeling, and in par-
ticular the use of von Neumann-Morgenstern utilities with
all the rich theory that they support.

Several solution concepts suggested in the behavioral
game theory literature tackled the problem of imperfect ra-
tionality (e.g., Cognitive hierarchy (Camerer, Ho, and Chong
2004), Quantal response (McKelvey and Palfrey 1995),
Trembling-hand perfect equilibria (Selten 1975) and oth-
ers), yet many of these still assume that agents optimize
or approximate their expected utility over some distribu-
tion, which is not very cognitively plausible. For exam-
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ple, following a Trembling-hand perfect strategy, which ap-
pears to be the foremost central notion of equilibrium re-
finements, can be claimed to be a “super-rational” behav-
ior rather than bounded rational (Aumann 1997). Recently,
Trembling-hand perfect equilibrium regained strong atten-
tion in machine learning research as well (Farina et al. 2018;
Farina, Gatti, and Sandholm 2018).

In this work, we suggest a model for an agent inspired by
early work in AI on uncertainty and reasoning (see the work
by Halpern (Halpern 2017)), and some recent works on spe-
cific games (such as voting (Conitzer, Walsh, and Xia 2011;
Meir, Lev, and Rosenschein 2014; Lev et al. 2019) and rout-
ing (Meir and Parkes 2015)), and look at its very founda-
tions; normal-form games, from the lenses of this model.
Our model is distance-based, in the sense that at any given
action profile, a set of “possible profiles” (that are close
to the actual profile) is constructed w.r.t. a metric, without
assigning them any particular single probability. Then, the
agent determines her action using one of the many available
rationales for decision making under strict uncertainty, e.g.,
considering the worst case (Wald 1939) or trying to mini-
mize regret (Savage 1951; Hyafil and Boutilier 2004).

The intuition of such setting is due to imprecision caused
by limitations in observations (of the agent), and the ”close-
ness” of signals (imposed by the environment) which causes
perceptual indistinguishability that comes with it. 1 Intu-
itively, to capture such notions formally, one can employ
a distance-based model. Note also that such model can be
considered as a bounded rationality model, as it limits the
agent’s reasoning about the other agents’ strategies.

It is flexible in the sense that potentially different distance
metrics and decision rules can be plugged into the model, to
fit specific games or types of behavior. Once we fix our be-
havioral model though, it naturally induces a notion of equi-
librium, which is an action profile where no agent is inclined
to change her action.

In biased games (Caragiannis, Kurokawa, and Procaccia
2014), a subclass of penalty games (Deligkas, Fearnley, and
Spirakis 2016)), players are equipped with a non-linear util-
ity function; this is due to an additional bias term (or penalty)

1For instance, see random error (Cohen 1998). Note that these
discussions also took place in philosophy and epistemology e.g.,
”distant trees” argument (Williamson 1992).
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occurring in the utility function. The bias term itself is a real-
valued function defined on the distance (via an Lp norm)
between the played strategy and a base strategy (a particu-
lar strategy e.g., represents a social norm). These particular
features and the results follow, stand orthogonal to our work.

Some other related works (and the references therein)
that are worth mentioning: The authors in (Marinacci 2000)
makes use of Choquet expected utility model based on non-
additive probabilities (Gilboa and Schmeidler 1989). Their
pessimistic/optimistic choices (Marinacci 2000) share sim-
ilar intuition with our worst-case/best-case responses. The
notion of local rationalizability by K. Apt (Apt 2007) seems
related to our local-best response; yet there it is enough
for a strategy to be a best-response to a single strategy in
beliefs, whereas in our case it has to be the one optimal
w.r.t the whole belief set. Aghassi and Bertsimas in their
work (Aghassi and Bertsimas 2006) uses robust optimiza-
tion (hence worst-case scenario) to model uncertainty in
payoffs. None of those works, however, uses the distance as
the basic machinery, and different technical subtleties and
challenges apply.

Contribution and paper structure After giving basics
and the familiar equilibrium notions in the next section, we
introduce our model and explore the interlinks between dif-
ferent variations of it. We also explore its relation to other
major refinements, among others the aforementioned notion
of Trembling-hand perfection. Most of our results are not
metric-specific, yet in examples and some results, due to its
wide-spread use and intuition, we adopt Euclidean metric.
Then we demonstrate how these solution concepts apply to
several common games of interest, and provide with exis-
tence results for our notion. To underline its benefit, we in-
troduce a class of games such that these notions potentially
guarantee better outcomes. And very much in connection
with that, as our final contribution, we provide a result which
gives a price of anarchy bound in terms of our notion. Con-
clusion and future work closes the paper.

Preliminaries and Notation

We define n-player normal-form game G = (N,A, u),
where N is a finite set of n players, indexed by i; A =
A1 × . . . × An, where Ai is a finite set of actions (or pure
strategies) available to player i.

Each vector a = (a1, . . . , an) ∈ A is called an action pro-
file; u = (u1, . . . , un) where ui : A → R is a real-valued
utility function (or payoff function) for player i. A mixed
strategy πi for player i is a probability distribution over the
set of available actions Ai for player i. Further, we denote
the set of mixed-strategies for player i by Πi, which is the
set of all probability distributions over the set Ai of actions
for player i. The set of mixed-strategy profiles is simply the
Cartesian product of the individual mixed-strategy sets i.e.,
Π = Π1 × . . . × Πn. We denote a (mixed-strategy) profile
by π ∈ Π. Further, for a player i, we denote the probabil-
ity that an action ai is played under mixed strategy πi, by
πi(ai). The support of a mixed strategy πi for a player i is
the set of pure strategies {ai|πi(ai) > 0}. For a player i, a

mixed-strategy πi is totally (or completely) mixed if its sup-
port subsumes Ai. A strategy profile π is totally mixed if its
every component is totally mixed.

For simplicity, we overload the function symbol ui

to define the (expected) utility ui of a strategy pro-
file π for player i in a normal-form game as ui(π) =∑

a∈A ui(a)
∏

j∈N πj(aj). 2 A (mixed) strategy πi is a best
response to π−i if ui(πi, π−i) ≥ ui(π

′
i, π−i) for every

π′
i ∈ Πi. A (mixed) strategy profile is a Nash equilibrium

(MN ) if for every player i ∈ N , πi is a best-response
to π−i. A pure strategy Nash equilibrium (PN ) is a MN
where every player’s strategy has a support of cardinality
1. A totally mixed Nash equilibrium is denoted by TMN .
Given a profile π, Social Welfare SW (π) =

∑
i∈N ui(π).

And finally, Price of Anarchy PoA for a game is defined as
the ratio of the maximum social welfare (numerator) to the
minimum social welfare in an equilibrium (denominator).

Equilibria with Mistakes and Imprecision

We mention definitions of several well-known equilibrium
concepts involved with slight mistakes or imprecision of
agents, from the literature. These are Trembling-Hand Per-
fect Equilibrium (T ) from R. Selten’s seminal work (Selten
1975), its stronger version, Truly Perfect Equilibrium (TP )
(Kohlberg 1981), and Robust equilibrium (R) (Messner and
Polborn 2005). These concepts are of particular importance
since we shall reveal their connections to the distance-based
equilibrium concepts, introduced later in the next section.
Definition 1 (Trembling-Hand Perfect Equilibrium (Selten
1975)). Given a finite game G, a mixed strategy profile π
is Trembling-hand perfect equilibrium if there is a sequence
{πk}∞k=0 of totally mixed strategy profiles which converges
to π such that for each agent i ∈ N , πi is a best response to
πk
−i for all k.
Selten’s notion of Trembling-hand perfect equilibrium is

based on the notion of best response which is robust against
minimal mistakes (hence the term trembling hand) of op-
ponents, formalized by a sequence of profiles converging to
the equilibrium. As it was shown by Selten (Selten 1975),
every finite game has a T -equilibrium. Note that the notion
does not demand a best-response to every such sequence but
rather only one. We shall later show that this very notion
is entangled to our notions of distance-based equilibria. So
is the Truly Trembling-hand perfect equilibrium, a stronger
variant, as we mention next.3

Definition 2 (Truly perfect equilibrium (Kohlberg 1981)).
Given a finite game G, a mixed strategy profile π is truly
perfect equilibrium if for each sequence {πk}∞k=0 of totally
mixed strategy profiles which converge to π, there is a K
such that πi is a best response to πk

−i for all k ≥ K.
It is easy to see that this notion demands a lot by requir-

ing each action to be a best response in every sequence of
profile converging to the equilibrium. There is a cost for this

2Note that large
∏

in this expression stands for product (instead
of Π, the set of mixed profiles).

3Another similar variation (Okada 1981) that aims to strengthen
Selten’s Trembling-Hand is given by Okada.
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demand, that is, TP does not always exist (Kohlberg 1981)
(see also Chapter 11 of (Fudenberg and Tirole 1991)).

We also define an even stronger variation; namely, Strict-
TP (s-TP ).

Definition 3 (Strict-TP ). A strategy profile is a Strict-TP if
it is defined as in Def. 2 except that every πi is strictly better
than any other response to πk

−i.

We also provide a slightly stronger extension of a Selten’s
original Trembling-hand perfect equilibrium; namely strict-
T (s-T ):

Definition 4 (Strict-T ). A strategy profile is a Strict-T if it
is defined as in Def. 1 except that for every i ∈ N , there
is an infinite subsequence of {πk}∞k=0 where πi is a strict
best-response to πk

−i.

Note that a strict-T has to be a pure Nash equilibrium,
since a strict best-response cannot be mixed.

The following notion of Robust equilibrium is an adap-
tion from robust political equilibrium (Messner and Polborn
2005).4 Intuitively, an equilibrium is ε-Robust, if each player
would like to keep her action, even if there is a small chance
that other players deviate.

Definition 5 (Robust Equilibrium (Messner and Polborn
2005)). A mixed profile π is an ε-noisy variant of a pure
profile a, if for all j ∈ N , πj(aj) > 1− ε where ε > 0.

• Given a pure strategy profile a, player i, and ε > 0, action
bi is an ε-Robust response if bi is a best response to any
ε-noisy variant of a−i.

• A pure strategy profile a is an ε-Robust equilibrium if ev-
ery ai is an ε-Robust response to a−i.

Next, we provide a link between those two concepts.

Proposition 1. If a is an ε-Robust equilibrium for some ε >
0, then a is a TP.

Proof. Let a be some ε-Robust equilibrium for some ε > 0,
and consider a sequence {πk}∞k=0 converging to a. Thus
πk
i (ai) → 1 for all i ∈ N . In particular, there is some Ki

such that for all k > Ki, πk
i (ai) > 1−ε. Let K := maxi Ki.

Then for all k > K, and for all j ∈ N , we have that
πk
j (aj) > 1 − ε, i.e. πk is an ε-noisy variant of a, and thus

a−i is a best response to πk
−i.

Distance-based Equilibria

In the following, we define the central notions of the paper.

Distance-based uncertainty

For every agent i ∈ N , let ri ∈ R
+ be the associated igno-

rance factor formalizing the intuition: Greater the ignorance
factor, more ignorant/cautious the agent (about the mixed
strategies of other agents).

4(Messner and Polborn 2005) deal with both coalitional stabil-
ity and noisy actions, assuming that each player “fails” to play with
some small probability. We only focus on the latter part. Our defi-
nition of Robust equilibrium is based on their informal description
and motivation.

Given a mixed strategy profile π = 〈πi, π−i〉,
Bi(π, ri) := {π′

−i | d(π−i, π
′
−i) ≤ ri} is the set of pos-

sible response profiles of others that the agent i is consid-
ering, equipped with a metric d which is assumed to have
the axioms of non-negativity i.e., d(x, y) ≥ 0; identity of
indiscernibles i.e., d(x, y) = 0 ⇐⇒ x = y; sym-
metry i.e., d(x, y) = d(y, x); and triangle inequality i.e.,
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Π. Note that
although our results comply with any compact space with a
metric which fulfills those axioms, in the examples through-
out the paper we work with Euclidean metric for conve-
nience (due to its wide-spread use). Often, we will use the
shorthand notation Bi(π) (B for ball) whenever ri is clear
from the context.

Intuitively, Bi(π) is the set that captures i’s belief or sub-
jective uncertainty about other agents’ strategies in a strat-
egy profile π, hence we will call it often belief set. Yet an-
other description is that instead of writing a belief as a dis-
tribution over profiles, the belief of agent i is written as a
point estimate π−i plus an uncertainty parameter ri (which
together induce a set Bi). The use of a ball to capture un-
certainty is both motivated by its formal simplicity, and the
degree of freedom it provides which is set aside from any
obvious domain specific/context-dependent constraints.

Notice that as ri approaches 0, i becomes almost sure
about other agents’ strategies, and thus Bi becomes {π−i}.
Noteworthy is that for two-player games r reduces to the dis-
tance between two probability distributions. For more than
two players, any distance on probabilities induces a natural
metric d on uncorrelated profiles where for each j 
= i we
consider all π′

j close to πj .

Local responses

Let Πi denote the set of all strategies available to i. First, we
introduce some notions of best response.
Definition 6. π′

i locally dominates πi in the set Π∗
−i ⊆ Π−i

if: (a) for all π−i ∈ Π∗
−i, ui(π

′
i, π−i) ≥ ui(πi, π−i); and (b)

there exists π′
−i ∈ Π∗

−i such that ui(π
′
i, π

′
−i) > ui(πi, π

′
−i).

π′
i strictly locally dominates πi in Π∗

−i if (a) holds with strict
inequality.

Note that when Π∗
−i = Π−i, local dominance and strict

local dominance boil down to weak and strict strategic dom-
inance, respectively (Shoham and Leyton-Brown 2008).

Given a mixed strategy profile π, for each i ∈ N with ri,
a strategy πi is a distance-based
� (W)orst-case best response (or maximin) if

πi = argmaxπ′
i∈Πi

{min(ui(π
′
i, π−i)) | π−i ∈ Bi(π)}.

� (B)est-case best response (or maximax) if
πi = argmaxπ′

i∈Πi
{max(ui(π

′
i, π−i)) | π−i ∈ Bi(π)}.

� (WR) Worst-Case Regret best response if
πi = argminπ′

i∈Πi
max{regi(π

′
i, π−i) | π−i ∈ Bi(π)}

where regi(πi, π−i) = maxπ′
i∈Πi

(ui(π
′
i, π−i)) −

ui(πi, π−i).
� (U)ndominated best response if there is no π′

i that lo-
cally dominates πi in the set Bi(π).

� (D)ominant best response if πi locally dominates all π′
i

in the set Bi(π).
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� (SD) Strictly dominant best response if πi strictly lo-
cally dominates all π′

i in the set Bi(π).

By the following proposition, we characterize the rela-
tions between these notions. We make no assumption on the
metric since it only uses single sets of possible strategy pro-
files (of opponents), a.k.a. belief sets. In other words, these
relations are independent from the choice of the metric.

Theorem 2. Given any ignorance factor r, the following
statements hold:

(a) If πi is a SDr best response, then πi is a Dr best re-
sponse.

(b) If πi is a Dr best response, then πi is a Wr and Br best
response.

(c) If πi is a Dr best response, then πi is a WRr best re-
sponse.

(d) If πi is a unique Wr, Br or WRr best response, then πi

is a Ur best response.

Proof. (a) Easily follows by Definition 6.
(b) Consider any action π′

i 
= πi. Since ui(πi, π−i) ≥
ui(π

′
i, π−i) for any state π−i ∈ Bi(π), this holds in particu-

lar for the states with maximal utility and minimal utility.
(c) If πi is a Dr best response, then

regi(πi, π−i) = maxπ′
i∈Πi

(ui(π
′
i, π−i) − ui(πi, π−i)) ≤

maxπ′
i∈Πi

(ui(πi, π−i) − ui(πi, π−i)) = 0 for all
π−i ∈ Bi(π). The regret of any other action π′

i can
only be higher, thus π′

i is a WRr response.
(d) Suppose that πi is a Br best response. If πi is not a Ur

response, then there is an action π′
i 
= πi that locally domi-

nates πi. In particular, ui(π
′
i, π

∗
−i) ≥ ui(πi, π

∗
−i) in the best

state π∗
−i, which means that π′

i is also a Br best response.
Note that uniqueness is a necessary condition, otherwise, we
can consider two actions πi, π

′
i that have the same utility in

the best case, but one of them dominates the other. The proof
for Wr and WRr is similar.

The following result also holds for any metric since it only
uses containment.

Proposition 3. If r′i < ri then SDri response implies SDr′i
response.

Proof. Since B(π, r′i) ⊆ B(π, ri), condition (a) of Def. 6
must hold in all states.

This does not hold in any of the other variations. To see
this, consider W -equilibrium, since for any response πi,
min{ui(πi, π−i) | π−i ∈ Bi(π, r)} ≤ min{ui(πi, π−i |
Bi(π, r

∗)})} whenever Bi(π, r
∗) ⊆ Bi(π, r). The other

variations are similar.

Equilibrium

Now, we are ready to define the notion of distance-based
equilibrium. Let r := (r1, . . . , rn) be the ignorance vector
which stores ignorance factor for each agent i ∈ N . As-
sume that � ∈ {W,B,WR,U,D, SD}. Then, π is called a
distance-based �r-equilibrium if for every agent i, whose
belief set Bi(π) is defined w.r.t. ri where ri = ri, πi is a
�-best response. When all the agents have the same r, we

SDr s-TP

Dr TP TMN

BrWRrWr T

Ur MN

R

s-T

PN

Figure 1: Entailment of equilibrium concepts; An arrow to
�r means that there is some r > 0 for which the entail-
ment holds. An arrow from �r means the entailment holds
for any r > 0 (except for the dotted arrow which is slightly
weaker, see Prop. 8). Dashed arrows mark entailments that
are known or obvious.

will use r instead of r as a subscript, or totally omit it when-
ever it is clear from the context. Similar solution concepts
to Ur,Wr,WRr (in specific games) are studied in works
(Meir, Lev, and Rosenschein 2014; Meir and Parkes 2015).

Observation 4. For all definitions above, if ri = 0 for all
i ∈ N , then a �-equilibrium is a Nash equilibrium.

The statements below follow immediately from the rela-
tions between corresponding responses (i.e., Theorem 2).

Corollary 5. Given any r, the following statements hold:

(a) If π is a SDr-equilibrium, then π is a Dr-equilibrium.
(b) If π is a Dr-equilibrium, then π is a Wr, Br and WRr-

equilibrium.
(c) If π is a Wr, Br or WRr-equilibrium, then π is a Ur-

equilibrium.

A brief summary of our results is illustrated in Figure 1.

Locally Best Response and Trembling Hand

Definitions 1-4 capture stability of equilibrium in a rigorous
formal way, but require reasoning about sequences of pro-
files that do not seem have a clear cognitive interpretation.

In this section we aim to get a better understanding of
these concepts and of our distance-based equilibrium con-
cepts, by exploring the connections between them. More-
over, the proposed distance-based best-response (and hence
equilibrium) do have cognitive interpretation which is the
observational limitation that an agent has.

We first argue that robustness (under the appropriate
Def. 1-4) implies stability under uncertainty (under Def. 5)
when the ignorance factors of all agents are sufficiently
small.

Observation 6. Given a profile π and an agent i ∈ N , for
any mixed strategy πi, maxπ−i∈Bi(π) ui(πi, π−i)
= minπ−i∈Bi(π) ui(πi, π−i) = ui(πi, π−i) if ri = 0.
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Having Observation 6 in mind, realize that the classical
notion of MN implies our notions of Wr, Br,WRr and Ur

equilibria for r = 0, but not for any r > 0, as there can be
(even pure) Nash equilibria that are weakly dominated.

The following result provides a partial picture.

Proposition 7. Given a normal-form game G, if π is a strict
Trembling-hand perfect equilibrium, then there is an ε > 0
such that if ri < ε for every i ∈ N , then π is a Ur-
equilibrium.

Proof. Assume a game G and a Trembling-hand perfect
equilibrium π in G. By Definition 1, there is a sequence
{πk}∞k=0 of totally mixed strategies which converges to π.
Take an arbitrary ε > 0. By convergence there is a K such
that d(πk, π) < ε whenever k ≥ K. Moreover, it fol-
lows that for every i ∈ N , d(πk

−i, π−i) < ε as well for
k ≥ K. For each agent i ∈ N , let ri = d(πK

−i, π−i)
i.e., r = (r1, . . . , rn). Now, for any agent i, we know that
πk
−i ∈ Bi(π) whenever k ≥ K, and also since π is strict-

T , πi is a best response to πk
−i. This shows that πi is Uri -

response and that π is a Ur equilibrium.

In the other direction, it seems that a Dr-equilibrium
(w.r.t. any r > 0) must be a strict Trembling-hand perfect
equilibrium.

Proposition 8. If there is an r∗, such that π is Dr - equilib-
rium for all r ∈ (0, r∗), then π is strict-T .

Proof. Consider an arbitrary sequence of rk < r∗ that con-
verges to 0. Since π is a Drk -equilibrium, then for every
player i ∈ N , πi is a best response to every π−i ∈ B(π, rk),
and a strict best response to at least one profile πk,i

−i . More-
over, πk,i

−i is w.l.o.g. totally mixed (we can mix it with a low
probability for any other profile such that πi remains a best-
response). Let πrk

i be a mixed strategy that selects πi with
probability 1− rk.

We therefore get n sequences of totally-mixed profiles
converging to π, where in each sequence ((πk,i, πrk

i ))∞k=0,
πi is a strict best-response to the entire sequence.

Let πk = (πk,i, πi) for all k such that k mod n = (i−1)
(that is, we interleave subsequences). Note that (πk)∞k=0
converges to π, and for every agent i there is a subsequence
for which πi is a strict best-response. Thus π is a strict
Trembling-hand perfect equilibrium (strict-T ).

Proposition 9. For any r, if π is Dr-equilibrium, then π is
TP. Similarly, SDr entails s-TP .

Proof. Fix any r. It follows from the fact that whatever se-
quence we choose in Bi(π−i, r), πi will be a best response
[respectively, strict best response] to it by definition, hence
satisfying the condition of TP [s-TP ].

Proposition 10. If π is a TP , then there is an r such that π
is a Ur-equilibrium. Further, if the game also is generic then
π is a Dr-equilibrium.

Proof. Assume that π is a TP , then for each sequence
{πk}∞k=0 of totally mixed strategy profiles which converge
to π, there is a K such that πi is a best response to πk

−i
for all k ≥ K. All possible sequences form a ball for each
player, and we take the infimum of K of those (all) possi-
ble sequences; call it K�. Then, for all i ∈ N , we define
ri = d(π−i, π

K�

−i ). Obviously, either πi locally dominates
all the other responses to every π′

−i ∈ Bi(π, ri) for every
player i (which implies that π is a Dr-equilibrium), or there
is some response that has the same utility as πi (which means
non-genericity).

The following result provides a link between strict-TP and
SDr-equilibrium.
Proposition 11. If π is a strict-TP then there is an ε > 0
such that if ri < ε for all i ∈ N then π is SDr-equilibrium.

Proof. Assume that π is not a SDr-equilibrium for any
r > 0. We will construct a sequence of states {πk}∞k=0
that converges to π, but such that for every k there is some
agent i for which πi is not a strict best response to πk

−i. Let
rk = 1

k . Since π is not a SDr-equilibrium, there is some
i ∈ N , a profile πk

−i ∈ Bi(π, rk), and an action a′i such
that ui(π

k
−i, πi) ≤ ui(π

k
−i, a

′
i). That is, πi is not a strict best

response to πk
−i. We set πk = (πk

−i, πi). By construction,
d(πk, π) ≤ 1

k and thus {πk}∞k=0 converges to π.

It seems s-T -equilibrium does not imply Dr-equilibrium.
The proof is included in the longer version of the paper due
to space restrictions.
Proposition 12. There is a s-T -equilibrium that is not a Br

equilibrium for any r > 0 (and thus not a Dr-equilibrium).
Proposition 13. Given a game G, if π is an R-equilibrium,
then there is an r > 0 such that π is a Br and Wr-
equilibrium.

Proof. We give a proof for Br (Wr is similar) case. Assume
that π is an R, then by definition 5, there is an ε such that
for every ε∗ ≤ ε, π∗ such that π∗ → π is an equilibrium.
Let π′ be a profile such that d(π′, π) = 0. By robustness,
π′ is an equilibrium. Now, for every player i ∈ N , observe
that d(π′, π) > d(〈πi, π

′
−i〉, π). Then, 〈πi, π

′
−i〉 ∈ Bi(π

′, ε).
Hence, πi is a best response to any sequence of {〈πi, π

′
−i〉}

converging to π. Therefore, πi must be a Br best response
for r = d(〈πi, π

′
−i〉, π).

Proposition 14. Let a be a pure profile in Dr-equilibrium,
then a is r

n1/2 -Robust. Moreover, any ε-Robust equilibrium
is a Dε-equilibrum.

Proof. Assume that a ∈ Dr for some r, and
consider some ε-noisy variant of a. d(a−i, π−i) =(∑

j �=i(1− π(aj))
2
)1/2

≤ (nε2)1/2, thus π−i ∈ Bi(a, r)

for r = (nε2)1/2 = n1/2ε. This means that a is ε-robust
for ε = r

n1/2 . In the other direction, suppose that a is
ε-Robust and consider some π. If π(aj) > 1 − ε, then
d(π, a) ≥ ((π(aj) − 1)2)1/2 > ε, which means that all
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vectors in Bi(a, r) are (at most) r-noisy variants of a. Thus
for any r ≤ ε, ai is a best-response to all of Bi(a, r), and is
therefore a Dε equilibrium.

The following result follows immediately from the Propo-
sition 13 and Corollary 5.

Corollary 15. Given a game G, if π is an R, then there is
an r > 0 such that π is a Ur-equilibrium.

See Figure 1, for a summary of the results obtained in this
Section.

Existence Results

In the previous section, we had noted that MN implies our
distance-based notions of Wr, WRr, Br and Ur equilibria
as a special case when r = 0. In this section, we deliver
existence results regarding the several variants of distance-
based equilibria.

An immediate negative result to start with, Dr-
equilibrium which is central in Figure 1, seems to be too
strong to exist in general. To see this, assume a game in
which all actions have the same payoffs for every player. Ob-
viously any profile is a Nash equilibrium, yet none of them is
a Dr-equilibrium (including r = 0) due to (b) of Definition
6 of local dominance.

Corollary 16. Dr-equilibrium does not exist in general.

Balancing out this negative news, the remaining distance-
based equilibria entailed by Dr do exist.

Theorem 17. Every finite normal-form game G has a Wr,
Br and WRr-equilibria.

We omit the actual long proof here due to space limita-
tions, and present it in the extended (ArXiv) version. The
proof idea is based on well-known application of Kakutani’s
fixed point’s theorem i.e., defining the best response corre-
spondence (for each one of them), and showing its convexity
and upper-continuity. It is rather straightforward in the cases
of Wr and Br -equilibria. In the case of WRr-equilibrium,
it is obtained by showing the convexity and piece-wise lin-
earity of the worst-case best response expression (6).

Next, the following result immediately follows from the
above theorem and Corollary 5.

Corollary 18. Every finite normal-form game G has a Ur-
equilibrium.

Discussion through Examples

To provide a better intuition, we give examples of well-
known 2 × 2 games from the basic game theory literature,
and compare the outcomes of standard notions of equilibria
against some notions of equilibria that we defined via local
responses.

For convenience, the assumed metric is Euclidean; hence,
if the opponent plays a mixed strategy (x, 1− x), the player
believes that the strategy is anywhere in the set
{(y, 1− y) : max{0, x− r} ≤ y ≤ max{1, x+ r}}.

Left Right
Up 1, 1 2, 0

Down 0, 2 2, 2

Figure 2: Trembling-Hand Game where both 〈Up, Left〉 and
〈Down, Right〉 are PN , yet only 〈Up, Left〉 is T .

Trembling-Hand Game

Call the example given in Figure 2 Trembling-Hand Game
for demonstration purposes. It seems that the pure strategy
Nash equilibrium PN ={(Up, Left), (Down, Right)} while
Trembling-hand perfect equilibrium T={(Up, Left)} which
matches with W .

Assume that r1 = r2 ≈ 0.14. Now consider two mixed
Nash strategy equilibria π = 〈(1, 0), (1, 0)〉 and π′ =
〈(0, 1), (0, 1)〉 where the former is also a T . See that for
B1(π), every strategy is dominated by π1 in terms of Br-best
response and Wr-best response (analogous for the second
agent). Moreover, the regret increases as agent 1 diverges
from (1, 0). Hence π ∈ Br ∩ Wr.5 In the case of π′, it is a
Br-response since payoffs are already 2 for both agents. On
the other hand, π′ 
∈ Wr since worst case keeps improving
for any agent who keeps deviating. Therefore, the regret also
gets minimized since the best case value is fixed at 2.

Matching Pennies

In the game of Matching Pennies, PN = ∅ whereas The
set of mixed strategy Nash equilibria is a singleton i.e.,
MN = {π} where 〈(0.5, 0.5), (0.5, 0.5)〉. If r ≥ 0.5 then

Heads Tails
Heads 1, -1 -1, 1

Tails -1, 1 1, -1

Figure 3: Matching Pennies

all profiles are Br-equilibrium. In the case of Ur any strat-
egy in the set (0.5− r, 0.5+ r) (coupled symmetrically with
the other player) forms an equilibrium. This means an im-
precise randomization can also be an equilibrium, provided
that players have some level of uncertainty over the exact
randomization of the other player.

Stag Hunt

Stag Hare
Stag 5, 5 -1, 3
Hare 3, -1 1, 1

Figure 4: Stag-Hunt Game

We continue with the rather well-known coordination
game Stag-Hunt illustrated in Figure 4.

5Indeed, for such a value of r, the strategy of the opponent
varies only by 0.1. And the worst case is defined by the case that
the opponent plays (1, 0).
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Pure strategy-Nash equilibria are S = 〈Stag, Stag〉 and
H = 〈Hare, Hare〉. There is also a mixed equilibrium that
we will not consider. Playing S is more socially desirable,
but less stable according to several solution concepts based
on uncertainty and risk aversion (see the work by (Carls-
son and Van Damme 1993) for an overview and discussion).
However these notions are not sensitive to possible differ-
ences between players’ perceptions and do not quantify the
instability of S. In contrast, such quantification is very nat-
ural when we consider distance-based equilibria, by the size
r of the respective belief set. For example, for pessimistic
players (who attribute excessive probability to the opponent
playing “Hare”), S is a Wr-equilibrium for any r, but H is
only a Wr-equilibrium if r ≤ 1

3 .

A Bliss of Ignorance

Once a new notion of equilibrium is introduced, it is natural
to ask whether it leads to any efficient outcome in the game.
In this section, we explore this question and provide with
an exemplary class of normal-form games that this is indeed
the case. In doing so, we employ the notion of Price of Anar-
chy which is central as a measure of how much a system be-
comes inefficient due to selfish behaviour (Nisan et al. 2007)
(recall the preliminaries section for formal definition). The
class of games we introduce is a consensus game (Balcan,
Blum, and Mansour 2009) which is asymmetric in payoffs.

Definition 7 (Consensus Game). A normal-form game G =
(N,A, u) where Ai ≥ 2 for every i ∈ N is called a consen-
sus game if ui(a

′) = c′ and u(a) = c for every a ∈ A\{a′}
with c′ > c.

Intuitively, the given consensus game is a coordination
game in which only a single pure strategy profile has a
higher payoff i.e., c′ for every player compared to all the
other pure strategy profiles which has c. Such game model
(group) scenarios in which every member player has to agree
unilaterally a decision to be taken (e.g., World Trade Org.).

One can observe that any given consensus game has at
least two pure strategy equilibria a′ and a such that only one
of them has a more desirable outcome i.e., SW (a′) = n · c′,
and SW (a) = n ·c. The following result shows that an igno-
rance factor r > 0, eliminates the undesirable equilibrium.

Proposition 19. Every consensus game has a unique Dr

equilibrium where ri > 0 for all i ∈ N . Moreover, PoA is 1.

Proof. Observe that profile a′ has the best possible payoff
for every single agent, hence it is an equilibrium. Moreover,
due to the linearity of utilities (i.e., πi(a

′)c′+(1−πi(a
′))c >

π′
i(a

′)c′+1−π′
i(a

′)c whenever πi(a
′) > π′

i(a
′), pure strat-

egy πi(a
′) = 1 locally dominates every other strategy (i.e.,

α = 1) for any Bi(π
′′, r) with r > 0, hence it is unique

(since, by Definition 6 there cannot be two distinct best re-
sponse which can locally dominate each other). As it is the
best possible outcome, PoA becomes 1.

Exploring such scenarios and extending them to more
general class of games is left as future work. Yet still to de-
velop a general understanding, it is important to look at PoA
from the lenses of distance-based uncertainty. In this regard,

we deliver our final technical result. In particular, we provide
a bound (in terms of r) on the gain/loss of social welfare in
an equilibrium modulo strict uncertainty.

The smoothness framework provides a convenient tool to
bound the PoA in games (Roughgarden 2009): If there are
λ, μ > 0 s.t. for any two pure profiles a, a′ we have∑

i∈N

ui(a
′
i, a−i) ≥ λ

∑
i∈N

ui(a
′)− μ

∑
i∈N

ui(a),

then for any pure/mixed/correlated/coarse-correlated equi-
librium π∗ and any profile �a:

SW (π∗)
SW (a′)

≥ λ

1 + μ
.

The proof is trivial for pure equilibria. Now, the question
we ask is “can we extend this result to �r equilibria (perhaps
with a relaxed bound)”?

For a game G, let

δG(r) = max{max

{
ui(ai, π−i)

ui(ai, π′
−i)

,
ui(ai, π

′
−i)

ui(ai, π−i)

}

: i ∈ N, ai ∈ Ai, π
′
−i ∈ Bi(π−i, r)}, (1)

i.e., the maximal utility ratio of an agent within a sphere of
radius r.
Theorem 20. If there are λ, μ > 0 s.t. for any two pure
profiles a, a′ we have∑

i∈N

ui(a
′
i, a−i) ≥ λ

∑
i∈N

ui(a
′)− μ

∑
i∈N

ui(a),

then for any �r-pure equilibrium a∗ (for any � ∈
{U,D,W,B}) and any profile a′:

SW (a∗)
SW (a′)

≥ λ

δG(r)2 + μ
.

Due to space limitations, we move the proof to the ap-
pendix.

Conclusion and Future Avenues

We have introduced a distribution-free agent model based on
strict uncertainty, and studied consequent equilibria notions
under different best-response behaviours. In the context of
normal-form games, we explored the links between the no-
tions we defined and a handful of existing well-known solu-
tion concepts which model mistakes and imprecision such
as Trembling-hand perfect equilibrium (variants) and Ro-
bust equilibrium. For instance, it is shown that our notion is
naturally generalizes Robust equilibrium. It seems that strict
equilibrium notion Dr does not exist in general while all
other entailed distance-based notions exist. Complementing
those existence results with complexity results is an interest-
ing line of future work.

We looked for a possible scenario in which such solution
concepts could potentially be useful, and introduced a coor-
dination game in which ignorance was indeed helpful for the
players to avoid a worst-outcome. Investigating more gen-
eral game classes that distance-based uncertainty solutions
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give rise to nice outcome guarantees deserves a further study
on its own, and is our high priority for future research. As a
more general outlook, we showed how to bound the loss of
social welfare in any equilibrium (PoA) as uncertainty grows
in terms of ignorance factor r. It would be nice to obtain finer
bounds for games with different local-best responses.

Moreover, studying these notions on certain classes of
games e.g., repeated games, as well as extending to exten-
sive form games in general is our future research agenda.
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